You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

network.py 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import collections
  10. import fnmatch
  11. import itertools
  12. import re
  13. from collections import OrderedDict
  14. from typing import Dict, List
  15. import numpy as np
  16. from ..core._imperative_rt import ComputingGraph
  17. from ..core._imperative_rt.core2 import SymbolVar
  18. from ..core.tensor import megbrain_graph as G
  19. from .comp_graph_tools import get_dep_vars, get_opr_type, get_oprs_seq
  20. from .network_node import (
  21. Host2DeviceCopy,
  22. ImmutableTensor,
  23. NetworkNode,
  24. OpNode,
  25. VarNode,
  26. str_to_mge_class,
  27. )
  28. class Network:
  29. def __init__(self):
  30. self.input_vars = [] # input var of graph
  31. self._orig_inputs = []
  32. self.output_vars = [] # output var of graph
  33. self._orig_outputs = []
  34. self.all_oprs_map = OrderedDict()
  35. self.all_vars_map = OrderedDict()
  36. self.graph = ComputingGraph()
  37. @classmethod
  38. def load(cls, model_path: str, outspec: List[str] = None):
  39. """
  40. Loads a computing graph as a Network object.
  41. :param model_path: file path of mge model.
  42. :param outspec: only load the subgraph with outspec as its endpoints.
  43. """
  44. self = cls()
  45. _, _, outputs = G.load_graph(model_path)
  46. if outspec is not None:
  47. output_spec = outspec.copy()
  48. all_vars = get_dep_vars(outputs) + outputs
  49. new_outputs = {}
  50. for i in all_vars:
  51. if i.name in output_spec:
  52. new_outputs[i.name] = i
  53. output_spec.remove(i.name)
  54. assert len(output_spec) == 0, "Can not find {} in this model".format(
  55. output_spec
  56. )
  57. outputs = [new_outputs[i] for i in outspec]
  58. self._orig_outputs = outputs
  59. for x in self._orig_outputs:
  60. self.output_vars.append(self._get_var(x))
  61. self.add_dep_oprs()
  62. for x in self._orig_inputs:
  63. self.input_vars.append(self._get_var(x))
  64. self.graph = self._orig_outputs[0].graph
  65. return self
  66. def _compile(self):
  67. self.all_oprs_map = {}
  68. self.all_vars_map = {}
  69. for opr in self.all_oprs:
  70. if isinstance(opr, (ImmutableTensor, Host2DeviceCopy)):
  71. opr.compile(self.graph)
  72. else:
  73. opr.compile()
  74. if opr.name is not None:
  75. opr._opr.name = opr.name
  76. self.all_oprs_map[opr._opr.id] = opr
  77. for o in opr.outputs:
  78. self.all_vars_map[o.var.id] = o
  79. def dump(
  80. self,
  81. file,
  82. *,
  83. keep_var_name: int = 1,
  84. keep_opr_name: bool = False,
  85. keep_param_name: bool = False,
  86. keep_opr_priority: bool = False,
  87. strip_info_file=None,
  88. append_json=False,
  89. optimize_for_inference=True,
  90. append=False,
  91. **kwargs
  92. ):
  93. """
  94. Serializes graph to file.
  95. :param file: output file, could be file object or filename.
  96. :param append: whether output is appended to ``file``.
  97. Only works when ``file`` is str.
  98. :param keep_var_name: level for keeping variable names:
  99. * 0: none of the names are kept
  100. * 1: (default)keep names of output vars
  101. * 2: keep names of all (output and internal) vars
  102. :param keep_opr_name: whether to keep operator names.
  103. :param keep_param_name: whether to keep param names, so param values can be
  104. easily manipulated after loading model
  105. :param keep_opr_priority: whether to keep priority setting for operators
  106. :param strip_info_file: a string for path or a file handler. if is not None,
  107. then the dump information for code strip would be written to ``strip_info_file``
  108. :param append_json: will be check when `strip_info_file` is not None. if set
  109. true, the information for code strip will be append to strip_info_file.
  110. if set false, will rewrite strip_info_file
  111. :param optimize_for_inference: enbale optmizations,
  112. will skip all optimize options if this is False. Default: True
  113. :Keyword Arguments:
  114. * enable_io16xc32 --
  115. whether to use float16 for I/O between oprs and use
  116. float32 as internal computation precision. Note the output var would be
  117. changed to float16.
  118. * enable_ioc16 --
  119. whether to use float16 for both I/O and computation
  120. precision.
  121. * enable_hwcd4 --
  122. whether to use NHWCD4 data layout. This is faster on some
  123. OpenCL backend.
  124. * enable_nchw88 --
  125. whether to use NCHW88 data layout, currently
  126. used in X86 AVX backend.
  127. * enable_nchw44 --
  128. whether to use NCHW44 data layout, currently
  129. used in arm backend.
  130. * enable_nchw44_dot --
  131. whether to use NCHW44_dot data layout, currently
  132. used in armv8.2+dotprod backend.
  133. * enable_nchw4 --
  134. whether to use NCHW4 data layout, currently
  135. used in nvidia backend(based on cudnn).
  136. * enable_nchw32 --
  137. whether to use NCHW32 data layout, currently
  138. used in nvidia backend with tensorcore(based on cudnn).
  139. * enable_chwn4 --
  140. whether to use CHWN4 data layout, currently
  141. used in nvidia backend with tensorcore.
  142. * enable_fuse_conv_bias_nonlinearity: whether to fuse conv+bias+nonlinearty
  143. into one opr.
  144. * enable_fuse_conv_bias_with_z: whether to fuse conv_bias with z
  145. input for inference on nvidia backend(this optimization pass will
  146. result in mismatch of the precision of output of training and
  147. inference)
  148. """
  149. self._compile()
  150. out = [G.VarNode(var.var) for var in self.output_vars]
  151. if optimize_for_inference:
  152. out = G.optimize_for_inference(out, **kwargs)
  153. dump_content, _ = G.dump_graph(
  154. out,
  155. keep_var_name=keep_var_name,
  156. keep_opr_name=keep_opr_name,
  157. keep_param_name=keep_param_name,
  158. keep_opr_priority=keep_opr_priority,
  159. strip_info_file=strip_info_file,
  160. append_json=append_json,
  161. )
  162. if isinstance(file, str):
  163. permission = "wb" if append == False else "ab"
  164. file = open(file, permission)
  165. file.write(dump_content)
  166. def make_const(self, data, name=None, device=None):
  167. """Makes an ImmutableTensor OpNode to provide a parameter for the network.
  168. """
  169. node = ImmutableTensor(data, name, device, self.graph)
  170. node.compile(self.graph)
  171. return node.outputs[0]
  172. def make_input_node(self, shape, dtype, name=None, device=None):
  173. """Makes a Host2DeviceCopy OpNode to provide an input varnode for the network.
  174. """
  175. node = Host2DeviceCopy(shape, dtype, name, device)
  176. node.compile(self.graph)
  177. return node.outputs[0]
  178. def add_output(self, *vars: VarNode):
  179. """Adds vars into the network output node list
  180. """
  181. if not all([var.owner for var in vars]):
  182. self.add_dep_oprs(*vars)
  183. for var in vars:
  184. if var not in self.output_vars:
  185. self.output_vars.append(var)
  186. def remove_output(self, *vars: VarNode):
  187. """Removes vars from the network output node list.
  188. """
  189. for var in vars:
  190. if var in self.output_vars:
  191. self.output_vars.remove(var)
  192. def add_dep_oprs(self, *vars):
  193. if len(vars) == 0:
  194. vars = self.output_vars
  195. q = list(vars)
  196. while len(q) > 0:
  197. cur = q.pop(0)
  198. if cur.owner is not None:
  199. continue
  200. if cur.name is None:
  201. cur.name = cur.var.name
  202. self.all_vars_map[cur.var.id] = cur
  203. mge_opr = cur.var.owner
  204. if get_opr_type(mge_opr) == "Host2DeviceCopy":
  205. self._orig_inputs.extend(mge_opr.outputs)
  206. cur.owner = self._add_opr(mge_opr)
  207. if cur.owner is None:
  208. cur.owner = self.all_oprs_map[mge_opr.id]
  209. continue
  210. q.extend(cur.owner.inputs)
  211. return list(vars)
  212. def modify_opr_names(self, modifier):
  213. """Modifies names of operators **inplace**; useful for merging loaded
  214. network into another network
  215. :param modifier: a string to be prepended to the name, or a function
  216. that maps from name to name
  217. :type modifier: str or callable
  218. """
  219. if isinstance(modifier, str):
  220. om = modifier
  221. modifier = lambda v: "{}.{}".format(om, v)
  222. assert isinstance(modifier, collections.Callable)
  223. for i in self.all_oprs:
  224. v0 = i.name
  225. v1 = modifier(v0)
  226. assert isinstance(v1, str)
  227. i.name = v1
  228. def reset_batch_size(self, batchsize, *, blacklist=()):
  229. """Helper for reset batch size; first dimension of all data providers
  230. not in blacklist are assumed to be the batch size
  231. :param blacklist: data provider names whose first dimension is not
  232. batchbatch size
  233. """
  234. blacklist = set(blacklist)
  235. prev_batchsize = None
  236. for i in self.data_providers_filter:
  237. if i.name in blacklist:
  238. blacklist.remove(i.name)
  239. else:
  240. shp = list(i.shape)
  241. if prev_batchsize is None:
  242. prev_batchsize = shp[0]
  243. else:
  244. assert prev_batchsize == shp[0], (
  245. "batchsize mismatch: batchsize={} "
  246. "shape={} dp={}".format(prev_batchsize, shp, i.name)
  247. )
  248. shp[0] = batchsize
  249. i.shape = tuple(shp)
  250. assert prev_batchsize is not None, "no data provider found"
  251. assert not blacklist, "unused items in blacklist: {}".format(blacklist)
  252. def replace_vars(self, repl_dict: Dict[VarNode, VarNode]):
  253. """
  254. Replaces vars in the graph.
  255. :param repl_dict: the map {old_var: new_var} that specifies how to replace the vars.
  256. """
  257. if not all([var.owner for var in repl_dict.values()]):
  258. print(repl_dict.values())
  259. self.add_dep_oprs(*list(repl_dict.values()))
  260. for var in self.all_vars:
  261. if var in repl_dict:
  262. repl_var = repl_dict[var]
  263. owner = repl_var.owner
  264. idx = owner.outputs.index(repl_var)
  265. owner.outputs[idx] = var
  266. var.__dict__.update(repl_var.__dict__)
  267. var.var = repl_var.var
  268. def replace_oprs(self, repl_dict: Dict[OpNode, OpNode]):
  269. """
  270. Replaces operators in the graph.
  271. :param oprmap: the map {old_opr: new_opr} that specifies how to replace the operators.
  272. """
  273. for opr in self.all_oprs:
  274. if opr in repl_dict:
  275. assert len(opr.outputs) == len(
  276. repl_dict[opr].outputs
  277. ), "can not replace {} with {}".format(type(opr), type(repl_dict[opr]))
  278. repl_dict[opr].outputs = opr.outputs
  279. for ind, var in enumerate(opr.outputs):
  280. var.owner = repl_dict[opr]
  281. var.__dict__.update(repl_dict[opr].outputs[ind].__dict__)
  282. var.var = repl_dict[opr].outputs[ind].var
  283. def get_opr_by_type(self, oprcls, unique=True):
  284. assert issubclass(oprcls, OpNode)
  285. rst = self.opr_filter.type(oprcls).as_list()
  286. if unique:
  287. assert len(rst) == 1, "{} operators of type {} found".format(
  288. len(rst), oprcls
  289. )
  290. (rst,) = rst
  291. return rst
  292. def get_opr_by_name(self, name, unique=True):
  293. rst = self.opr_filter.name(name).as_list()
  294. if unique:
  295. assert len(rst) == 1, "{} operators of type {} found".format(len(rst), name)
  296. (rst,) = rst
  297. return rst
  298. def get_var_by_name(self, name, unique=True):
  299. rst = self.var_filter.name(name).as_list()
  300. if unique:
  301. assert len(rst) == 1, "{} operators of type {} found".format(len(rst), name)
  302. (rst,) = rst
  303. return rst
  304. def get_var_receive_oprs(self, var):
  305. """ Gets all oprs which use var as input
  306. """
  307. return self.opr_filter.has_input(var).as_list()
  308. def get_dep_oprs(self, var):
  309. """Gets dependent oprs of var
  310. """
  311. return get_oprs_seq(var, False, False)
  312. @property
  313. def opr_filter(self):
  314. """Filter on all opnodes of the Network.
  315. """
  316. oprs = self.all_oprs
  317. return NodeFilter(itertools.islice(oprs, len(oprs)))
  318. @property
  319. def var_filter(self):
  320. """Filter on all varnode of the Network.
  321. """
  322. vars = self.all_vars
  323. return NodeFilter(itertools.islice(vars, len(vars)))
  324. @property
  325. def params_filter(self): # all immutable tensor
  326. """Filter on all parameters (ImmutableTensor Opr) of the Network
  327. """
  328. return self.opr_filter.param_provider()
  329. @property
  330. def data_providers_filter(self): # all host2devicecopy
  331. """Filter on all input nodes (Host2DeviceCopy Opr) of the Network
  332. """
  333. return self.opr_filter.data_provider()
  334. @property
  335. def dest_vars(self):
  336. """Output varnodes of the Network.
  337. """
  338. return self.output_vars
  339. @property
  340. def all_oprs(self):
  341. return get_oprs_seq(self.output_vars, False, False)
  342. @property
  343. def all_vars(self):
  344. return get_dep_vars(self.output_vars)
  345. @property
  346. def all_vars_dict(self):
  347. return self.var_filter.as_dict()
  348. @property
  349. def all_oprs_dict(self):
  350. return self.opr_filter.as_dict()
  351. # used for loading and building graph
  352. def _add_opr(self, opr):
  353. # TODO: use megbrain C++ RTTI to replace type string
  354. if opr.id not in self.all_oprs_map:
  355. opnode = str_to_mge_class(get_opr_type(opr)).load(opr)
  356. self.all_oprs_map[opr.id] = opnode
  357. for var in opr.inputs:
  358. opnode.add_inp_var(self._get_var(var))
  359. for var in opr.outputs:
  360. opnode.add_out_var(self._get_var(var))
  361. return opnode
  362. else:
  363. return None
  364. def _get_opr(self, x):
  365. if x.id in self.all_oprs_map:
  366. return self.all_oprs_map[x.id]
  367. else:
  368. return None
  369. def _get_var(self, x):
  370. # auto convert to VarNode of Network
  371. if x.id not in self.all_vars_map or self.all_vars_map[x.id].var != x:
  372. self.all_vars_map[x.id] = VarNode.load(x, self._get_opr(x.owner))
  373. return self.all_vars_map[x.id]
  374. def as_varnode(obj):
  375. """convert a :class:`.VarNode` compatible object to :class:`.VarNode`.
  376. :param obj: it must be one of the following:
  377. 1. a :class:`.VarNode` object
  378. 2. a :class:`.OpNode` object that has unique output
  379. 3. an iterable that produces either type 1 or 2, with length 1
  380. :rtype: :class:`.VarNode`
  381. """
  382. if type(obj) is VarNode:
  383. return obj
  384. if isinstance(obj, OpNode):
  385. assert len(obj.outputs) == 1, (
  386. "operator {} must have one output to be converted to VarNode; "
  387. "got {} actually".format(obj, len(obj.outputs))
  388. )
  389. ret = obj.outputs[0]
  390. assert type(ret) is VarNode
  391. return ret
  392. assert isinstance(
  393. obj, collections.Iterable
  394. ), "{} is not compatible with VarNode".format(obj)
  395. val = list(obj)
  396. assert (
  397. len(val) == 1
  398. ), "can not convert sequence of length {} to VarNode ({})".format(
  399. len(val), (lambda s: s if len(s) < 50 else s[:50] + " ...")(str(val))
  400. )
  401. return as_varnode(val[0])
  402. def as_oprnode(obj):
  403. """convert a :class:`.OpNode` compatible object to
  404. :class:`.OpNode`; it works like :func:`as_varnode`."""
  405. if type(obj) is VarNode:
  406. return obj.owner
  407. if isinstance(obj, OpNode):
  408. return obj
  409. assert isinstance(
  410. obj, collections.Iterable
  411. ), "{} is not compatible with OpNode".format(obj)
  412. val = list(obj)
  413. assert (
  414. len(val) == 1
  415. ), "can not convert sequence of length {} to " "OpNode({})".format(len(val), val)
  416. return as_oprnode(val[0])
  417. class NodeFilter:
  418. """Filter on node iterator. This class is an iterator of
  419. :class:`.NetworkNode` objects and multiple filtering conditions and
  420. mappers can be chained.
  421. Example::
  422. # find all :class:`.ImmutableTensor` nodes
  423. for i in NodeFilter(node_iter).param_provider():
  424. print(i)
  425. # find all :class:`.ImmutableTensor` nodes that end with ':W'
  426. for i in NodeFilter(node_iter).param_provider().name('*:W'):
  427. print(i)
  428. # number of inputs
  429. nr_input = NodeFilter(node_iter).data_provider().as_count()
  430. """
  431. _iter = None
  432. def __init__(self, node_iter):
  433. """
  434. :param node_iter: iterator to :class:`.NetworkNode`, or a
  435. :class:`.VarNode`-compatible object; in the later case, its
  436. dependent oprs would be used
  437. """
  438. if isinstance(node_iter, VarNode):
  439. oprs = get_oprs_seq(node_iter, False, False)
  440. node_iter = itertools.islice(oprs, len(oprs) - 1)
  441. if isinstance(node_iter, OpNode):
  442. oprs = get_oprs_seq(node_iter.inputs, False, False)
  443. node_iter = itertools.islice(oprs, len(oprs) - 1)
  444. assert isinstance(node_iter, collections.Iterable)
  445. if (not isinstance(node_iter, NodeFilter)) and type(
  446. self
  447. ) is not NodeFilterCheckType:
  448. node_iter = NodeFilterCheckType(node_iter, NetworkNode)
  449. self._iter = node_iter
  450. @classmethod
  451. def make_all_deps(cls, *dest_vars):
  452. """make a :class:`NodeFilter` that contains all deps of given vars"""
  453. return cls(list(get_oprs_seq(dest_vars, False, False)))
  454. def __iter__(self):
  455. """to be overwritten by subclass to implement filters"""
  456. return iter(self._iter)
  457. def type(self, node_type):
  458. """filter by specific node type
  459. :param node_type: node type class
  460. :return: a new :class:`NodeFilter` object
  461. """
  462. return NodeFilterType(self, node_type)
  463. def check_type(self, node_type):
  464. """assert that all oprs produced by this iterator are instances of
  465. certain type
  466. :param node_type: node type class
  467. :return: a new :class:`NodeFilter` object
  468. :raises TypeError: if type check failed
  469. """
  470. return NodeFilterCheckType(self, node_type)
  471. def not_type(self, node_type):
  472. """remove oprs of specific type
  473. :param node_type: node type class
  474. :return: a new :class:`NodeFilter` object
  475. """
  476. return NodeFilterNotType(self, node_type)
  477. def param_provider(self):
  478. """get :class:`.ParamProvider` oprs; shorthand for
  479. ``.type(ParamProvider)``"""
  480. return self.type(ImmutableTensor)
  481. def data_provider(self):
  482. """get :class:`.DataProvider` oprs; shorthand for
  483. ``.type(DataProvider)``"""
  484. return self.type(Host2DeviceCopy)
  485. def name(self, pattern, ignorecase=True):
  486. """filter by node name
  487. :param pattern: a string in glob syntax that can contain ``?`` and
  488. ``*`` to match a single or arbitrary characters.
  489. :type pattern: :class:`str`
  490. :param ignorecase: whether to ignroe case
  491. :type ignorecase: bool
  492. :return: a new :class:`NodeFilter` object
  493. """
  494. return NodeFilterName(self, pattern, ignorecase)
  495. def has_input(self, var):
  496. """an opr is kept if it has given var as one of its inputs
  497. :param var: var node to checked
  498. :return: a new :class:`NodeFilter` object
  499. """
  500. return NodeFilterHasInput(self, var)
  501. def as_list(self):
  502. """consume this iterator and return its content as a list
  503. :rtype: [:class:`.GraphNodeBase`]
  504. """
  505. return list(self)
  506. def as_unique(self):
  507. """assert that this iterator yields only one node and return it
  508. :return: the unique node
  509. :rtype: :class:`.GraphNodeBase`
  510. :raises ValueError: if this iterator does not yield a unique node
  511. """
  512. (opr,) = self
  513. return opr
  514. def as_dict(self):
  515. """construct an ordered dict to map from node names to objects in
  516. this iterator
  517. :rtype: :class:`OrderedDict`
  518. """
  519. return collections.OrderedDict((i.name, i) for i in self)
  520. def as_count(self):
  521. """consume this iterator and get the number of elements
  522. :rtype: int
  523. """
  524. return sum(1 for _ in self)
  525. class NodeFilterType(NodeFilter):
  526. """see :meth:`NodeFilter.type`"""
  527. _node_type = None
  528. def __init__(self, node_iter, node_type):
  529. assert issubclass(node_type, NetworkNode), "bad opr type: {}".format(node_type)
  530. super().__init__(node_iter)
  531. self._node_type = node_type
  532. def __iter__(self):
  533. for i in self._iter:
  534. if isinstance(i, self._node_type):
  535. yield i
  536. class NodeFilterNotType(NodeFilterType):
  537. """see :meth:`NodeFilter.not_type`"""
  538. def __iter__(self):
  539. for i in self._iter:
  540. if not isinstance(i, self._node_type):
  541. yield i
  542. class NodeFilterCheckType(NodeFilterType):
  543. """see :meth:`NodeFilter.check_type`"""
  544. def __iter__(self):
  545. for i in self._iter:
  546. if not isinstance(i, self._node_type):
  547. raise TypeError(
  548. "all nodes should be {}; got {!r}".format(self._node_type, i)
  549. )
  550. yield i
  551. class NodeFilterHasInput(NodeFilter):
  552. """see :meth:`NodeFilter.has_input`"""
  553. _var = None
  554. def __init__(self, node_iter, var):
  555. var = as_varnode(var)
  556. super().__init__(node_iter)
  557. self.var = var
  558. def __iter__(self):
  559. for i in self._iter:
  560. assert isinstance(
  561. i, OpNode
  562. ), "has_input() must be used with OpNode; " "got {!r}".format(i)
  563. if any(self.var is _ for _ in i.inputs):
  564. yield i
  565. class NodeFilterName(NodeFilter):
  566. """see :meth:`NodeFilter.name`"""
  567. _re = None
  568. def __init__(self, node_iter, pattern, ignorecase):
  569. super().__init__(node_iter)
  570. self.pattern = pattern
  571. self._re = self.make_re(pattern, ignorecase)
  572. @classmethod
  573. def make_re(cls, pattern, ignorecase=True):
  574. assert isinstance(pattern, str), "bad pattern: {!r}".format(pattern)
  575. assert isinstance(ignorecase, bool)
  576. flags = 0
  577. if ignorecase:
  578. flags |= re.IGNORECASE
  579. return re.compile(fnmatch.translate(pattern), flags=flags)
  580. def __iter__(self):
  581. for i in self._iter:
  582. if self.pattern == i.name or self._re.match(i.name):
  583. yield i

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台