You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

network.py 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import collections
  10. import fnmatch
  11. import itertools
  12. import re
  13. from collections import OrderedDict
  14. from typing import Dict, List, Sequence
  15. import numpy as np
  16. from ..core._imperative_rt import ComputingGraph
  17. from ..core._imperative_rt.core2 import SymbolVar
  18. from ..core._trace_option import set_symbolic_shape as _set_symbolic_shape
  19. from ..core.tensor import megbrain_graph as G
  20. from ..logger import get_logger
  21. from .comp_graph_tools import get_dep_vars, get_opr_type, get_oprs_seq
  22. from .network_node import (
  23. Host2DeviceCopy,
  24. ImmutableTensor,
  25. NetworkNode,
  26. OpNode,
  27. VarNode,
  28. str_to_mge_class,
  29. )
  30. logger = get_logger(__name__)
  31. class Network:
  32. def __init__(self):
  33. self.input_vars = [] # input var of graph
  34. self._orig_inputs = []
  35. self.output_vars = [] # output var of graph
  36. self._orig_outputs = []
  37. self.all_oprs_map = OrderedDict()
  38. self.all_vars_map = OrderedDict()
  39. self.graph = ComputingGraph()
  40. @classmethod
  41. def load(cls, model_path: str, outspec: List[str] = None):
  42. """
  43. Loads a computing graph as a Network object.
  44. :param model_path: file path of mge model.
  45. :param outspec: only load the subgraph with outspec as its endpoints.
  46. """
  47. self = cls()
  48. _, _, outputs = G.load_graph(model_path)
  49. if outspec is not None:
  50. output_spec = outspec.copy()
  51. all_vars = get_dep_vars(outputs) + outputs
  52. new_outputs = {}
  53. for i in all_vars:
  54. if i.name in output_spec:
  55. new_outputs[i.name] = i
  56. output_spec.remove(i.name)
  57. assert len(output_spec) == 0, "Can not find {} in this model".format(
  58. output_spec
  59. )
  60. outputs = [new_outputs[i] for i in outspec]
  61. self._orig_outputs = outputs
  62. for x in self._orig_outputs:
  63. self.output_vars.append(self._get_var(x))
  64. self.add_dep_oprs()
  65. for x in self._orig_inputs:
  66. self.input_vars.append(self._get_var(x))
  67. self.graph = self._orig_outputs[0].graph
  68. return self
  69. def _compile(self):
  70. self.all_oprs_map = {}
  71. self.all_vars_map = {}
  72. for opr in self.all_oprs:
  73. if isinstance(opr, (ImmutableTensor, Host2DeviceCopy)):
  74. opr.compile(self.graph)
  75. else:
  76. opr.compile()
  77. if opr.name is not None:
  78. opr._opr.name = opr.name
  79. self.all_oprs_map[opr._opr.id] = opr
  80. for o in opr.outputs:
  81. self.all_vars_map[o.var.id] = o
  82. def optimize_for_inference(self, dest_vars, **kwargs):
  83. r"""
  84. Applies optimize_for_inference pass for operator graph.
  85. :param dest_vars: list of output vars in the operator graph
  86. :Keyword Arguments:
  87. * enable_io16xc32 --
  88. whether to use float16 for I/O between oprs and use
  89. float32 as internal computation precision. Note the output var would be
  90. changed to float16.
  91. * enable_ioc16 --
  92. whether to use float16 for both I/O and computation
  93. precision.
  94. * enable_hwcd4 --
  95. whether to use NHWCD4 data layout. This is faster on some
  96. OpenCL backend.
  97. * enable_nchw88 --
  98. whether to use NCHW88 data layout, currently
  99. used in X86 AVX backend.
  100. * enable_nchw44 --
  101. whether to use NCHW44 data layout, currently
  102. used in arm backend.
  103. * enable_nchw44_dot --
  104. whether to use NCHW44_dot data layout, currently
  105. used in armv8.2+dotprod backend.
  106. * enable_nchw4 --
  107. whether to use NCHW4 data layout, currently
  108. used in nvidia backend(based on cudnn).
  109. * enable_nchw32 --
  110. whether to use NCHW32 data layout, currently
  111. used in nvidia backend with tensorcore(based on cudnn).
  112. * enable_chwn4 --
  113. whether to use CHWN4 data layout, currently
  114. used in nvidia backend with tensorcore.
  115. * enable_fuse_conv_bias_nonlinearity: whether to fuse conv+bias+nonlinearty
  116. into one opr.
  117. * enable_fuse_conv_bias_with_z: whether to fuse conv_bias with z
  118. input for inference on nvidia backend(this optimization pass will
  119. result in mismatch of the precision of output of training and
  120. inference)
  121. """
  122. if not isinstance(dest_vars, Sequence):
  123. dest_vars = [dest_vars]
  124. dest_vars = list(G.VarNode(var.var) for var in dest_vars)
  125. new_vars = G.optimize_for_inference(dest_vars, **kwargs)
  126. return list(self._get_var(var) for var in new_vars)
  127. def dump(
  128. self,
  129. file,
  130. *,
  131. keep_var_name: int = 1,
  132. keep_opr_name: bool = False,
  133. keep_param_name: bool = False,
  134. keep_opr_priority: bool = False,
  135. strip_info_file=None,
  136. append_json=False,
  137. optimize_for_inference=True,
  138. append=False,
  139. **kwargs
  140. ):
  141. """
  142. Serializes graph to file.
  143. :param file: output file, could be file object or filename.
  144. :param append: whether output is appended to ``file``.
  145. Only works when ``file`` is str.
  146. :param keep_var_name: level for keeping variable names:
  147. * 0: none of the names are kept
  148. * 1: (default)keep names of output vars
  149. * 2: keep names of all (output and internal) vars
  150. :param keep_opr_name: whether to keep operator names.
  151. :param keep_param_name: whether to keep param names, so param values can be
  152. easily manipulated after loading model
  153. :param keep_opr_priority: whether to keep priority setting for operators
  154. :param strip_info_file: a string for path or a file handler. if is not None,
  155. then the dump information for code strip would be written to ``strip_info_file``
  156. :param append_json: will be check when `strip_info_file` is not None. if set
  157. true, the information for code strip will be append to strip_info_file.
  158. if set false, will rewrite strip_info_file
  159. :param optimize_for_inference: enbale optmizations,
  160. will skip all optimize options if this is False. Default: True
  161. :Keyword Arguments:
  162. See also :py:meth:`optimize_for_inference`.
  163. """
  164. def _set_var_name(var):
  165. graph_var = G.VarNode(var.var)
  166. graph_var.name = var.name
  167. return graph_var
  168. self._compile()
  169. out = list(map(_set_var_name, self.output_vars))
  170. if kwargs.pop("arg_names", False):
  171. logger.warning(
  172. '"arg_names" is not supported in Network.dump, rename input vars directly'
  173. )
  174. if kwargs.pop("output_names", False):
  175. logger.warning(
  176. '"output_names" is not supported in Network.dump, rename output vars directly'
  177. )
  178. if optimize_for_inference:
  179. out = G.optimize_for_inference(out, **kwargs)
  180. dump_content, _ = G.dump_graph(
  181. out,
  182. keep_var_name=keep_var_name,
  183. keep_opr_name=keep_opr_name,
  184. keep_param_name=keep_param_name,
  185. keep_opr_priority=keep_opr_priority,
  186. strip_info_file=strip_info_file,
  187. append_json=append_json,
  188. )
  189. if isinstance(file, str):
  190. permission = "wb" if append == False else "ab"
  191. file = open(file, permission)
  192. file.write(dump_content)
  193. def make_const(self, data, name=None, device=None):
  194. """Makes an ImmutableTensor OpNode to provide a parameter for the network.
  195. """
  196. node = ImmutableTensor(data, name, device, self.graph)
  197. node.compile(self.graph)
  198. return node.outputs[0]
  199. def make_input_node(self, shape, dtype, name=None, device=None):
  200. """Makes a Host2DeviceCopy OpNode to provide an input varnode for the network.
  201. """
  202. node = Host2DeviceCopy(shape, dtype, name, device)
  203. node.compile(self.graph)
  204. return node.outputs[0]
  205. def add_output(self, *vars: VarNode):
  206. """Adds vars into the network output node list
  207. """
  208. if not all([var.owner for var in vars]):
  209. self.add_dep_oprs(*vars)
  210. for var in vars:
  211. # use method 'is' instead of 'in' to avoid
  212. # compare VarNode use elemwise equal
  213. if not any(var is _ for _ in self.output_vars):
  214. self.output_vars.append(var)
  215. def remove_output(self, *vars: VarNode):
  216. """Removes vars from the network output node list.
  217. """
  218. for var in vars:
  219. # use list pop instead of remove to avoid
  220. # compare VarNode use elemwise equal
  221. for idx, out_var in enumerate(self.output_vars):
  222. if var is out_var:
  223. self.output_vars.pop(idx)
  224. def add_dep_oprs(self, *vars):
  225. if len(vars) == 0:
  226. vars = self.output_vars
  227. q = list(vars)
  228. while len(q) > 0:
  229. cur = q.pop(0)
  230. if cur.owner is not None:
  231. continue
  232. if cur.name is None:
  233. cur.name = cur.var.name
  234. self.all_vars_map[cur.var.id] = cur
  235. mge_opr = cur.var.owner
  236. if get_opr_type(mge_opr) == "Host2DeviceCopy":
  237. self._orig_inputs.extend(mge_opr.outputs)
  238. cur.owner = self._add_opr(mge_opr)
  239. if cur.owner is None:
  240. cur.owner = self.all_oprs_map[mge_opr.id]
  241. continue
  242. q.extend(cur.owner.inputs)
  243. return list(vars)
  244. def modify_opr_names(self, modifier):
  245. """Modifies names of operators **inplace**; useful for merging loaded
  246. network into another network
  247. :param modifier: a string to be prepended to the name, or a function
  248. that maps from name to name
  249. :type modifier: str or callable
  250. """
  251. if isinstance(modifier, str):
  252. om = modifier
  253. modifier = lambda v: "{}.{}".format(om, v)
  254. assert isinstance(modifier, collections.Callable)
  255. for i in self.all_oprs:
  256. v0 = i.name
  257. v1 = modifier(v0)
  258. assert isinstance(v1, str)
  259. i.name = v1
  260. def reset_batch_size(self, batchsize, *, blacklist=()):
  261. """Helper for reset batch size; first dimension of all data providers
  262. not in blacklist are assumed to be the batch size
  263. :param blacklist: data provider names whose first dimension is not
  264. batchbatch size
  265. """
  266. blacklist = set(blacklist)
  267. prev_batchsize = None
  268. for i in self.data_providers_filter:
  269. if i.name in blacklist:
  270. blacklist.remove(i.name)
  271. else:
  272. shp = list(i.shape)
  273. if prev_batchsize is None:
  274. prev_batchsize = shp[0]
  275. else:
  276. assert prev_batchsize == shp[0], (
  277. "batchsize mismatch: batchsize={} "
  278. "shape={} dp={}".format(prev_batchsize, shp, i.name)
  279. )
  280. shp[0] = batchsize
  281. i.shape = tuple(shp)
  282. assert prev_batchsize is not None, "no data provider found"
  283. assert not blacklist, "unused items in blacklist: {}".format(blacklist)
  284. def replace_vars(self, repl_dict: Dict[VarNode, VarNode]):
  285. """
  286. Replaces vars in the graph.
  287. :param repl_dict: the map {old_var: new_var} that specifies how to replace the vars.
  288. """
  289. if not all([var.owner for var in repl_dict.values()]):
  290. print(repl_dict.values())
  291. self.add_dep_oprs(*list(repl_dict.values()))
  292. for var in self.all_vars:
  293. if var in repl_dict:
  294. repl_var = repl_dict[var]
  295. owner = repl_var.owner
  296. idx = owner.outputs.index(repl_var)
  297. owner.outputs[idx] = var
  298. var.__dict__.update(repl_var.__dict__)
  299. var.var = repl_var.var
  300. def replace_oprs(self, repl_dict: Dict[OpNode, OpNode]):
  301. """
  302. Replaces operators in the graph.
  303. :param oprmap: the map {old_opr: new_opr} that specifies how to replace the operators.
  304. """
  305. for opr in self.all_oprs:
  306. if opr in repl_dict:
  307. assert len(opr.outputs) == len(
  308. repl_dict[opr].outputs
  309. ), "can not replace {} with {}".format(type(opr), type(repl_dict[opr]))
  310. repl_dict[opr].outputs = opr.outputs
  311. for ind, var in enumerate(opr.outputs):
  312. var.owner = repl_dict[opr]
  313. var.__dict__.update(repl_dict[opr].outputs[ind].__dict__)
  314. var.var = repl_dict[opr].outputs[ind].var
  315. def get_opr_by_type(self, oprcls, unique=True):
  316. assert issubclass(oprcls, OpNode)
  317. rst = self.opr_filter.type(oprcls).as_list()
  318. if unique:
  319. assert len(rst) == 1, "{} operators of type {} found".format(
  320. len(rst), oprcls
  321. )
  322. (rst,) = rst
  323. return rst
  324. def get_opr_by_name(self, name, unique=True):
  325. rst = self.opr_filter.name(name).as_list()
  326. if unique:
  327. assert len(rst) == 1, "{} operators of type {} found".format(len(rst), name)
  328. (rst,) = rst
  329. return rst
  330. def get_var_by_name(self, name, unique=True):
  331. rst = self.var_filter.name(name).as_list()
  332. if unique:
  333. assert len(rst) == 1, "{} operators of type {} found".format(len(rst), name)
  334. (rst,) = rst
  335. return rst
  336. def get_var_receive_oprs(self, var):
  337. """ Gets all oprs which use var as input
  338. """
  339. return self.opr_filter.has_input(var).as_list()
  340. def get_dep_oprs(self, var):
  341. """Gets dependent oprs of var
  342. """
  343. return get_oprs_seq(var, False, False)
  344. @property
  345. def opr_filter(self):
  346. """Filter on all opnodes of the Network.
  347. """
  348. oprs = self.all_oprs
  349. return NodeFilter(itertools.islice(oprs, len(oprs)))
  350. @property
  351. def var_filter(self):
  352. """Filter on all varnode of the Network.
  353. """
  354. vars = self.all_vars
  355. return NodeFilter(itertools.islice(vars, len(vars)))
  356. @property
  357. def params_filter(self): # all immutable tensor
  358. """Filter on all parameters (ImmutableTensor Opr) of the Network
  359. """
  360. return self.opr_filter.param_provider()
  361. @property
  362. def data_providers_filter(self): # all host2devicecopy
  363. """Filter on all input nodes (Host2DeviceCopy Opr) of the Network
  364. """
  365. return self.opr_filter.data_provider()
  366. @property
  367. def dest_vars(self):
  368. """Output varnodes of the Network.
  369. """
  370. return self.output_vars
  371. @property
  372. def all_oprs(self):
  373. return get_oprs_seq(self.output_vars, False, False)
  374. @property
  375. def all_vars(self):
  376. return get_dep_vars(self.output_vars)
  377. @property
  378. def all_vars_dict(self):
  379. return self.var_filter.as_dict()
  380. @property
  381. def all_oprs_dict(self):
  382. return self.opr_filter.as_dict()
  383. # used for loading and building graph
  384. def _add_opr(self, opr):
  385. # TODO: use megbrain C++ RTTI to replace type string
  386. if opr.id not in self.all_oprs_map:
  387. opnode = str_to_mge_class(get_opr_type(opr)).load(opr)
  388. self.all_oprs_map[opr.id] = opnode
  389. for var in opr.inputs:
  390. opnode.add_inp_var(self._get_var(var))
  391. for var in opr.outputs:
  392. opnode.add_out_var(self._get_var(var))
  393. return opnode
  394. else:
  395. # overwrite the opnode 'new' output VarNode with
  396. # original one when output number larger than 1,
  397. # or will cause dependence issue in _compiler step.
  398. if len(opr.outputs) > 1:
  399. opnode = self.all_oprs_map[opr.id]
  400. for idx, output in enumerate(opnode.outputs):
  401. if output.var.id in self.all_vars_map:
  402. opnode.outputs[idx] = self.all_vars_map[output.var.id]
  403. return None
  404. def _get_opr(self, x):
  405. if x.id in self.all_oprs_map:
  406. return self.all_oprs_map[x.id]
  407. else:
  408. return None
  409. def _get_var(self, x):
  410. # auto convert to VarNode of Network
  411. if x.id not in self.all_vars_map or self.all_vars_map[x.id].var != x:
  412. self.all_vars_map[x.id] = VarNode.load(x, self._get_opr(x.owner))
  413. return self.all_vars_map[x.id]
  414. def set_symbolic_shape(option: bool):
  415. """
  416. Set the VarNode use symbolic shape or not, return the last status.
  417. Please set to True and must recover after dump if want to change the input batch size.
  418. :param option: True for enable symbolic shape.
  419. """
  420. return _set_symbolic_shape(option)
  421. def as_varnode(obj):
  422. """convert a :class:`.VarNode` compatible object to :class:`.VarNode`.
  423. :param obj: it must be one of the following:
  424. 1. a :class:`.VarNode` object
  425. 2. a :class:`.OpNode` object that has unique output
  426. 3. an iterable that produces either type 1 or 2, with length 1
  427. :rtype: :class:`.VarNode`
  428. """
  429. if type(obj) is VarNode:
  430. return obj
  431. if isinstance(obj, OpNode):
  432. assert len(obj.outputs) == 1, (
  433. "operator {} must have one output to be converted to VarNode; "
  434. "got {} actually".format(obj, len(obj.outputs))
  435. )
  436. ret = obj.outputs[0]
  437. assert type(ret) is VarNode
  438. return ret
  439. assert isinstance(
  440. obj, collections.Iterable
  441. ), "{} is not compatible with VarNode".format(obj)
  442. val = list(obj)
  443. assert (
  444. len(val) == 1
  445. ), "can not convert sequence of length {} to VarNode ({})".format(
  446. len(val), (lambda s: s if len(s) < 50 else s[:50] + " ...")(str(val))
  447. )
  448. return as_varnode(val[0])
  449. def as_oprnode(obj):
  450. """convert a :class:`.OpNode` compatible object to
  451. :class:`.OpNode`; it works like :func:`as_varnode`."""
  452. if type(obj) is VarNode:
  453. return obj.owner
  454. if isinstance(obj, OpNode):
  455. return obj
  456. assert isinstance(
  457. obj, collections.Iterable
  458. ), "{} is not compatible with OpNode".format(obj)
  459. val = list(obj)
  460. assert (
  461. len(val) == 1
  462. ), "can not convert sequence of length {} to " "OpNode({})".format(len(val), val)
  463. return as_oprnode(val[0])
  464. class NodeFilter:
  465. """Filter on node iterator. This class is an iterator of
  466. :class:`.NetworkNode` objects and multiple filtering conditions and
  467. mappers can be chained.
  468. Example::
  469. # find all :class:`.ImmutableTensor` nodes
  470. for i in NodeFilter(node_iter).param_provider():
  471. print(i)
  472. # find all :class:`.ImmutableTensor` nodes that end with ':W'
  473. for i in NodeFilter(node_iter).param_provider().name('*:W'):
  474. print(i)
  475. # number of inputs
  476. nr_input = NodeFilter(node_iter).data_provider().as_count()
  477. """
  478. _iter = None
  479. def __init__(self, node_iter):
  480. """
  481. :param node_iter: iterator to :class:`.NetworkNode`, or a
  482. :class:`.VarNode`-compatible object; in the later case, its
  483. dependent oprs would be used
  484. """
  485. if isinstance(node_iter, VarNode):
  486. oprs = get_oprs_seq(node_iter, False, False)
  487. node_iter = itertools.islice(oprs, len(oprs) - 1)
  488. if isinstance(node_iter, OpNode):
  489. oprs = get_oprs_seq(node_iter.inputs, False, False)
  490. node_iter = itertools.islice(oprs, len(oprs) - 1)
  491. assert isinstance(node_iter, collections.Iterable)
  492. if (not isinstance(node_iter, NodeFilter)) and type(
  493. self
  494. ) is not NodeFilterCheckType:
  495. node_iter = NodeFilterCheckType(node_iter, NetworkNode)
  496. self._iter = node_iter
  497. @classmethod
  498. def make_all_deps(cls, *dest_vars):
  499. """make a :class:`NodeFilter` that contains all deps of given vars"""
  500. return cls(list(get_oprs_seq(dest_vars, False, False)))
  501. def __iter__(self):
  502. """to be overwritten by subclass to implement filters"""
  503. return iter(self._iter)
  504. def type(self, node_type):
  505. """filter by specific node type
  506. :param node_type: node type class
  507. :return: a new :class:`NodeFilter` object
  508. """
  509. return NodeFilterType(self, node_type)
  510. def check_type(self, node_type):
  511. """assert that all oprs produced by this iterator are instances of
  512. certain type
  513. :param node_type: node type class
  514. :return: a new :class:`NodeFilter` object
  515. :raises TypeError: if type check failed
  516. """
  517. return NodeFilterCheckType(self, node_type)
  518. def not_type(self, node_type):
  519. """remove oprs of specific type
  520. :param node_type: node type class
  521. :return: a new :class:`NodeFilter` object
  522. """
  523. return NodeFilterNotType(self, node_type)
  524. def param_provider(self):
  525. """get :class:`.ParamProvider` oprs; shorthand for
  526. ``.type(ParamProvider)``"""
  527. return self.type(ImmutableTensor)
  528. def data_provider(self):
  529. """get :class:`.DataProvider` oprs; shorthand for
  530. ``.type(DataProvider)``"""
  531. return self.type(Host2DeviceCopy)
  532. def name(self, pattern, ignorecase=True):
  533. """filter by node name
  534. :param pattern: a string in glob syntax that can contain ``?`` and
  535. ``*`` to match a single or arbitrary characters.
  536. :type pattern: :class:`str`
  537. :param ignorecase: whether to ignroe case
  538. :type ignorecase: bool
  539. :return: a new :class:`NodeFilter` object
  540. """
  541. return NodeFilterName(self, pattern, ignorecase)
  542. def has_input(self, var):
  543. """an opr is kept if it has given var as one of its inputs
  544. :param var: var node to checked
  545. :return: a new :class:`NodeFilter` object
  546. """
  547. return NodeFilterHasInput(self, var)
  548. def as_list(self):
  549. """consume this iterator and return its content as a list
  550. :rtype: [:class:`.GraphNodeBase`]
  551. """
  552. return list(self)
  553. def as_unique(self):
  554. """assert that this iterator yields only one node and return it
  555. :return: the unique node
  556. :rtype: :class:`.GraphNodeBase`
  557. :raises ValueError: if this iterator does not yield a unique node
  558. """
  559. (opr,) = self
  560. return opr
  561. def as_dict(self):
  562. """construct an ordered dict to map from node names to objects in
  563. this iterator
  564. :rtype: :class:`OrderedDict`
  565. """
  566. return collections.OrderedDict((i.name, i) for i in self)
  567. def as_count(self):
  568. """consume this iterator and get the number of elements
  569. :rtype: int
  570. """
  571. return sum(1 for _ in self)
  572. class NodeFilterType(NodeFilter):
  573. """see :meth:`NodeFilter.type`"""
  574. _node_type = None
  575. def __init__(self, node_iter, node_type):
  576. assert issubclass(node_type, NetworkNode), "bad opr type: {}".format(node_type)
  577. super().__init__(node_iter)
  578. self._node_type = node_type
  579. def __iter__(self):
  580. for i in self._iter:
  581. if isinstance(i, self._node_type):
  582. yield i
  583. class NodeFilterNotType(NodeFilterType):
  584. """see :meth:`NodeFilter.not_type`"""
  585. def __iter__(self):
  586. for i in self._iter:
  587. if not isinstance(i, self._node_type):
  588. yield i
  589. class NodeFilterCheckType(NodeFilterType):
  590. """see :meth:`NodeFilter.check_type`"""
  591. def __iter__(self):
  592. for i in self._iter:
  593. if not isinstance(i, self._node_type):
  594. raise TypeError(
  595. "all nodes should be {}; got {!r}".format(self._node_type, i)
  596. )
  597. yield i
  598. class NodeFilterHasInput(NodeFilter):
  599. """see :meth:`NodeFilter.has_input`"""
  600. _var = None
  601. def __init__(self, node_iter, var):
  602. var = as_varnode(var)
  603. super().__init__(node_iter)
  604. self.var = var
  605. def __iter__(self):
  606. for i in self._iter:
  607. assert isinstance(
  608. i, OpNode
  609. ), "has_input() must be used with OpNode; " "got {!r}".format(i)
  610. if any(self.var is _ for _ in i.inputs):
  611. yield i
  612. class NodeFilterName(NodeFilter):
  613. """see :meth:`NodeFilter.name`"""
  614. _re = None
  615. def __init__(self, node_iter, pattern, ignorecase):
  616. super().__init__(node_iter)
  617. self.pattern = pattern
  618. self._re = self.make_re(pattern, ignorecase)
  619. @classmethod
  620. def make_re(cls, pattern, ignorecase=True):
  621. assert isinstance(pattern, str), "bad pattern: {!r}".format(pattern)
  622. assert isinstance(ignorecase, bool)
  623. flags = 0
  624. if ignorecase:
  625. flags |= re.IGNORECASE
  626. return re.compile(fnmatch.translate(pattern), flags=flags)
  627. def __iter__(self):
  628. for i in self._iter:
  629. if self.pattern == i.name or self._re.match(i.name):
  630. yield i

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台