You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

batchnorm.py 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. from typing import Optional
  10. import numpy as np
  11. from ..distributed.group import WORLD, Group
  12. from ..functional.nn import batch_norm, sync_batch_norm
  13. from ..tensor import Parameter, Tensor
  14. from . import init
  15. from .module import Module
  16. class _BatchNorm(Module):
  17. def __init__(
  18. self,
  19. num_features,
  20. eps=1e-5,
  21. momentum=0.9,
  22. affine=True,
  23. track_running_stats=True,
  24. freeze=False,
  25. ):
  26. super(_BatchNorm, self).__init__()
  27. self.num_features = num_features
  28. self.eps = eps
  29. self.momentum = momentum
  30. self.affine = affine
  31. self.track_running_stats = track_running_stats
  32. self._track_running_stats_saved = track_running_stats
  33. self.freeze = freeze
  34. if self.freeze:
  35. assert (
  36. self._track_running_stats_saved
  37. ), "track_running_stats must be initilized to True if freeze is True"
  38. tshape = (1, self.num_features, 1, 1)
  39. if self.affine:
  40. self.weight = Parameter(np.ones(tshape, dtype=np.float32))
  41. self.bias = Parameter(np.zeros(tshape, dtype=np.float32))
  42. else:
  43. self.weight = None
  44. self.bias = None
  45. if self.track_running_stats:
  46. self.running_mean = Tensor(np.zeros(tshape, dtype=np.float32))
  47. self.running_var = Tensor(np.ones(tshape, dtype=np.float32))
  48. else:
  49. self.running_mean = None
  50. self.running_var = None
  51. def reset_running_stats(self) -> None:
  52. if self.track_running_stats:
  53. init.zeros_(self.running_mean)
  54. init.ones_(self.running_var)
  55. def reset_parameters(self) -> None:
  56. self.reset_running_stats()
  57. if self.affine:
  58. init.ones_(self.weight)
  59. init.zeros_(self.bias)
  60. def _check_input_ndim(self, inp):
  61. raise NotImplementedError
  62. def forward(self, inp):
  63. self._check_input_ndim(inp)
  64. if self._track_running_stats_saved == False:
  65. assert (
  66. self.track_running_stats == False
  67. ), "track_running_stats can not be initilized to False and changed to True later"
  68. inp_shape = inp.shape
  69. _ndims = len(inp_shape)
  70. if _ndims != 4:
  71. origin_shape = inp_shape
  72. if _ndims == 2:
  73. n, c = inp_shape[0], inp_shape[1]
  74. new_shape = (n, c, 1, 1)
  75. elif _ndims == 3:
  76. n, c, h = inp_shape[0], inp_shape[1], inp_shape[2]
  77. new_shape = (n, c, h, 1)
  78. inp = inp.reshape(new_shape)
  79. _weight = self.weight
  80. _bias = self.bias
  81. if self.freeze:
  82. if _weight is not None:
  83. _weight = _weight.detach()
  84. if _bias is not None:
  85. _bias = _bias.detach()
  86. # Need to expand to elementwise operations here
  87. # see MGB_IMPL_OPR_GRAD(BatchNormForward) in src/opr/impl/dnn/batch_norm.cpp
  88. scale = (self.running_var + self.eps) ** (-0.5)
  89. if _weight is not None:
  90. scale *= _weight
  91. bias = -self.running_mean * scale
  92. if _bias is not None:
  93. bias += _bias
  94. return inp * scale + bias
  95. if self.training and self.track_running_stats:
  96. exponential_average_factor = self.momentum
  97. else:
  98. exponential_average_factor = 0.0 # useless
  99. output = batch_norm(
  100. inp,
  101. self.running_mean if self.track_running_stats else None,
  102. self.running_var if self.track_running_stats else None,
  103. _weight,
  104. _bias,
  105. training=self.training
  106. or ((self.running_mean is None) and (self.running_var is None)),
  107. momentum=exponential_average_factor,
  108. eps=self.eps,
  109. )
  110. if _ndims != 4:
  111. output = output.reshape(origin_shape)
  112. return output
  113. def _module_info_string(self) -> str:
  114. s = (
  115. "{num_features}, eps={eps}, momentum={momentum}, affine={affine}, "
  116. "track_running_stats={track_running_stats}"
  117. )
  118. return s.format(**self.__dict__)
  119. class SyncBatchNorm(_BatchNorm):
  120. r"""
  121. Applies Synchronized Batch Normalization for distributed training.
  122. """
  123. def __init__(
  124. self,
  125. num_features,
  126. eps=1e-5,
  127. momentum=0.9,
  128. affine=True,
  129. track_running_stats=True,
  130. freeze=False,
  131. group: Optional[Group] = WORLD,
  132. ) -> None:
  133. super().__init__(
  134. num_features, eps, momentum, affine, track_running_stats, freeze
  135. )
  136. self.group = group
  137. def _check_input_ndim(self, inp):
  138. if len(inp.shape) not in {2, 3, 4}:
  139. raise ValueError(
  140. "expected 2D, 3D or 4D input (got {}D input)".format(len(inp.shape))
  141. )
  142. def forward(self, inp):
  143. self._check_input_ndim(inp)
  144. inp_shape = inp.shape
  145. _ndims = len(inp_shape)
  146. if _ndims != 4:
  147. new_shape = Tensor([1, 1, 1, 1], device=inp.device)
  148. origin_shape = inp_shape
  149. if _ndims == 2:
  150. new_shape[:2] = origin_shape[:2]
  151. elif _ndims == 3:
  152. new_shape[:3] = origin_shape[:3]
  153. else:
  154. raise ValueError(
  155. "expected 2D, 3D or 4D input (got {}D input)".format(len(inp_shape))
  156. )
  157. inp = inp.reshape(new_shape)
  158. if self.training and self.track_running_stats:
  159. exponential_average_factor = self.momentum
  160. else:
  161. exponential_average_factor = 0.0 # useless
  162. _weight = self.weight
  163. _bias = self.bias
  164. if self.freeze:
  165. if _weight is not None:
  166. _weight = _weight.detach()
  167. if _bias is not None:
  168. _bias = _bias.detach()
  169. output = sync_batch_norm(
  170. inp,
  171. self.running_mean,
  172. self.running_var,
  173. _weight,
  174. _bias,
  175. training=(self.training and not self.freeze)
  176. or ((self.running_mean is None) and (self.running_var is None)),
  177. momentum=exponential_average_factor,
  178. eps=self.eps,
  179. group=self.group,
  180. )
  181. if _ndims != 4:
  182. output = output.reshape(origin_shape)
  183. return output
  184. class BatchNorm1d(_BatchNorm):
  185. r"""
  186. Applies Batch Normalization over a 2D/3D tensor.
  187. Refer to :class:`~.BatchNorm2d` for more information.
  188. """
  189. def _check_input_ndim(self, inp):
  190. if len(inp.shape) not in {2, 3}:
  191. raise ValueError(
  192. "expected 2D or 3D input (got {}D input)".format(len(inp.shape))
  193. )
  194. class BatchNorm2d(_BatchNorm):
  195. r"""
  196. Applies Batch Normalization over a 4D tensor.
  197. .. math::
  198. y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
  199. The mean and standard-deviation are calculated per-dimension over
  200. the mini-batches and :math:`\gamma` and :math:`\beta` are learnable
  201. parameter vectors.
  202. By default, during training this layer keeps running estimates of its
  203. computed mean and variance, which are then used for normalization during
  204. evaluation. The running estimates are kept with a default :attr:`momentum`
  205. of 0.9.
  206. If :attr:`track_running_stats` is set to ``False``, this layer will not
  207. keep running estimates, batch statistics is used during
  208. evaluation time instead.
  209. .. note::
  210. This :attr:`momentum` argument is different from one used in optimizer
  211. classes and the conventional notion of momentum. Mathematically, the
  212. update rule for running statistics here is
  213. :math:`\hat{x}_\text{new} = \text{momentum} \times \hat{x} + (1 - \text{momentum}) \times x_t`,
  214. where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
  215. new observed value.
  216. Because the Batch Normalization is done over the `C` dimension, computing
  217. statistics on `(N, H, W)` slices, it's common terminology to call this
  218. Spatial Batch Normalization.
  219. :type num_features: int
  220. :param num_features: usually :math:`C` from an input of shape
  221. :math:`(N, C, H, W)` or the highest ranked dimension of an input
  222. less than 4D.
  223. :type eps: float
  224. :param eps: a value added to the denominator for numerical stability.
  225. Default: 1e-5
  226. :type momentum: float
  227. :param momentum: the value used for the ``running_mean`` and ``running_var`` computation.
  228. Default: 0.9
  229. :type affine: bool
  230. :param affine: a boolean value that when set to True, this module has
  231. learnable affine parameters. Default: True
  232. :type track_running_stats: bool
  233. :param track_running_stats: when set to True, this module tracks the
  234. running mean and variance. When set to False, this module does not
  235. track such statistics and always uses batch statistics in both training
  236. and eval modes. Default: True
  237. :type freeze: bool
  238. :param freeze: when set to True, this module does not update the
  239. running mean and variance, and uses the running mean and variance instead of
  240. the batch mean and batch variance to normalize the input. The parameter takes effect
  241. only when the module is initilized with track_running_stats as True.
  242. Default: False
  243. Examples:
  244. .. testcode::
  245. import numpy as np
  246. import megengine as mge
  247. import megengine.module as M
  248. # With Learnable Parameters
  249. m = M.BatchNorm2d(4)
  250. inp = mge.tensor(np.random.rand(1, 4, 3, 3).astype("float32"))
  251. oup = m(inp)
  252. print(m.weight.numpy().flatten(), m.bias.numpy().flatten())
  253. # Without L`e`arnable Parameters
  254. m = M.BatchNorm2d(4, affine=False)
  255. oup = m(inp)
  256. print(m.weight, m.bias)
  257. Outputs:
  258. .. testoutput::
  259. [1. 1. 1. 1.] [0. 0. 0. 0.]
  260. None None
  261. """
  262. def _check_input_ndim(self, inp):
  263. if len(inp.shape) != 4:
  264. raise ValueError("expected 4D input (got {}D input)".format(len(inp.shape)))

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台