You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_bn.py 4.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import numpy as np
  10. import pytest
  11. import megengine
  12. import megengine.autodiff as ad
  13. import megengine.distributed as dist
  14. import megengine.functional as F
  15. import megengine.optimizer as optimizer
  16. from megengine import Parameter, tensor
  17. from megengine.distributed.helper import get_device_count_by_fork
  18. from megengine.jit import trace
  19. from megengine.module import BatchNorm2d, Module, SyncBatchNorm
  20. def run_frozen_bn(BNModule, use_trace=False, use_symbolic=False):
  21. nchannel = 3
  22. m = BNModule(nchannel, freeze=True)
  23. var = 4.0
  24. bias = 1.0
  25. shape = (1, nchannel, 1, 1)
  26. m.running_var[...] = var * F.ones(shape)
  27. m.running_mean[...] = bias * F.ones(shape)
  28. saved_var = m.running_var.numpy()
  29. saved_mean = m.running_mean.numpy()
  30. saved_wt = m.weight.numpy()
  31. saved_bias = m.bias.numpy()
  32. gm = ad.GradManager().attach(m.parameters())
  33. optim = optimizer.SGD(m.parameters(), lr=1.0)
  34. optim.clear_grad()
  35. data = np.random.random((6, nchannel, 2, 2)).astype("float32")
  36. def train_fn(d):
  37. for _ in range(3):
  38. with gm:
  39. loss = m(d).mean()
  40. gm.backward(loss)
  41. optim.step()
  42. return loss
  43. if use_trace:
  44. train_fn = trace(train_fn, symbolic=use_symbolic)
  45. for _ in range(3):
  46. loss = train_fn(megengine.Tensor(data))
  47. np.testing.assert_equal(m.running_var.numpy(), saved_var)
  48. np.testing.assert_equal(m.running_mean.numpy(), saved_mean)
  49. np.testing.assert_equal(m.weight.numpy(), saved_wt)
  50. np.testing.assert_equal(m.bias.numpy(), saved_bias)
  51. np.testing.assert_almost_equal(
  52. loss.numpy(), ((data - bias) / np.sqrt(var)).mean(), 5
  53. )
  54. def test_frozen_bn():
  55. run_frozen_bn(BatchNorm2d)
  56. run_frozen_bn(BatchNorm2d, True, False)
  57. run_frozen_bn(BatchNorm2d, True, True)
  58. @pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device")
  59. @pytest.mark.isolated_distributed
  60. def test_frozen_synced_bn():
  61. @dist.launcher(n_gpus=2)
  62. def worker():
  63. run_frozen_bn(SyncBatchNorm)
  64. run_frozen_bn(SyncBatchNorm, True, False)
  65. run_frozen_bn(SyncBatchNorm, True, True)
  66. worker()
  67. def test_bn_no_track_stat():
  68. nchannel = 3
  69. m = BatchNorm2d(nchannel, track_running_stats=False)
  70. gm = ad.GradManager().attach(m.parameters())
  71. optim = optimizer.SGD(m.parameters(), lr=1.0)
  72. optim.clear_grad()
  73. data = np.random.random((6, nchannel, 2, 2)).astype("float32")
  74. with gm:
  75. loss = m(data).sum()
  76. gm.backward(loss)
  77. optim.step()
  78. def test_bn_no_track_stat2():
  79. nchannel = 3
  80. m = BatchNorm2d(nchannel) # Init with track_running_stat = True
  81. m.track_running_stats = False
  82. # m.running_var and m.running_mean created during init time
  83. saved_var = m.running_var.numpy()
  84. assert saved_var is not None
  85. saved_mean = m.running_mean.numpy()
  86. assert saved_mean is not None
  87. gm = ad.GradManager().attach(m.parameters())
  88. optim = optimizer.SGD(m.parameters(), lr=1.0)
  89. optim.clear_grad()
  90. data = np.random.random((6, nchannel, 2, 2)).astype("float32")
  91. with gm:
  92. loss = m(data).sum()
  93. gm.backward(loss)
  94. optim.step()
  95. np.testing.assert_equal(m.running_var.numpy(), saved_var)
  96. np.testing.assert_equal(m.running_mean.numpy(), saved_mean)
  97. def test_bn_no_track_stat3():
  98. nchannel = 3
  99. m = BatchNorm2d(nchannel, track_running_stats=False)
  100. m.track_running_stats = True
  101. data = np.random.random((6, nchannel, 2, 2)).astype("float32")
  102. with pytest.raises(Exception):
  103. m(data)
  104. def test_trace_bn_forward_twice():
  105. class Simple(Module):
  106. def __init__(self):
  107. super().__init__()
  108. self.bn = BatchNorm2d(1)
  109. def forward(self, inp):
  110. x = self.bn(inp)
  111. x = self.bn(x)
  112. return x
  113. @trace(symbolic=True)
  114. def train_bn(inp, net=None):
  115. net.train()
  116. pred = net(inp)
  117. return pred
  118. x = np.ones((1, 1, 32, 32), dtype=np.float32)
  119. y = train_bn(x, net=Simple())
  120. np.testing.assert_equal(y.numpy(), 0)
  121. # https://github.com/MegEngine/MegEngine/issues/145
  122. def test_frozen_bn_no_affine():
  123. nchannel = 3
  124. m = BatchNorm2d(nchannel, freeze=True, affine=False)
  125. data = megengine.Tensor(np.random.random((6, nchannel, 2, 2)).astype("float32"))
  126. m(data).numpy()

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台