You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling_multi_thread.cpp 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521
  1. /**
  2. * \file dnn/test/arm_common/pooling_multi_thread.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include <vector>
  12. #include "megdnn/dtype.h"
  13. #include "megdnn/opr_param_defs.h"
  14. #include "test/arm_common/fixture.h"
  15. #include "test/common/pooling.h"
  16. #include "test/common/checker.h"
  17. #include "test/common/benchmarker.h"
  18. #include "test/common/rng.h"
  19. namespace megdnn {
  20. namespace test {
  21. /*********************** mutli threads *********************************/
  22. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING) {
  23. using Param = param::Pooling;
  24. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  25. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  26. for (size_t p: {1, 2})
  27. {
  28. Param param;
  29. param.mode = Param::Mode::MAX;
  30. param.window_h = param.window_w = 3;
  31. param.stride_h = param.stride_w = 2;
  32. param.pad_h = param.pad_w = p;
  33. Checker<Pooling> checker(handle());
  34. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  35. param.mode = Param::Mode::AVERAGE;
  36. param.window_h = param.window_w = 3;
  37. param.stride_h = param.stride_w = 2;
  38. param.pad_h = param.pad_w = p;
  39. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  40. param.mode = Param::Mode::MAX;
  41. param.window_h = param.window_w = 4;
  42. param.stride_h = param.stride_w = 2;
  43. param.pad_h = param.pad_w = p;
  44. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  45. param.mode = Param::Mode::MAX;
  46. param.window_h = param.window_w = 5;
  47. param.stride_h = param.stride_w = 2;
  48. param.pad_h = param.pad_w = p;
  49. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  50. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  51. }
  52. }
  53. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W3x3_NCHW44)
  54. {
  55. // clang-format off
  56. for (size_t ih: {3, 5, 10})
  57. for (size_t iw: {3, 5, 7, 9, 15, 20})
  58. for (size_t ph: {0, 1, 2})
  59. for (size_t pw: {0, 1, 2})
  60. for(auto mode: {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE})
  61. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  62. {
  63. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  64. Checker<Pooling> checker(handle());
  65. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  66. checker.set_rng(0,&rng);
  67. param::Pooling param;
  68. param.mode = mode;
  69. param.format = param::Pooling::Format::NCHW44;
  70. param.pad_h = ph;
  71. param.pad_w = pw;
  72. param.stride_h = param.stride_w = 1;
  73. param.window_h = param.window_w = 3;
  74. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  75. param.stride_h = param.stride_w = 2;
  76. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  77. }
  78. // clang-format on
  79. }
  80. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W2x2_NCHW44)
  81. {
  82. // clang-format off
  83. for (size_t ih: {2, 5, 10, 17})
  84. for (size_t iw: {2, 6, 8, 16, 26})
  85. for (size_t ph: {0, 1})
  86. for (size_t pw: {0, 1})
  87. for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE})
  88. if (ih+2*ph >= 2 && iw+2*pw >= 2)
  89. {
  90. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  91. Checker<Pooling> checker(handle());
  92. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  93. checker.set_rng(0,&rng);
  94. param::Pooling param;
  95. param.mode = mode;
  96. param.format = param::Pooling::Format::NCHW44;
  97. param.pad_h = ph;
  98. param.pad_w = pw;
  99. param.stride_h = param.stride_w = 1;
  100. param.window_h = param.window_w = 2;
  101. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  102. param.stride_h = param.stride_w = 2;
  103. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  104. }
  105. // clang-format on
  106. }
  107. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W4x4_NCHW44)
  108. {
  109. // clang-format off
  110. for (size_t ih: {4, 10, 18, 25, 30})
  111. for (size_t iw: {4, 12, 17, 20, 25})
  112. for (size_t ph: {0, 1, 2})
  113. for (size_t pw: {0, 1, 2})
  114. for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE})
  115. if (ih+2*ph >= 4 && iw+2*pw >= 4)
  116. {
  117. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  118. Checker<Pooling> checker(handle());
  119. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  120. checker.set_rng(0,&rng);
  121. param::Pooling param;
  122. param.mode = mode;
  123. param.format = param::Pooling::Format::NCHW44;
  124. param.pad_h = ph;
  125. param.pad_w = pw;
  126. param.stride_h = param.stride_w = 1;
  127. param.window_h = param.window_w = 4;
  128. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  129. param.stride_h = param.stride_w = 2;
  130. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  131. }
  132. // clang-format on
  133. }
  134. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W5x5_NCHW44)
  135. {
  136. // clang-format off
  137. for (size_t ih: {5, 9, 19, 20, 39})
  138. for (size_t iw: {5, 12, 23, 27, 39})
  139. for (size_t ph: {0, 1, 2})
  140. for (size_t pw: {0, 1, 2})
  141. for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE})
  142. if (ih+2*ph >= 5 && iw+2*pw >= 5)
  143. {
  144. UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
  145. Checker<Pooling> checker(handle());
  146. checker.set_dtype(0, dtype::QuantizedS8(1.1f));
  147. checker.set_rng(0,&rng);
  148. param::Pooling param;
  149. param.mode = mode;
  150. param.format = param::Pooling::Format::NCHW44;
  151. param.pad_h = ph;
  152. param.pad_w = pw;
  153. param.stride_h = param.stride_w = 1;
  154. param.window_h = param.window_w = 5;
  155. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  156. param.stride_h = param.stride_w = 2;
  157. checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
  158. }
  159. // clang-format on
  160. }
  161. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W3x3_S2x2)
  162. {
  163. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  164. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  165. for (size_t ph: {0, 1, 2})
  166. for (size_t pw: {0, 1, 2})
  167. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  168. {
  169. Checker<Pooling> checker(handle());
  170. checker.set_dtype(0, dtype::Int8());
  171. param::Pooling param;
  172. param.mode = param::Pooling::Mode::MAX;
  173. param.pad_h = ph;
  174. param.pad_w = pw;
  175. param.stride_h = param.stride_w = 2;
  176. param.window_h = param.window_w = 3;
  177. checker.set_param(param).exec(TensorShapeArray{
  178. {2, 3, ih, iw}, {}});
  179. }
  180. }
  181. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W2x2_S2x2)
  182. {
  183. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  184. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  185. for (size_t ph: {0, 1})
  186. for (size_t pw: {0, 1})
  187. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  188. {
  189. Checker<Pooling> checker(handle());
  190. checker.set_dtype(0, dtype::Int8());
  191. param::Pooling param;
  192. param.mode = param::Pooling::Mode::MAX;
  193. param.pad_h = ph;
  194. param.pad_w = pw;
  195. param.stride_h = param.stride_w = 2;
  196. param.window_h = param.window_w = 2;
  197. checker.set_param(param).exec(TensorShapeArray{
  198. {2, 3, ih, iw}, {}});
  199. }
  200. }
  201. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  202. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FP16) {
  203. Checker<Pooling> checker(handle());
  204. checker.set_dtype(0, dtype::Float16{})
  205. .set_dtype(1, dtype::Float16{})
  206. .set_epsilon(3e-3);
  207. using Param = param::Pooling;
  208. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  209. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  210. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  211. for (size_t window : {2, 3}) {
  212. Param param;
  213. param.mode = mode;
  214. param.window_h = param.window_w = window;
  215. param.stride_h = param.stride_w = 1;
  216. param.pad_h = param.pad_w = window / 2;
  217. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
  218. //! == 3)
  219. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  220. //! test for SH = SW = 2 && FH = FW = 2
  221. param.stride_h = param.stride_w = 2;
  222. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  223. }
  224. }
  225. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  226. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  227. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  228. for (size_t ph : {0, 1, 2})
  229. for (size_t pw : {0, 1, 2})
  230. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  231. param::Pooling param;
  232. param.mode = param::Pooling::Mode::MAX;
  233. param.pad_h = ph;
  234. param.pad_w = pw;
  235. param.stride_h = param.stride_w = 2;
  236. param.window_h = param.window_w = 3;
  237. checker.set_param(param).exec(
  238. TensorShapeArray{{2, 3, ih, iw}, {}});
  239. }
  240. //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
  241. for (size_t ih :
  242. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  243. for (size_t iw :
  244. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  245. for (size_t p : {1, 2}) {
  246. Param param;
  247. param.mode = Param::Mode::MAX;
  248. param.window_h = param.window_w = 4;
  249. param.stride_h = param.stride_w = 2;
  250. param.pad_h = param.pad_w = p;
  251. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  252. }
  253. //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
  254. for (size_t ih :
  255. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  256. for (size_t iw :
  257. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  258. for (size_t p : {1, 2}) {
  259. Param param;
  260. param.mode = Param::Mode::MAX;
  261. param.window_h = param.window_w = 5;
  262. param.stride_h = param.stride_w = 2;
  263. param.pad_h = param.pad_w = p;
  264. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  265. }
  266. }
  267. #endif
  268. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_QUANTIZED) {
  269. Checker<Pooling> checker(handle());
  270. UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
  271. UniformIntRNG rng2{0, UINT8_MAX >> 1};
  272. using Param = param::Pooling;
  273. for (auto type : std::vector<DType>{
  274. dtype::QuantizedS8(1.1f),
  275. dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
  276. if (type.enumv() == DTypeEnum::QuantizedS8) {
  277. checker.set_rng(0, &rng1);
  278. } else {
  279. megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
  280. checker.set_rng(0, &rng2);
  281. }
  282. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  283. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  284. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  285. for (size_t window : {2, 3}) {
  286. Param param;
  287. param.mode = mode;
  288. param.window_h = param.window_w = window;
  289. param.stride_h = param.stride_w = 1;
  290. param.pad_h = param.pad_w = window / 2;
  291. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
  292. //! FH
  293. //! == 3)
  294. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  295. //! test for SH = SW = 2 && FH = FW = 2
  296. param.stride_h = param.stride_w = 2;
  297. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  298. }
  299. }
  300. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  301. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  302. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  303. for (size_t ph : {0, 1, 2})
  304. for (size_t pw : {0, 1, 2})
  305. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  306. param::Pooling param;
  307. param.mode = param::Pooling::Mode::MAX;
  308. param.pad_h = ph;
  309. param.pad_w = pw;
  310. param.window_h = param.window_w = 3;
  311. param.stride_h = param.stride_w = 2;
  312. checker.set_param(param).exec(
  313. TensorShapeArray{{2, 3, ih, iw}, {}});
  314. }
  315. //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
  316. for (size_t ih :
  317. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  318. for (size_t iw :
  319. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  320. for (size_t p : {1, 2}) {
  321. Param param;
  322. param.mode = Param::Mode::MAX;
  323. param.window_h = param.window_w = 4;
  324. param.stride_h = param.stride_w = 2;
  325. param.pad_h = param.pad_w = p;
  326. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  327. }
  328. //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
  329. for (size_t ih :
  330. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  331. for (size_t iw :
  332. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  333. for (size_t p : {1, 2}) {
  334. Param param;
  335. param.mode = Param::Mode::MAX;
  336. param.window_h = param.window_w = 5;
  337. param.stride_h = param.stride_w = 2;
  338. param.pad_h = param.pad_w = p;
  339. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  340. }
  341. }
  342. }
  343. TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FALLBACK) {
  344. using Param = param::Pooling;
  345. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  346. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  347. for (size_t p: {1, 2})
  348. {
  349. Param param;
  350. param.mode = Param::Mode::MAX;
  351. param.window_h = param.window_w = 3;
  352. param.stride_h = param.stride_w = 2;
  353. param.pad_h = param.pad_w = p;
  354. Checker<Pooling> checker(handle());
  355. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  356. }
  357. }
  358. #if MEGDNN_WITH_BENCHMARK
  359. namespace {
  360. template <typename Opr>
  361. void benchmark_impl(const typename Opr::Param& param,
  362. std::vector<SmallVector<TensorShape>> shapes, size_t RUNS,
  363. TaskExecutorConfig&& multi_thread_config,
  364. TaskExecutorConfig&& single_thread_config,
  365. DType data_type) {
  366. std::vector<float> multi_thread_times, single_thread_times;
  367. {
  368. auto multi_thread_hanle =
  369. create_cpu_handle(0, true, &multi_thread_config);
  370. auto benchmarker = Benchmarker<Opr>(multi_thread_hanle.get());
  371. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  372. benchmarker.set_dtype(0, data_type);
  373. for (auto shape : shapes) {
  374. multi_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  375. }
  376. }
  377. {
  378. auto single_thread_handle =
  379. create_cpu_handle(0, true, &single_thread_config);
  380. auto benchmarker = Benchmarker<Opr>(single_thread_handle.get());
  381. benchmarker.set_times(RUNS).set_display(false).set_param(param);
  382. benchmarker.set_dtype(0, data_type);
  383. for (auto shape : shapes) {
  384. single_thread_times.push_back(benchmarker.exec(shape) / RUNS);
  385. }
  386. }
  387. printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread);
  388. printf("core_ids:");
  389. for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
  390. printf("%zu ", multi_thread_config.affinity_core_set[i]);
  391. }
  392. printf(", Single thread core_id %zu\n",
  393. single_thread_config.affinity_core_set[0]);
  394. for (size_t i = 0; i < shapes.size(); i++) {
  395. auto shape = shapes[i];
  396. printf("Case: ");
  397. for (auto sh : shape)
  398. printf("%s ", sh.to_string().c_str());
  399. printf("%zu threads time: %f,\n single thread time: "
  400. "%f. spead up = %f, speedup/cores=%f\n",
  401. multi_thread_config.nr_thread, multi_thread_times[i],
  402. single_thread_times[i],
  403. single_thread_times[i] / multi_thread_times[i],
  404. single_thread_times[i] / multi_thread_times[i] /
  405. multi_thread_config.nr_thread);
  406. }
  407. }
  408. } // namespace
  409. TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING) {
  410. constexpr size_t RUNS = 50;
  411. using Param = param::Pooling;
  412. Param param;
  413. param.window_h = param.window_w = 3;
  414. param.stride_h = param.stride_w = 2;
  415. param.pad_h = param.pad_w = 1;
  416. std::vector<SmallVector<TensorShape>> shapes;
  417. shapes.push_back({{32, 32, 215, 215}, {}});
  418. shapes.push_back({{32, 32, 128, 128}, {}});
  419. shapes.push_back({{8, 256, 100, 100}, {}});
  420. shapes.push_back({{1, 256, 100, 100}, {}});
  421. shapes.push_back({{1, 32, 100, 100}, {}});
  422. shapes.push_back({{1, 256, 80, 80}, {}});
  423. shapes.push_back({{1, 256, 60, 60}, {}});
  424. shapes.push_back({{1, 256, 30, 30}, {}});
  425. param.window_h = param.window_w = 3;
  426. param.stride_h = param.stride_w = 2;
  427. param.pad_h = param.pad_w = 1;
  428. printf("Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n", param.window_h,
  429. param.window_w, param.stride_h, static_cast<int>(param.mode));
  430. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {0, 1, 2, 3}}, {1, {0}}, dtype::Float32());
  431. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, dtype::Float32());
  432. benchmark_impl<Pooling>(param, shapes, RUNS, {2, {0, 1}}, {1, {0}}, dtype::Float32());
  433. }
  434. TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING_NCHW44) {
  435. constexpr size_t RUNS = 50;
  436. using Param = param::Pooling;
  437. Param param;
  438. param.pad_h = param.pad_w = 0;
  439. param.mode = Param::Mode::MAX;
  440. std::vector<SmallVector<TensorShape>> shapes;
  441. std::vector<std::vector<size_t>> filter_and_stride = {
  442. {2, 1}, {2, 2}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {5, 1}, {5, 2}};
  443. for (auto mode :
  444. {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE}) {
  445. for (auto filter : filter_and_stride) {
  446. shapes.push_back({{1, 32 * 4, 215, 215}, {}});
  447. shapes.push_back({{1, 32 * 4, 128, 128}, {}});
  448. shapes.push_back({{1, 16 * 4, 56, 56}, {}});
  449. param.mode = mode;
  450. param.window_h = param.window_w = filter[0];
  451. param.stride_h = param.stride_w = filter[1];
  452. param.format = Param::Format::NCHW;
  453. printf("NCHW Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n",
  454. param.window_h, param.window_h, param.stride_h,
  455. static_cast<int>(param.mode));
  456. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}},
  457. {1, {4}}, dtype::QuantizedS8(1.1f));
  458. shapes.clear();
  459. shapes.push_back({{1, 32, 215, 215, 4}, {}});
  460. shapes.push_back({{1, 32, 128, 128, 4}, {}});
  461. shapes.push_back({{1, 16, 56, 56, 4}, {}});
  462. param.format = Param::Format::NCHW44;
  463. printf("NCHW44 Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n",
  464. param.window_h, param.window_w, param.stride_h,
  465. static_cast<int>(param.mode));
  466. benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}},
  467. {1, {4}}, dtype::QuantizedS8(1.1f));
  468. shapes.clear();
  469. }
  470. }
  471. }
  472. #endif
  473. } // namespace test
  474. } // namespace megdnn
  475. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台