You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

tensor.h 8.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. /**
  2. * \file imperative/python/src/tensor.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #pragma once
  12. #pragma GCC diagnostic ignored "-Wmissing-field-initializers"
  13. #include <variant>
  14. #include "megbrain/imperative/interpreter.h"
  15. #include "pybind11/pybind11.h"
  16. #include <string>
  17. #include "./pyext17.h"
  18. namespace mgb::imperative::python {
  19. template<typename T, typename B = pybind11::object>
  20. struct ObjectPtr : B {
  21. using B::B;
  22. T& operator*() {return reinterpret_cast<T&>(*B::ptr());}
  23. T* operator->() {return reinterpret_cast<T*>(B::ptr());}
  24. };
  25. } // namespace mgb::imperative::python
  26. #include "./grad_info.h" // for struct GradInfo
  27. #include "./trace_info.h" // for struct TraceInfo
  28. namespace mgb::imperative::python {
  29. extern interpreter::Interpreter::Channel* interpreter_for_py;
  30. class SharedHandle {
  31. using Handle = interpreter::Interpreter::Handle;
  32. static_assert(std::is_pointer_v<Handle>);
  33. std::shared_ptr<std::remove_pointer_t<Handle>> holder;
  34. public:
  35. inline explicit SharedHandle(Handle handle) : holder(handle, [](auto* h){
  36. if (h) {
  37. interpreter_for_py->del(h);
  38. }
  39. }) {}
  40. SharedHandle(const SharedHandle&) = default;
  41. SharedHandle& operator=(const SharedHandle&) = default;
  42. SharedHandle(SharedHandle&&) = default;
  43. SharedHandle& operator=(SharedHandle&&) = default;
  44. inline Handle get() {return holder.get();}
  45. };
  46. struct Tensor : std::enable_shared_from_this<Tensor>, NonCopyableObj {
  47. using flags_t = uint64_t;
  48. struct Flags {
  49. static constexpr flags_t SCALAR = 1;
  50. static constexpr flags_t GRAD = 1 << 1;
  51. static constexpr flags_t TRACE = 1 << 2;
  52. };
  53. flags_t m_flags = 0;
  54. GradInfo m_grad_info;
  55. TraceInfo m_trace_info;
  56. SharedHandle m_handle;
  57. std::string user_custom_name;
  58. std::string automatic_name;
  59. cg::VarNode* m_var;
  60. using Handle = interpreter::Interpreter::Handle;
  61. inline Tensor() : m_handle(nullptr), m_var(nullptr) {}
  62. inline explicit Tensor(Handle handle) : m_handle(handle), m_var(nullptr) {}
  63. inline explicit Tensor(SharedHandle handle) : m_handle(std::move(handle)), m_var(nullptr) {}
  64. inline explicit Tensor(cg::VarNode *var) : m_handle(nullptr), m_var(var) {}
  65. ~Tensor() = default;
  66. inline std::shared_ptr<Tensor> copy() {
  67. auto ret = std::make_shared<Tensor>(m_handle);
  68. ret->m_flags = m_flags;
  69. ret->m_grad_info = m_grad_info;
  70. ret->m_trace_info = m_trace_info;
  71. ret->m_var = m_var;
  72. return ret;
  73. }
  74. inline DType dtype() {
  75. if (m_var) {
  76. return m_var->dtype();
  77. }
  78. return interpreter_for_py->get_dtype(m_handle.get());
  79. }
  80. inline CompNode comp_node() {
  81. if (m_var) {
  82. return m_var->comp_node();
  83. }
  84. return interpreter_for_py->get_device(m_handle.get());
  85. }
  86. inline TensorShape shape() {
  87. if (m_var) {
  88. return m_var->shape();
  89. }
  90. return interpreter_for_py->get_shape(m_handle.get());
  91. }
  92. };
  93. struct TensorWrapper {
  94. std::shared_ptr<Tensor> m_tensor;
  95. inline TensorWrapper(std::shared_ptr<Tensor> tensor = {}) : m_tensor(std::move(tensor)) {}
  96. TensorWrapper(PyObject* args, PyObject* kwargs);
  97. ~TensorWrapper() = default;
  98. static constexpr auto tp_name = pybind11::detail::_("Tensor");
  99. using wrap_t = pyext17::wrap<TensorWrapper>;
  100. friend wrap_t;
  101. inline static TensorWrapper* cast(PyObject* op) {return reinterpret_cast<wrap_t*>(op)->inst();}
  102. inline static TensorWrapper* try_cast(PyObject* op) {
  103. if (!wrap_t::type().isinstance(op)) return nullptr;
  104. return cast(op);
  105. }
  106. inline ObjectPtr<TensorWrapper, pybind11::handle> self() {return wrap_t::pycast(this);}
  107. template <typename... Args>
  108. static ObjectPtr<Tensor> make(Args&&... args) {
  109. auto* op = wrap_t::cnew(std::forward<Args>(args)...);
  110. return pybind11::reinterpret_steal<ObjectPtr<Tensor>>(op);
  111. }
  112. template <typename... Args>
  113. static ObjectPtr<Tensor> make(PyTypeObject* pytype, Args&&... args) {
  114. auto* op = wrap_t::cnew_with_type(pytype,std::forward<Args>(args)...);
  115. return pybind11::reinterpret_steal<ObjectPtr<Tensor>>(op);
  116. }
  117. PyObject* shape();
  118. PyObject* dtype();
  119. PyObject* device();
  120. PyObject* numpy();
  121. void reset(PyObject*);
  122. PyObject* detach();
  123. PyObject* isscalar();
  124. void setscalar();
  125. void unsetscalar();
  126. PyObject* _dev_tensor();
  127. void _swap_in();
  128. void _swap_out();
  129. void _drop();
  130. PyObject* varnode();
  131. void reset_varnode();
  132. PyObject* handle();
  133. void set_handle(PyObject *);
  134. PyObject* mixin_handle();
  135. PyObject* recording();
  136. PyObject* copied();
  137. void set_mixin_handle(PyObject*);
  138. void set_recording(PyObject*);
  139. PyObject* compiled_info();
  140. void set_compiled_info(PyObject *);
  141. PyObject* trace_mixin_info();
  142. void set_trace_mixin_info(PyObject *);
  143. PyObject* user_custom_name();
  144. void set_user_custom_name(PyObject *);
  145. PyObject* automatic_name();
  146. void set_automatic_name(PyObject *);
  147. PyObject* _use_cnt() { return PyLong_FromSize_t(m_tensor.use_count()); };
  148. };
  149. struct PySymbolVar {
  150. cg::VarNode* m_node = nullptr;
  151. bool is_scalar = false;
  152. PySymbolVar() = default;
  153. PySymbolVar(VarNode *m): m_node(m){}
  154. };
  155. PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObject* kwnames */);
  156. struct ApplyContext {
  157. static Tensor::flags_t global_disable;
  158. Tensor::flags_t flags;
  159. std::shared_ptr<OpDef> op;
  160. Tensor*const* args;
  161. size_t nargs;
  162. PyTypeObject* pytype = nullptr;
  163. bool backward = false;
  164. class scoped_disable : NonCopyableObj {
  165. Tensor::flags_t saved_flags;
  166. public:
  167. scoped_disable(Tensor::flags_t flags) : saved_flags(ApplyContext::global_disable) {
  168. ApplyContext::global_disable |= flags;
  169. }
  170. ~scoped_disable() {
  171. ApplyContext::global_disable = saved_flags;
  172. }
  173. };
  174. };
  175. using apply_result_t = SmallVector<std::shared_ptr<Tensor>, 8>;
  176. apply_result_t apply(ApplyContext& ctx);
  177. template <typename T>
  178. decltype(auto) resolve_arrow(T&& p) {
  179. if constexpr (std::is_pointer_v<std::remove_reference_t<T>>) {
  180. auto* ret = p;
  181. return ret;
  182. } else {
  183. auto probe = [](auto&& p) -> decltype(p.operator->()) {};
  184. if constexpr (std::is_invocable_v<decltype(probe), decltype(p)>) {
  185. return resolve_arrow(p.operator->());
  186. } else {
  187. return std::forward<T>(p);
  188. }
  189. }
  190. }
  191. template <typename... Args>
  192. constexpr bool is_all_tensor_ptr = (... && std::is_same_v<decltype(resolve_arrow(std::declval<Args>())), Tensor*>);
  193. extern bool is_tracing; // FIXME: should use ApplyContext::global_enable
  194. template <typename... Args, std::enable_if_t<is_all_tensor_ptr<Args...>, int> = 0>
  195. apply_result_t apply(std::shared_ptr<OpDef> op, Args&&... args) {
  196. ApplyContext ctx;
  197. Tensor* arg_arr[] = {resolve_arrow(args)...};
  198. ctx.flags = (0 | ... | args->m_flags);
  199. ctx.flags |= is_tracing ? Tensor::Flags::TRACE : 0;
  200. ctx.args = arg_arr;
  201. ctx.nargs = sizeof...(args);
  202. ctx.op = std::move(op);
  203. return apply(ctx);
  204. }
  205. template <typename T>
  206. auto apply(std::shared_ptr<OpDef> op, T&& tensors)
  207. -> std::enable_if_t<std::is_same_v<decltype(resolve_arrow(tensors[0])), Tensor*>,
  208. apply_result_t> {
  209. ApplyContext ctx;
  210. ctx.op = std::move(op);
  211. ctx.flags = is_tracing ? Tensor::Flags::TRACE : 0;
  212. ctx.nargs = tensors.size();
  213. Tensor* args[ctx.nargs];
  214. ctx.args = args;
  215. for (size_t i = 0; i < ctx.nargs; ++i) {
  216. args[i] = resolve_arrow(tensors[i]);
  217. ctx.flags |= args[i]->m_flags;
  218. }
  219. return apply(ctx);
  220. }
  221. inline auto apply(std::shared_ptr<OpDef> op, Tensor*const* args, size_t nargs) {
  222. ApplyContext ctx;
  223. ctx.op = std::move(op);
  224. ctx.flags = is_tracing ? Tensor::Flags::TRACE : 0;
  225. ctx.nargs = nargs;
  226. ctx.args = args;
  227. for (size_t i = 0; i < nargs; ++i) {
  228. ctx.flags |= args[i]->m_flags;
  229. }
  230. return apply(ctx);
  231. }
  232. void init_tensor(pybind11::module);
  233. extern PyObject *cpp_apply_with_tracing;
  234. extern PyObject *cpp_apply_backward_varnode;
  235. } // namespace mgb::imperative::python
  236. namespace pybind11::detail {
  237. template<> struct type_caster<mgb::imperative::python::TensorWrapper> : mgb::imperative::python::TensorWrapper::wrap_t::caster {};
  238. } // namespace pybind11::detail

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台