You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_elemwise.py 4.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import numpy as np
  10. import megengine.functional as F
  11. from megengine import tensor
  12. def test_abs():
  13. np.testing.assert_allclose(
  14. F.abs(tensor([-3.0, -4.0, -5.0])).numpy(),
  15. np.abs(np.array([-3.0, -4.0, -5.0], dtype=np.float32)),
  16. )
  17. np.testing.assert_allclose(F.abs(-3.0).numpy(), np.abs(np.float32(-3.0)))
  18. def test_multiply():
  19. np.testing.assert_allclose(
  20. F.mul(-3.0, -4.0).numpy(), np.multiply(np.float32(-3.0), np.float32(-4.0))
  21. )
  22. np.testing.assert_allclose(
  23. F.mul(tensor([3.0, 4.0]), 4.0).numpy(),
  24. np.multiply(np.array([3.0, 4.0], dtype=np.float32), 4.0),
  25. )
  26. np.testing.assert_allclose(
  27. F.mul(4.0, tensor([3.0, 4.0])).numpy(),
  28. np.multiply(4.0, np.array([3.0, 4.0], dtype=np.float32)),
  29. )
  30. np.testing.assert_allclose(
  31. F.mul(tensor([3.0, 4.0]), tensor([3.0, 4.0])).numpy(),
  32. np.multiply(
  33. np.array([3.0, 4.0], dtype=np.float32),
  34. np.array([3.0, 4.0], dtype=np.float32),
  35. ),
  36. )
  37. def test_clamp():
  38. """Fix an issue when `lower` or `upper` is 0, it will be recognized as `False` and
  39. `F.clamp` will fall into wrong conditions unexpectedly.
  40. """
  41. x = np.linspace(-6, 6, dtype="float32")
  42. np.testing.assert_allclose(
  43. F.clamp(tensor(x) + 3, 0, 6).numpy(), np.clip(x + 3, 0, 6)
  44. )
  45. np.testing.assert_allclose(
  46. F.clamp(tensor(x) - 3, -6, 0).numpy(), np.clip(x - 3, -6, 0)
  47. )
  48. def test_isnan():
  49. for case in [[1, float("nan"), 0]]:
  50. np.testing.assert_allclose(F.isnan(tensor(case)).numpy(), np.isnan(case))
  51. def test_isinf():
  52. for case in [[1, float("inf"), 0]]:
  53. np.testing.assert_allclose(F.isinf(tensor(case)).numpy(), np.isinf(case))
  54. def test_sign():
  55. for case in [[1, -1, 0]]:
  56. x = tensor(case)
  57. np.testing.assert_allclose(F.sign(x).numpy(), np.sign(case).astype(x.dtype))
  58. def test_cosh():
  59. np.random.seed(42)
  60. x = np.random.randn(100).astype("float32")
  61. y_np = np.cosh(x)
  62. y_mge = F.cosh(tensor(x)).numpy()
  63. np.testing.assert_allclose(y_np, y_mge, rtol=1e-5)
  64. def test_sinh():
  65. np.random.seed(42)
  66. x = np.random.randn(100).astype("float32")
  67. y_np = np.sinh(x)
  68. y_mge = F.sinh(tensor(x)).numpy()
  69. np.testing.assert_allclose(y_np, y_mge, rtol=1e-5)
  70. def test_asinh():
  71. np.random.seed(42)
  72. x = np.random.randn(100).astype("float32")
  73. y_np = np.arcsinh(x)
  74. y_mge = F.asinh(tensor(x)).numpy()
  75. np.testing.assert_almost_equal(y_np, y_mge, decimal=5)
  76. def test_acosh():
  77. x = np.arange(0, 10000).astype("float32") / 100 + 1
  78. y_np = np.arccosh(x)
  79. y_mge = F.acosh(tensor(x)).numpy()
  80. np.testing.assert_almost_equal(y_np, y_mge, decimal=6)
  81. def test_atanh():
  82. np.random.seed(42)
  83. x = np.random.rand(100).astype("float32") * 2 - 1
  84. y_np = np.arctanh(x)
  85. y_mge = F.atanh(tensor(x)).numpy()
  86. np.testing.assert_almost_equal(y_np, y_mge, decimal=5)
  87. def test_fast_tanh():
  88. np.random.seed(42)
  89. x = np.random.randn(100).astype("float32")
  90. y_np = x * (27.0 + x * x) / (27.0 + 9.0 * x * x)
  91. y_mge = F.fast_tanh(tensor(x)).numpy()
  92. np.testing.assert_almost_equal(y_np, y_mge, decimal=6)
  93. def test_hswish():
  94. np.random.seed(42)
  95. x = np.random.randn(100).astype("float32")
  96. y_np = x * np.minimum(np.maximum(x + 3, 0), 6) / 6
  97. y_mge = F.hswish(tensor(x)).numpy()
  98. np.testing.assert_almost_equal(y_np, y_mge, decimal=6)
  99. def test_hsigmoid():
  100. np.random.seed(42)
  101. x = np.random.randn(100).astype("float32")
  102. y_np = np.minimum(np.maximum(x + 3, 0), 6) / 6
  103. y_mge = F.hsigmoid(tensor(x)).numpy()
  104. np.testing.assert_equal(y_np, y_mge)
  105. def test_logical_oprs():
  106. x = np.array([[True, False], [False, True]])
  107. y = np.array([[True, True], [False, False]])
  108. xx = tensor(x)
  109. yy = tensor(y)
  110. np.testing.assert_equal(~x, (F.logical_not(xx)).numpy())
  111. np.testing.assert_equal(x & y, F.logical_and(xx, yy).numpy())
  112. np.testing.assert_equal(x | y, F.logical_or(xx, yy).numpy())
  113. np.testing.assert_equal(x ^ y, F.logical_xor(xx, yy).numpy())

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台