You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

network.py 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import collections
  10. import fnmatch
  11. import itertools
  12. import pickle
  13. import re
  14. from collections import OrderedDict
  15. from typing import Any, Dict, List, Sequence
  16. from ..core._imperative_rt import ComputingGraph, SerializationMetadata
  17. from ..core._trace_option import set_symbolic_shape as _set_symbolic_shape
  18. from ..core.tensor import megbrain_graph as G
  19. from ..logger import get_logger
  20. from .comp_graph_tools import get_dep_vars, get_opr_type, get_oprs_seq
  21. from .network_node import (
  22. Host2DeviceCopy,
  23. ImmutableTensor,
  24. NetworkNode,
  25. OpNode,
  26. VarNode,
  27. str_to_mge_class,
  28. )
  29. logger = get_logger(__name__)
  30. class Network:
  31. def __init__(self):
  32. self.input_vars = [] # input var of graph
  33. self._orig_inputs = []
  34. self.output_vars = [] # output var of graph
  35. self._orig_outputs = []
  36. self.all_oprs_map = OrderedDict()
  37. self.all_vars_map = OrderedDict()
  38. self.graph = ComputingGraph()
  39. self._metadata = None
  40. @property
  41. def metadata(self):
  42. r"""
  43. Load metadata as a dict.
  44. """
  45. if not self._metadata.is_valid:
  46. logger.info("metadata is not valid!")
  47. return None
  48. ret = dict()
  49. try:
  50. user_info = pickle.loads(self._metadata.user_info)
  51. except: # pylint: disable=bare-except
  52. logger.warning(
  53. "can't parse user info by pickle, so return the original bytes object!"
  54. )
  55. user_info = self._metadata.user_info
  56. ret["user_info"] = user_info
  57. ret["graph_modified"] = self._metadata.graph_modified
  58. ret["optimized_for_inference"] = self._metadata.optimized_for_inference
  59. if ret["optimized_for_inference"]:
  60. ret.update(G.deserialize_infer_option(self._metadata.optimize_options))
  61. return ret
  62. @classmethod
  63. def load(cls, model_path: str, outspec: List[str] = None):
  64. """
  65. Loads a computing graph as a Network object.
  66. :param model_path: file path of mge model.
  67. :param outspec: only load the subgraph with outspec as its endpoints.
  68. """
  69. self = cls()
  70. ret = G.load_graph(model_path)
  71. outputs, self._metadata = ret.output_vars_list, ret.metadata
  72. if outspec is not None:
  73. output_spec = outspec.copy()
  74. all_vars = get_dep_vars(outputs) + outputs
  75. new_outputs = {}
  76. for i in all_vars:
  77. if i.name in output_spec:
  78. new_outputs[i.name] = i
  79. output_spec.remove(i.name)
  80. assert len(output_spec) == 0, "Can not find {} in this model".format(
  81. output_spec
  82. )
  83. outputs = [new_outputs[i] for i in outspec]
  84. self._orig_outputs = outputs
  85. for x in self._orig_outputs:
  86. self.output_vars.append(self._get_var(x))
  87. self.add_dep_oprs()
  88. for x in self._orig_inputs:
  89. self.input_vars.append(self._get_var(x))
  90. self.graph = self._orig_outputs[0].graph
  91. return self
  92. def _compile(self):
  93. self.all_oprs_map = {}
  94. self.all_vars_map = {}
  95. for opr in self.all_oprs:
  96. if isinstance(opr, (ImmutableTensor, Host2DeviceCopy)):
  97. opr.compile(self.graph)
  98. else:
  99. opr.compile()
  100. if opr.name is not None:
  101. opr._opr.name = opr.name
  102. self.all_oprs_map[opr._opr.id] = opr
  103. for o in opr.outputs:
  104. self.all_vars_map[o.var.id] = o
  105. def optimize_for_inference(self, dest_vars, **kwargs):
  106. r"""
  107. Applies optimize_for_inference pass for operator graph.
  108. :param dest_vars: list of output vars in the operator graph
  109. :Keyword Arguments:
  110. * enable_io16xc32 --
  111. whether to use float16 for I/O between oprs and use
  112. float32 as internal computation precision. Note the output var would be
  113. changed to float16.
  114. * enable_ioc16 --
  115. whether to use float16 for both I/O and computation
  116. precision.
  117. * enable_hwcd4 --
  118. whether to use NHWCD4 data layout. This is faster on some
  119. OpenCL backend.
  120. * enable_nchw88 --
  121. whether to use NCHW88 data layout, currently
  122. used in X86 AVX backend.
  123. * enable_nchw44 --
  124. whether to use NCHW44 data layout, currently
  125. used in arm backend.
  126. * enable_nchw44_dot --
  127. whether to use NCHW44_dot data layout, currently
  128. used in armv8.2+dotprod backend.
  129. * enable_nchw4 --
  130. whether to use NCHW4 data layout, currently
  131. used in nvidia backend(based on cudnn).
  132. * enable_nchw32 --
  133. whether to use NCHW32 data layout, currently
  134. used in nvidia backend with tensorcore(based on cudnn).
  135. * enable_chwn4 --
  136. whether to use CHWN4 data layout, currently
  137. used in nvidia backend with tensorcore.
  138. * enable_nchw64 --
  139. whether to use NCHW64 data layout, used for fast int4
  140. support on Nvidia GPU.
  141. * enable_fuse_conv_bias_nonlinearity: whether to fuse conv+bias+nonlinearty
  142. into one opr.
  143. * enable_fuse_conv_bias_with_z: whether to fuse conv_bias with z
  144. input for inference on nvidia backend(this optimization pass will
  145. result in mismatch of the precision of output of training and
  146. inference)
  147. """
  148. if not isinstance(dest_vars, Sequence):
  149. dest_vars = [dest_vars]
  150. dest_vars = list(G.VarNode(var.var) for var in dest_vars)
  151. new_vars = G.optimize_for_inference(dest_vars, **kwargs)
  152. return list(self._get_var(var) for var in new_vars)
  153. def dump(
  154. self,
  155. file,
  156. *,
  157. keep_var_name: int = 1,
  158. keep_opr_name: bool = False,
  159. keep_param_name: bool = False,
  160. keep_opr_priority: bool = False,
  161. strip_info_file=None,
  162. append_json=False,
  163. optimize_for_inference=True,
  164. append=False,
  165. user_info: Any = None,
  166. enable_metadata=True,
  167. **kwargs
  168. ):
  169. """
  170. Serializes graph to file.
  171. :param file: output file, could be file object or filename.
  172. :param append: whether output is appended to ``file``.
  173. Only works when ``file`` is str.
  174. :param keep_var_name: level for keeping variable names:
  175. * 0: none of the names are kept
  176. * 1: (default)keep names of output vars
  177. * 2: keep names of all (output and internal) vars
  178. :param keep_opr_name: whether to keep operator names.
  179. :param keep_param_name: whether to keep param names, so param values can be
  180. easily manipulated after loading model
  181. :param keep_opr_priority: whether to keep priority setting for operators
  182. :param strip_info_file: a string for path or a file handler. if is not None,
  183. then the dump information for code strip would be written to ``strip_info_file``
  184. :param append_json: will be check when `strip_info_file` is not None. if set
  185. true, the information for code strip will be append to strip_info_file.
  186. if set false, will rewrite strip_info_file
  187. :param optimize_for_inference: enbale optmizations,
  188. will skip all optimize options if this is False. Default: True
  189. :param user_info: any type object, which will be pickled to bytes.
  190. :param enable_metadata: whether to save metadata into output file.
  191. :Keyword Arguments:
  192. See also :py:meth:`optimize_for_inference`.
  193. """
  194. def _set_var_name(var):
  195. graph_var = G.VarNode(var.var)
  196. graph_var.name = var.name
  197. return graph_var
  198. self._compile()
  199. out = list(map(_set_var_name, self.output_vars))
  200. if kwargs.pop("arg_names", False):
  201. logger.warning(
  202. '"arg_names" is not supported in Network.dump, rename input vars directly'
  203. )
  204. if kwargs.pop("output_names", False):
  205. logger.warning(
  206. '"output_names" is not supported in Network.dump, rename output vars directly'
  207. )
  208. if optimize_for_inference:
  209. out, optimize_options = G.optimize_for_inference(out, **kwargs)
  210. metadata = SerializationMetadata()
  211. if enable_metadata:
  212. metadata.is_valid = True
  213. metadata.graph_modified = True
  214. metadata.user_info = pickle.dumps(user_info)
  215. if optimize_for_inference:
  216. metadata.optimize_options = optimize_options
  217. G.set_priority_to_id([o._node if isinstance(o, G.VarNode) else o for o in out])
  218. dump_content, _ = G.dump_graph(
  219. out,
  220. keep_var_name=keep_var_name,
  221. keep_opr_name=keep_opr_name,
  222. keep_param_name=keep_param_name,
  223. keep_opr_priority=keep_opr_priority,
  224. strip_info_file=strip_info_file,
  225. append_json=append_json,
  226. metadata=metadata,
  227. )
  228. if isinstance(file, str):
  229. permission = "wb" if append == False else "ab"
  230. file = open(file, permission)
  231. file.write(dump_content)
  232. def make_const(self, data, name=None, device=None):
  233. """Makes an ImmutableTensor OpNode to provide a parameter for the network.
  234. """
  235. node = ImmutableTensor(data, name, device, self.graph)
  236. node.compile(self.graph)
  237. return node.outputs[0]
  238. def make_input_node(self, shape, dtype, name=None, device=None):
  239. """Makes a Host2DeviceCopy OpNode to provide an input varnode for the network.
  240. """
  241. node = Host2DeviceCopy(shape, dtype, name, device)
  242. node.compile(self.graph)
  243. return node.outputs[0]
  244. def add_output(self, *vars: VarNode):
  245. """Adds vars into the network output node list
  246. """
  247. if not all([var.owner for var in vars]):
  248. self.add_dep_oprs(*vars)
  249. for var in vars:
  250. # use method 'is' instead of 'in' to avoid
  251. # compare VarNode use elemwise equal
  252. if not any(var is _ for _ in self.output_vars):
  253. self.output_vars.append(var)
  254. def remove_output(self, *vars: VarNode):
  255. """Removes vars from the network output node list.
  256. """
  257. for var in vars:
  258. # use list pop instead of remove to avoid
  259. # compare VarNode use elemwise equal
  260. for idx, out_var in enumerate(self.output_vars):
  261. if var is out_var:
  262. self.output_vars.pop(idx)
  263. def add_dep_oprs(self, *vars):
  264. if len(vars) == 0:
  265. vars = self.output_vars
  266. q = list(vars)
  267. while len(q) > 0:
  268. cur = q.pop(0)
  269. if cur.owner is not None:
  270. continue
  271. if cur.name is None:
  272. cur.name = cur.var.name
  273. self.all_vars_map[cur.var.id] = cur
  274. mge_opr = cur.var.owner
  275. if get_opr_type(mge_opr) == "Host2DeviceCopy":
  276. self._orig_inputs.extend(mge_opr.outputs)
  277. cur.owner = self._add_opr(mge_opr)
  278. if cur.owner is None:
  279. cur.owner = self.all_oprs_map[mge_opr.id]
  280. continue
  281. q.extend(cur.owner.inputs)
  282. return list(vars)
  283. def modify_opr_names(self, modifier):
  284. """Modifies names of operators **inplace**; useful for merging loaded
  285. network into another network
  286. :param modifier: a string to be prepended to the name, or a function
  287. that maps from name to name
  288. :type modifier: str or callable
  289. """
  290. if isinstance(modifier, str):
  291. om = modifier
  292. modifier = lambda v: "{}.{}".format(om, v)
  293. assert isinstance(modifier, collections.Callable)
  294. for i in self.all_oprs:
  295. v0 = i.name
  296. v1 = modifier(v0)
  297. assert isinstance(v1, str)
  298. i.name = v1
  299. def reset_batch_size(self, batchsize, *, blacklist=()):
  300. """Helper for reset batch size; first dimension of all data providers
  301. not in blacklist are assumed to be the batch size
  302. :param blacklist: data provider names whose first dimension is not
  303. batchbatch size
  304. """
  305. blacklist = set(blacklist)
  306. prev_batchsize = None
  307. for i in self.data_providers_filter:
  308. if i.name in blacklist:
  309. blacklist.remove(i.name)
  310. else:
  311. shp = list(i.shape)
  312. if prev_batchsize is None:
  313. prev_batchsize = shp[0]
  314. else:
  315. assert prev_batchsize == shp[0], (
  316. "batchsize mismatch: batchsize={} "
  317. "shape={} dp={}".format(prev_batchsize, shp, i.name)
  318. )
  319. shp[0] = batchsize
  320. i.shape = tuple(shp)
  321. self._compile()
  322. assert prev_batchsize is not None, "no data provider found"
  323. assert not blacklist, "unused items in blacklist: {}".format(blacklist)
  324. def replace_vars(self, repl_dict: Dict[VarNode, VarNode]):
  325. """
  326. Replaces vars in the graph.
  327. :param repl_dict: the map {old_var: new_var} that specifies how to replace the vars.
  328. """
  329. if not all([var.owner for var in repl_dict.values()]):
  330. self.add_dep_oprs(*list(repl_dict.values()))
  331. for var in self.all_vars:
  332. if var in repl_dict:
  333. repl_var = repl_dict[var]
  334. owner = repl_var.owner
  335. idx = owner.outputs.index(repl_var)
  336. owner.outputs[idx] = var
  337. var.__dict__.update(repl_var.__dict__)
  338. var.var = repl_var.var
  339. self._compile()
  340. def replace_oprs(self, repl_dict: Dict[OpNode, OpNode]):
  341. """
  342. Replaces operators in the graph.
  343. :param oprmap: the map {old_opr: new_opr} that specifies how to replace the operators.
  344. """
  345. for opr in self.all_oprs:
  346. if opr in repl_dict:
  347. assert len(opr.outputs) == len(
  348. repl_dict[opr].outputs
  349. ), "can not replace {} with {}".format(type(opr), type(repl_dict[opr]))
  350. for ind, var in enumerate(opr.outputs):
  351. var.owner = repl_dict[opr]
  352. var.__dict__.update(repl_dict[opr].outputs[ind].__dict__)
  353. var.var = repl_dict[opr].outputs[ind].var
  354. self._compile()
  355. def get_opr_by_type(self, oprcls, unique=True):
  356. assert issubclass(oprcls, OpNode)
  357. rst = self.opr_filter.type(oprcls).as_list()
  358. if unique:
  359. assert len(rst) == 1, "{} operators of type {} found".format(
  360. len(rst), oprcls
  361. )
  362. (rst,) = rst
  363. return rst
  364. def get_opr_by_name(self, name, unique=True):
  365. rst = self.opr_filter.name(name).as_list()
  366. if unique:
  367. assert len(rst) == 1, "{} operators of type {} found".format(len(rst), name)
  368. (rst,) = rst
  369. return rst
  370. def get_var_by_name(self, name, unique=True):
  371. rst = self.var_filter.name(name).as_list()
  372. if unique:
  373. assert len(rst) == 1, "{} operators of type {} found".format(len(rst), name)
  374. (rst,) = rst
  375. return rst
  376. def get_var_receive_oprs(self, var):
  377. """ Gets all oprs which use var as input
  378. """
  379. return self.opr_filter.has_input(var).as_list()
  380. def get_dep_oprs(self, var):
  381. """Gets dependent oprs of var
  382. """
  383. return get_oprs_seq(var, False, False)
  384. @property
  385. def opr_filter(self):
  386. """Filter on all opnodes of the Network.
  387. """
  388. oprs = self.all_oprs
  389. return NodeFilter(itertools.islice(oprs, len(oprs)))
  390. @property
  391. def var_filter(self):
  392. """Filter on all varnode of the Network.
  393. """
  394. vars = self.all_vars
  395. return NodeFilter(itertools.islice(vars, len(vars)))
  396. @property
  397. def params_filter(self): # all immutable tensor
  398. """Filter on all parameters (ImmutableTensor Opr) of the Network
  399. """
  400. return self.opr_filter.param_provider()
  401. @property
  402. def data_providers_filter(self): # all host2devicecopy
  403. """Filter on all input nodes (Host2DeviceCopy Opr) of the Network
  404. """
  405. return self.opr_filter.data_provider()
  406. @property
  407. def dest_vars(self):
  408. """Output varnodes of the Network.
  409. """
  410. return self.output_vars
  411. @property
  412. def all_oprs(self):
  413. return get_oprs_seq(self.output_vars, False, False)
  414. @property
  415. def all_vars(self):
  416. return get_dep_vars(self.output_vars)
  417. @property
  418. def all_vars_dict(self):
  419. return self.var_filter.as_dict()
  420. @property
  421. def all_oprs_dict(self):
  422. return self.opr_filter.as_dict()
  423. # used for loading and building graph
  424. def _add_opr(self, opr):
  425. # TODO: use megbrain C++ RTTI to replace type string
  426. if opr.id not in self.all_oprs_map:
  427. opnode = str_to_mge_class(get_opr_type(opr)).load(opr)
  428. self.all_oprs_map[opr.id] = opnode
  429. for var in opr.inputs:
  430. opnode.add_inp_var(self._get_var(var))
  431. for var in opr.outputs:
  432. opnode.add_out_var(self._get_var(var))
  433. return opnode
  434. else:
  435. # overwrite the opnode 'new' output VarNode with
  436. # original one when output number larger than 1,
  437. # or will cause dependence issue in _compiler step.
  438. if len(opr.outputs) > 1:
  439. opnode = self.all_oprs_map[opr.id]
  440. for idx, output in enumerate(opnode.outputs):
  441. if output.var.id in self.all_vars_map:
  442. opnode.outputs[idx] = self.all_vars_map[output.var.id]
  443. return None
  444. def _get_opr(self, x):
  445. if x.id in self.all_oprs_map:
  446. return self.all_oprs_map[x.id]
  447. else:
  448. return None
  449. def _get_var(self, x):
  450. # auto convert to VarNode of Network
  451. if x.id not in self.all_vars_map or self.all_vars_map[x.id].var != x:
  452. self.all_vars_map[x.id] = VarNode.load(x, self._get_opr(x.owner))
  453. return self.all_vars_map[x.id]
  454. def set_symbolic_shape(option: bool):
  455. """
  456. Set the VarNode use symbolic shape or not, return the last status.
  457. Please set to True and must recover after dump if want to change the input batch size.
  458. :param option: True for enable symbolic shape.
  459. """
  460. return _set_symbolic_shape(option)
  461. def as_varnode(obj):
  462. """convert a :class:`.VarNode` compatible object to :class:`.VarNode`.
  463. :param obj: it must be one of the following:
  464. 1. a :class:`.VarNode` object
  465. 2. a :class:`.OpNode` object that has unique output
  466. 3. an iterable that produces either type 1 or 2, with length 1
  467. :rtype: :class:`.VarNode`
  468. """
  469. if type(obj) is VarNode:
  470. return obj
  471. if isinstance(obj, OpNode):
  472. assert len(obj.outputs) == 1, (
  473. "operator {} must have one output to be converted to VarNode; "
  474. "got {} actually".format(obj, len(obj.outputs))
  475. )
  476. ret = obj.outputs[0]
  477. assert type(ret) is VarNode
  478. return ret
  479. assert isinstance(
  480. obj, collections.Iterable
  481. ), "{} is not compatible with VarNode".format(obj)
  482. val = list(obj)
  483. assert (
  484. len(val) == 1
  485. ), "can not convert sequence of length {} to VarNode ({})".format(
  486. len(val), (lambda s: s if len(s) < 50 else s[:50] + " ...")(str(val))
  487. )
  488. return as_varnode(val[0])
  489. def as_oprnode(obj):
  490. """convert a :class:`.OpNode` compatible object to
  491. :class:`.OpNode`; it works like :func:`as_varnode`."""
  492. if type(obj) is VarNode:
  493. return obj.owner
  494. if isinstance(obj, OpNode):
  495. return obj
  496. assert isinstance(
  497. obj, collections.Iterable
  498. ), "{} is not compatible with OpNode".format(obj)
  499. val = list(obj)
  500. assert (
  501. len(val) == 1
  502. ), "can not convert sequence of length {} to " "OpNode({})".format(len(val), val)
  503. return as_oprnode(val[0])
  504. class NodeFilter:
  505. """Filter on node iterator. This class is an iterator of
  506. :class:`.NetworkNode` objects and multiple filtering conditions and
  507. mappers can be chained.
  508. Example::
  509. # find all :class:`.ImmutableTensor` nodes
  510. for i in NodeFilter(node_iter).param_provider():
  511. print(i)
  512. # find all :class:`.ImmutableTensor` nodes that end with ':W'
  513. for i in NodeFilter(node_iter).param_provider().name('*:W'):
  514. print(i)
  515. # number of inputs
  516. nr_input = NodeFilter(node_iter).data_provider().as_count()
  517. """
  518. _iter = None
  519. def __init__(self, node_iter):
  520. """
  521. :param node_iter: iterator to :class:`.NetworkNode`, or a
  522. :class:`.VarNode`-compatible object; in the later case, its
  523. dependent oprs would be used
  524. """
  525. if isinstance(node_iter, VarNode):
  526. oprs = get_oprs_seq(node_iter, False, False)
  527. node_iter = itertools.islice(oprs, len(oprs) - 1)
  528. if isinstance(node_iter, OpNode):
  529. oprs = get_oprs_seq(node_iter.inputs, False, False)
  530. node_iter = itertools.islice(oprs, len(oprs) - 1)
  531. assert isinstance(node_iter, collections.Iterable)
  532. if (not isinstance(node_iter, NodeFilter)) and type(
  533. self
  534. ) is not NodeFilterCheckType:
  535. node_iter = NodeFilterCheckType(node_iter, NetworkNode)
  536. self._iter = node_iter
  537. @classmethod
  538. def make_all_deps(cls, *dest_vars):
  539. """make a :class:`NodeFilter` that contains all deps of given vars"""
  540. return cls(list(get_oprs_seq(dest_vars, False, False)))
  541. def __iter__(self):
  542. """to be overwritten by subclass to implement filters"""
  543. return iter(self._iter)
  544. def type(self, node_type):
  545. """filter by specific node type
  546. :param node_type: node type class
  547. :return: a new :class:`NodeFilter` object
  548. """
  549. return NodeFilterType(self, node_type)
  550. def check_type(self, node_type):
  551. """assert that all oprs produced by this iterator are instances of
  552. certain type
  553. :param node_type: node type class
  554. :return: a new :class:`NodeFilter` object
  555. :raises TypeError: if type check failed
  556. """
  557. return NodeFilterCheckType(self, node_type)
  558. def not_type(self, node_type):
  559. """remove oprs of specific type
  560. :param node_type: node type class
  561. :return: a new :class:`NodeFilter` object
  562. """
  563. return NodeFilterNotType(self, node_type)
  564. def param_provider(self):
  565. """get :class:`.ParamProvider` oprs; shorthand for
  566. ``.type(ParamProvider)``"""
  567. return self.type(ImmutableTensor)
  568. def data_provider(self):
  569. """get :class:`.DataProvider` oprs; shorthand for
  570. ``.type(DataProvider)``"""
  571. return self.type(Host2DeviceCopy)
  572. def name(self, pattern, ignorecase=True):
  573. """filter by node name
  574. :param pattern: a string in glob syntax that can contain ``?`` and
  575. ``*`` to match a single or arbitrary characters.
  576. :type pattern: :class:`str`
  577. :param ignorecase: whether to ignroe case
  578. :type ignorecase: bool
  579. :return: a new :class:`NodeFilter` object
  580. """
  581. return NodeFilterName(self, pattern, ignorecase)
  582. def has_input(self, var):
  583. """an opr is kept if it has given var as one of its inputs
  584. :param var: var node to checked
  585. :return: a new :class:`NodeFilter` object
  586. """
  587. return NodeFilterHasInput(self, var)
  588. def as_list(self):
  589. """consume this iterator and return its content as a list
  590. :rtype: [:class:`.GraphNodeBase`]
  591. """
  592. return list(self)
  593. def as_unique(self):
  594. """assert that this iterator yields only one node and return it
  595. :return: the unique node
  596. :rtype: :class:`.GraphNodeBase`
  597. :raises ValueError: if this iterator does not yield a unique node
  598. """
  599. (opr,) = self
  600. return opr
  601. def as_dict(self):
  602. """construct an ordered dict to map from node names to objects in
  603. this iterator
  604. :rtype: :class:`OrderedDict`
  605. """
  606. return collections.OrderedDict((i.name, i) for i in self)
  607. def as_count(self):
  608. """consume this iterator and get the number of elements
  609. :rtype: int
  610. """
  611. return sum(1 for _ in self)
  612. class NodeFilterType(NodeFilter):
  613. """see :meth:`NodeFilter.type`"""
  614. _node_type = None
  615. def __init__(self, node_iter, node_type):
  616. assert issubclass(node_type, NetworkNode), "bad opr type: {}".format(node_type)
  617. super().__init__(node_iter)
  618. self._node_type = node_type
  619. def __iter__(self):
  620. for i in self._iter:
  621. if isinstance(i, self._node_type):
  622. yield i
  623. class NodeFilterNotType(NodeFilterType):
  624. """see :meth:`NodeFilter.not_type`"""
  625. def __iter__(self):
  626. for i in self._iter:
  627. if not isinstance(i, self._node_type):
  628. yield i
  629. class NodeFilterCheckType(NodeFilterType):
  630. """see :meth:`NodeFilter.check_type`"""
  631. def __iter__(self):
  632. for i in self._iter:
  633. if not isinstance(i, self._node_type):
  634. raise TypeError(
  635. "all nodes should be {}; got {!r}".format(self._node_type, i)
  636. )
  637. yield i
  638. class NodeFilterHasInput(NodeFilter):
  639. """see :meth:`NodeFilter.has_input`"""
  640. _var = None
  641. def __init__(self, node_iter, var):
  642. var = as_varnode(var)
  643. super().__init__(node_iter)
  644. self.var = var
  645. def __iter__(self):
  646. for i in self._iter:
  647. assert isinstance(
  648. i, OpNode
  649. ), "has_input() must be used with OpNode; " "got {!r}".format(i)
  650. if any(self.var is _ for _ in i.inputs):
  651. yield i
  652. class NodeFilterName(NodeFilter):
  653. """see :meth:`NodeFilter.name`"""
  654. _re = None
  655. def __init__(self, node_iter, pattern, ignorecase):
  656. super().__init__(node_iter)
  657. self.pattern = pattern
  658. self._re = self.make_re(pattern, ignorecase)
  659. @classmethod
  660. def make_re(cls, pattern, ignorecase=True):
  661. assert isinstance(pattern, str), "bad pattern: {!r}".format(pattern)
  662. assert isinstance(ignorecase, bool)
  663. flags = 0
  664. if ignorecase:
  665. flags |= re.IGNORECASE
  666. return re.compile(fnmatch.translate(pattern), flags=flags)
  667. def __iter__(self):
  668. for i in self._iter:
  669. if self.pattern == i.name or self._re.match(i.name):
  670. yield i

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台