You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

convolution.cpp 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755
  1. /**
  2. * \file dnn/test/common/convolution.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #include "test/common/convolution.h"
  13. #include "src/common/algo_base.h"
  14. #include "test/common/checker.h"
  15. #include <sstream>
  16. #include <unordered_set>
  17. using namespace megdnn;
  18. using namespace test;
  19. using namespace convolution;
  20. std::vector<TestArg> convolution::get_1x1_args() {
  21. std::vector<TestArg> args;
  22. param::Convolution param;
  23. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  24. // clang-format off
  25. for (size_t batch_size: {1, 8})
  26. for (size_t ic: {1, 16})
  27. for (size_t oc: {1, 16})
  28. for (size_t ih : {8, 32}) {
  29. size_t iw = ih;
  30. args.emplace_back(param, TensorShape{batch_size, ic, ih, iw},
  31. TensorShape{oc, ic, 1, 1});
  32. }
  33. // clang-format on
  34. return args;
  35. }
  36. std::vector<TestArg> convolution::get_args_common() {
  37. std::vector<TestArg> args;
  38. for (size_t i = 16; i < 24; ++i) {
  39. param::Convolution param;
  40. param.mode = param::Convolution::Mode::CONVOLUTION;
  41. args.emplace_back(param, TensorShape{5, 2, i, i + 1}, TensorShape{3, 2, 3, 4});
  42. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  43. args.emplace_back(param, TensorShape{5, 2, i, i + 1}, TensorShape{3, 2, 3, 4});
  44. }
  45. return args;
  46. }
  47. std::vector<TestArg> convolution::get_args_padding() {
  48. std::vector<TestArg> args;
  49. for (size_t i = 16; i < 24; ++i) {
  50. param::Convolution param;
  51. param.pad_h = 1;
  52. param.pad_w = 2;
  53. param.mode = param::Convolution::Mode::CONVOLUTION;
  54. args.emplace_back(param, TensorShape{5, 2, i, i + 1}, TensorShape{3, 2, 3, 4});
  55. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  56. args.emplace_back(param, TensorShape{5, 2, i, i + 1}, TensorShape{3, 2, 3, 4});
  57. }
  58. return args;
  59. }
  60. std::vector<TestArg> convolution::get_args_large_channel() {
  61. std::vector<TestArg> args;
  62. for (size_t i = 16; i < 24; ++i) {
  63. param::Convolution param;
  64. param.mode = param::Convolution::Mode::CONVOLUTION;
  65. args.emplace_back(
  66. param, TensorShape{2, 20, i, i + 1}, TensorShape{30, 20, 3, 4});
  67. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  68. args.emplace_back(
  69. param, TensorShape{2, 20, i, i + 1}, TensorShape{30, 20, 3, 4});
  70. }
  71. for (size_t i = 16; i < 24; ++i) {
  72. param::Convolution param;
  73. param.pad_h = 1;
  74. param.pad_w = 2;
  75. param.mode = param::Convolution::Mode::CONVOLUTION;
  76. args.emplace_back(
  77. param, TensorShape{2, 20, i, i + 1}, TensorShape{30, 20, 3, 4});
  78. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  79. args.emplace_back(
  80. param, TensorShape{2, 20, i, i + 1}, TensorShape{30, 20, 3, 4});
  81. }
  82. return args;
  83. }
  84. std::vector<TestArg> convolution::get_args_1x1() {
  85. std::vector<TestArg> args;
  86. for (size_t i = 16; i < 24; ++i) {
  87. param::Convolution param;
  88. param.mode = param::Convolution::Mode::CONVOLUTION;
  89. args.emplace_back(
  90. param, TensorShape{2, 20, i, i + 1}, TensorShape{30, 20, 1, 1});
  91. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  92. args.emplace_back(
  93. param, TensorShape{2, 20, i, i + 1}, TensorShape{30, 20, 1, 1});
  94. }
  95. return args;
  96. }
  97. std::vector<TestArg> convolution::get_args_large_filter() {
  98. std::vector<TestArg> args;
  99. for (size_t i = 16; i < 24; ++i) {
  100. param::Convolution param;
  101. param.mode = param::Convolution::Mode::CONVOLUTION;
  102. args.emplace_back(param, TensorShape{2, 2, i, i + 1}, TensorShape{3, 2, 7, 8});
  103. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  104. args.emplace_back(param, TensorShape{2, 2, i, i + 1}, TensorShape{3, 2, 7, 8});
  105. }
  106. return args;
  107. }
  108. std::vector<TestArg> convolution::get_args_exhaustive_search() {
  109. std::vector<TestArg> args;
  110. // clang-format off
  111. for (size_t n: {1, 2})
  112. for (size_t ih: {11, 13})
  113. for (size_t iw: {ih+1})
  114. for (size_t ic: {3})
  115. for (size_t oc: {4})
  116. for (size_t fh: {3, 6})
  117. for (size_t fw: {fh+1})
  118. for (size_t ph: {0, 1})
  119. for (size_t sh: {1, 2})
  120. for (bool xcorr : {false, true}) {
  121. param::Convolution param;
  122. param.mode = xcorr ? param::Convolution::Mode::CROSS_CORRELATION
  123. : param::Convolution::Mode::CONVOLUTION;
  124. param.stride_h = param.stride_w = sh;
  125. param.pad_h = param.pad_w = ph;
  126. args.emplace_back(param, TensorShape{n, ic, ih, iw},
  127. TensorShape{oc, ic, fh, fw});
  128. }
  129. // clang-format on
  130. return args;
  131. }
  132. std::vector<TestArg> convolution::get_args_4x4() {
  133. std::vector<TestArg> args;
  134. for (size_t oh = 1; oh < 20; ++oh) {
  135. param::Convolution param;
  136. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  137. args.emplace_back(
  138. param, TensorShape{4, 3, oh + 3, oh + 4}, TensorShape{2, 3, 4, 4});
  139. }
  140. return args;
  141. }
  142. std::vector<TestArg> convolution::get_args_large_channels() {
  143. std::vector<TestArg> args;
  144. // clang-format off
  145. for (size_t n: {2})
  146. for (size_t ih: {13})
  147. for (size_t iw: {ih+1})
  148. for (size_t ic: {32})
  149. for (size_t oc: {32})
  150. for (size_t fh: {3, 6})
  151. for (size_t fw: {fh+1})
  152. for (size_t ph: {0, 1})
  153. for (size_t sh: {1, 2})
  154. for (bool xcorr : {false, true}) {
  155. param::Convolution param;
  156. param.mode = xcorr ? param::Convolution::Mode::CROSS_CORRELATION
  157. : param::Convolution::Mode::CONVOLUTION;
  158. param.stride_h = param.stride_w = sh;
  159. param.pad_h = param.pad_w = ph;
  160. args.emplace_back(param, TensorShape{n, ic, ih, iw},
  161. TensorShape{oc, ic, fh, fw});
  162. }
  163. // clang-format on
  164. return args;
  165. }
  166. std::vector<TestArg> convolution::get_args_x86_direct_case_2() {
  167. std::vector<TestArg> args;
  168. // clang-format off
  169. for (size_t stride: {1, 2})
  170. for (size_t ker_size : {3, 5, 7, 9}) {
  171. param::Convolution param;
  172. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  173. param.stride_h = param.stride_w = stride;
  174. param.pad_h = param.pad_w = ker_size / 2;
  175. args.emplace_back(param, TensorShape{2, 2, 100, 99},
  176. TensorShape{3, 2, ker_size, ker_size});
  177. args.emplace_back(param, TensorShape{2, 2, 100, 99},
  178. TensorShape{1, 2, ker_size, ker_size});
  179. }
  180. // clang-format on
  181. return args;
  182. }
  183. std::vector<TestArg> convolution::get_args_fallback_templated_impl() {
  184. std::vector<TestArg> args;
  185. // clang-format off
  186. for (size_t sh: {1, 2})
  187. for (size_t sw: {1, 2})
  188. for (size_t ph: {0, 1, 2})
  189. for (size_t pw: {0, 1, 2})
  190. for (size_t ker_size: {3, 4, 5, 7})
  191. for (bool xcorr : {false, true}) {
  192. param::Convolution param;
  193. param.mode = xcorr ? param::Convolution::Mode::CROSS_CORRELATION
  194. : param::Convolution::Mode::CONVOLUTION;
  195. param.stride_h = sh;
  196. param.stride_w = sw;
  197. param.pad_h = ph;
  198. param.pad_w = pw;
  199. args.emplace_back(param, TensorShape{2, 2, 50, 55},
  200. TensorShape{3, 2, ker_size, ker_size});
  201. args.emplace_back(param, TensorShape{2, 2, 50, 55},
  202. TensorShape{1, 2, ker_size, ker_size});
  203. }
  204. // clang-format on
  205. return args;
  206. }
  207. std::vector<TestArg> convolution::get_args_fallback_non_templated_impl() {
  208. std::vector<TestArg> args;
  209. // clang-format off
  210. for (size_t sh: {1, 2})
  211. for (size_t sw: {1, 2})
  212. for (size_t ph: {0, 1, 2})
  213. for (size_t pw: {0, 1, 2})
  214. for (size_t ker_size: {3, 4, 5, 7})
  215. for (bool xcorr : {false, true}) {
  216. param::Convolution param;
  217. param.mode = xcorr ? param::Convolution::Mode::CROSS_CORRELATION
  218. : param::Convolution::Mode::CONVOLUTION;
  219. param.stride_h = sh;
  220. param.stride_w = sw;
  221. param.pad_h = ph;
  222. param.pad_w = pw;
  223. args.emplace_back(param, TensorShape{2, 2, 10, 55},
  224. TensorShape{3, 2, ker_size, ker_size + 1});
  225. args.emplace_back(param, TensorShape{2, 2, 10, 55},
  226. TensorShape{1, 2, ker_size, ker_size + 1});
  227. }
  228. // clang-format on
  229. return args;
  230. }
  231. std::vector<TestArg> convolution::get_args_cudnn_5_1_failures() {
  232. std::vector<TestArg> args;
  233. args.emplace_back(
  234. param::Convolution{param::Convolution::Mode::CROSS_CORRELATION, 0, 4, 1, 2},
  235. TensorShape{5, 3, 25, 20}, TensorShape{10, 3, 7, 4});
  236. return args;
  237. }
  238. std::vector<TestArg> convolution::get_args_cudnn_5_1_backward() {
  239. std::vector<TestArg> args;
  240. args.emplace_back(
  241. param::Convolution{param::Convolution::Mode::CROSS_CORRELATION, 2, 2, 2, 2},
  242. TensorShape{2, 8, 18, 18}, TensorShape{8, 8, 2, 2});
  243. return args;
  244. }
  245. std::vector<TestArg> convolution::get_args_x86_winograd_algorithm() {
  246. std::vector<TestArg> args;
  247. for (size_t ic_size : {8, 16}) {
  248. param::Convolution param;
  249. param.mode = param::Convolution::Mode::CROSS_CORRELATION;
  250. param.stride_h = param.stride_w = 1;
  251. param.pad_h = param.pad_w = 0;
  252. args.emplace_back(
  253. param, TensorShape{2, ic_size, 102, 102},
  254. TensorShape{8, ic_size, 3, 3});
  255. }
  256. return args;
  257. }
  258. std::vector<TestArg> convolution::get_args_BRAIN_481() {
  259. std::vector<TestArg> args;
  260. {
  261. param::Convolution param{
  262. param::Convolution::Mode::CROSS_CORRELATION, 0, 1, 1, 2};
  263. args.emplace_back(param, TensorShape{4, 4, 14, 13}, TensorShape{3, 4, 8, 13});
  264. for (size_t margin = 0; margin < 5; ++margin) {
  265. param::Convolution param{
  266. param::Convolution::Mode::CROSS_CORRELATION, 1, 1, 2, 2};
  267. args.emplace_back(
  268. param, TensorShape{4, 4, 14, 13},
  269. TensorShape{3, 4, 16 - margin, 15 - margin});
  270. }
  271. }
  272. return args;
  273. }
  274. std::vector<TestArg> convolution::get_args() {
  275. std::vector<TestArg> all_args, args;
  276. #define ADD_ARGS(NAME) \
  277. args = get_args_##NAME(); \
  278. all_args.insert(all_args.end(), args.begin(), args.end());
  279. ADD_ARGS(common)
  280. ADD_ARGS(padding)
  281. ADD_ARGS(large_channel)
  282. ADD_ARGS(1x1)
  283. ADD_ARGS(large_filter)
  284. ADD_ARGS(exhaustive_search)
  285. ADD_ARGS(4x4)
  286. ADD_ARGS(large_channels)
  287. ADD_ARGS(x86_direct_case_2)
  288. ADD_ARGS(fallback_templated_impl)
  289. ADD_ARGS(fallback_non_templated_impl)
  290. ADD_ARGS(cudnn_5_1_failures)
  291. ADD_ARGS(x86_winograd_algorithm)
  292. ADD_ARGS(BRAIN_481)
  293. #undef ADD_ARGS
  294. return all_args;
  295. }
  296. std::vector<TestArg> convolution::get_args_cuda_conv_bwd_data() {
  297. std::vector<TestArg> all_args, args;
  298. #define ADD_ARGS(NAME) \
  299. args = get_args_##NAME(); \
  300. all_args.insert(all_args.end(), args.begin(), args.end());
  301. ADD_ARGS(common)
  302. ADD_ARGS(padding)
  303. ADD_ARGS(large_channel)
  304. ADD_ARGS(1x1)
  305. ADD_ARGS(large_filter)
  306. ADD_ARGS(exhaustive_search)
  307. ADD_ARGS(4x4)
  308. ADD_ARGS(large_channels)
  309. ADD_ARGS(x86_direct_case_2)
  310. ADD_ARGS(fallback_templated_impl)
  311. ADD_ARGS(fallback_non_templated_impl)
  312. ADD_ARGS(x86_winograd_algorithm)
  313. #undef ADD_ARGS
  314. return all_args;
  315. }
  316. std::vector<TestArg> convolution::get_args_cudnn_7_5_failures() {
  317. std::vector<TestArg> all_args, args;
  318. #define ADD_ARGS(NAME) \
  319. args = get_args_##NAME(); \
  320. all_args.insert(all_args.end(), args.begin(), args.end());
  321. ADD_ARGS(cudnn_5_1_failures)
  322. ADD_ARGS(BRAIN_481)
  323. #undef ADD_ARGS
  324. return all_args;
  325. }
  326. std::vector<TestArg> convolution::get_chanwise_args() {
  327. std::vector<TestArg> args;
  328. // clang-format off
  329. for (size_t n: {2})
  330. for (size_t ih: {13})
  331. for (size_t iw: {ih+1})
  332. for (size_t c: {4, 36, 128, 320})
  333. for (size_t fh: {3, 5})
  334. for (size_t fw: {fh+1})
  335. for (size_t ph: {0, 1})
  336. for (size_t sh: {1, 2})
  337. for (size_t dh : {1, 2}) {
  338. param::Convolution param;
  339. param.sparse = param::Convolution::Sparse::GROUP;
  340. param.stride_h = param.stride_w = sh;
  341. param.pad_h = param.pad_w = ph;
  342. param.dilate_h = param.dilate_w = dh;
  343. args.emplace_back(param, TensorShape{n, c, ih, iw},
  344. TensorShape{c, 1, 1, fh, fw});
  345. }
  346. // clang-format on
  347. return args;
  348. }
  349. std::vector<TestArg> convolution::get_dilated_args() {
  350. std::vector<TestArg> args;
  351. param::Convolution param;
  352. param.pad_h = param.pad_w = 2;
  353. param.dilate_h = param.dilate_w = 2;
  354. size_t n = 1, ic = 15, ih = 128, iw = 128, fh = 3, fw = 3, oc = 17;
  355. args.emplace_back(param, TensorShape{n, ic, ih, iw}, TensorShape{oc, ic, fh, fw});
  356. // exhaustive search
  357. // clang-format off
  358. for (size_t n: {2})
  359. for (size_t ih: {23})
  360. for (size_t iw: {ih+1})
  361. for (size_t ic: {3})
  362. for (size_t oc: {4})
  363. for (size_t fh: {3, 6})
  364. for (size_t fw: {fh+1})
  365. for (size_t ph: {0, 1})
  366. for (size_t sh: {2})
  367. for (size_t dh : {3}) {
  368. param::Convolution param;
  369. param.stride_h = param.stride_w = sh;
  370. param.pad_h = param.pad_w = ph;
  371. param.dilate_h = dh;
  372. param.dilate_w = 3;
  373. args.emplace_back(param, TensorShape{n, ic, ih, iw},
  374. TensorShape{oc, ic, fh, fw});
  375. }
  376. // clang-format on
  377. return args;
  378. }
  379. std::vector<TestArg> convolution::get_args_int8_nchw4_conv_bwd_data() {
  380. std::vector<TestArg> args;
  381. param::Convolution cur_param;
  382. // clang-format off
  383. for (auto mode : {param::Convolution::Mode::CROSS_CORRELATION}) {
  384. for (size_t b : {64, 16}) {
  385. for (size_t ic : {16, 32}) {
  386. for (size_t oc : {16, 32}) {
  387. for (size_t h : {8}) {
  388. for (size_t w : {8, 11}) {
  389. for (size_t kernel_size : {3, 4, 5, 7}) {
  390. for (int p : {0, static_cast<int>(kernel_size / 2)}) {
  391. for (size_t s : {2}) {
  392. if (kernel_size >= 7) {
  393. b = std::min(b, 32_z);
  394. }
  395. size_t f = kernel_size;
  396. cur_param.mode = mode;
  397. cur_param.format = param::Convolution::Format::NCHW4;
  398. cur_param.sparse = param::Convolution::Sparse::DENSE;
  399. cur_param.pad_h = cur_param.pad_w = p;
  400. cur_param.stride_h = cur_param.stride_w = s;
  401. //! bias channel
  402. args.emplace_back(cur_param, TensorShape{b, ic / 4, h, w, 4},
  403. TensorShape{oc, ic / 4, f, f, 4});
  404. } } } } } } } } }
  405. // clang-format on
  406. cur_param.pad_h = cur_param.pad_w = 1;
  407. cur_param.stride_h = cur_param.stride_w = 1;
  408. args.emplace_back(
  409. cur_param, TensorShape{16, 4, 8, 11, 4}, TensorShape{16, 4, 3, 3, 4});
  410. return args;
  411. }
  412. std::vector<TestArg> convolution::get_args_int8_nchw_conv_bwd_data() {
  413. std::vector<TestArg> args;
  414. param::Convolution cur_param;
  415. // clang-format off
  416. for (auto mode : {param::Convolution::Mode::CROSS_CORRELATION}) {
  417. for (size_t b : {64, 16}) {
  418. for (size_t ic : {16, 32}) {
  419. for (size_t oc : {16, 32}) {
  420. for (size_t h : {8}) {
  421. for (size_t w : {8, 11}) {
  422. for (size_t kernel_size : {3, 4, 5, 7}) {
  423. for (int p : {0, static_cast<int>(kernel_size / 2)}) {
  424. for (size_t s : {2}) {
  425. if (kernel_size >= 7) {
  426. b = std::min(b, 32_z);
  427. }
  428. size_t f = kernel_size;
  429. cur_param.mode = mode;
  430. cur_param.format = param::Convolution::Format::NCHW;
  431. cur_param.sparse = param::Convolution::Sparse::DENSE;
  432. cur_param.pad_h = cur_param.pad_w = p;
  433. cur_param.stride_h = cur_param.stride_w = s;
  434. //! bias channel
  435. args.emplace_back(cur_param, TensorShape{b, ic, h, w},
  436. TensorShape{oc, ic, f, f});
  437. } } } } } } } } }
  438. // clang-format on
  439. // test stride = 1
  440. cur_param.pad_h = cur_param.pad_w = 1;
  441. cur_param.stride_h = cur_param.stride_w = 1;
  442. args.emplace_back(cur_param, TensorShape{16, 16, 8, 11}, TensorShape{16, 16, 3, 3});
  443. return args;
  444. }
  445. std::vector<TestArg> convolution::get_args_int8_nhwc_conv_bwd_data() {
  446. std::vector<TestArg> args;
  447. param::Convolution cur_param;
  448. // clang-format off
  449. for (auto mode : {param::Convolution::Mode::CROSS_CORRELATION}) {
  450. for (size_t b : {64, 16}) {
  451. for (size_t ic : {16, 32}) {
  452. for (size_t oc : {16, 32}) {
  453. for (size_t h : {8}) {
  454. for (size_t w : {8, 11}) {
  455. for (size_t kernel_size : {3, 4, 5, 7}) {
  456. for (int p : {0, static_cast<int>(kernel_size / 2)}) {
  457. for (size_t s : {2}) {
  458. if (kernel_size >= 7) {
  459. b = std::min(b, 32_z);
  460. }
  461. size_t f = kernel_size;
  462. cur_param.mode = mode;
  463. cur_param.format = param::Convolution::Format::NHWC;
  464. cur_param.sparse = param::Convolution::Sparse::DENSE;
  465. cur_param.pad_h = cur_param.pad_w = p;
  466. cur_param.stride_h = cur_param.stride_w = s;
  467. //! bias channel
  468. args.emplace_back(cur_param, TensorShape{b, h, w, ic},
  469. TensorShape{oc, f, f, ic});
  470. } } } } } } } } }
  471. // clang-format on
  472. cur_param.pad_h = cur_param.pad_w = 1;
  473. cur_param.stride_h = cur_param.stride_w = 1;
  474. args.emplace_back(cur_param, TensorShape{16, 8, 11, 16}, TensorShape{16, 3, 3, 16});
  475. return args;
  476. }
  477. void convolution::test_conv_config_combinations(
  478. int k_size, Handle* handle, bool test_int8, bool test_backward, bool is_cuda,
  479. ConvEPSGetter eps_getter, bool use_io16xc32) {
  480. Checker<Convolution> checker(handle);
  481. std::unique_ptr<Checker<ConvolutionBackwardData>> checker_bwd_data_ptr;
  482. std::unique_ptr<Checker<ConvolutionBackwardFilter>> checker_bwd_filter_ptr;
  483. if (test_backward) {
  484. checker_bwd_data_ptr.reset(
  485. new std::remove_reference<decltype(*checker_bwd_data_ptr)>::type(
  486. handle));
  487. checker_bwd_filter_ptr.reset(
  488. new std::remove_reference<decltype(*checker_bwd_filter_ptr)>::type(
  489. handle));
  490. }
  491. auto&& checker_bwd_data = *checker_bwd_data_ptr;
  492. auto&& checker_bwd_filter = *checker_bwd_filter_ptr;
  493. #define CONF_BOOL(var) for (int var : {0, 1})
  494. std::unordered_set<Convolution::AlgorithmDesc> used_algos;
  495. std::unordered_set<ConvolutionBackwardData::AlgorithmDesc> used_algos_bwd_data;
  496. std::unordered_set<ConvolutionBackwardFilter::AlgorithmDesc> used_algos_bwd_flt;
  497. using Param = Convolution::Param;
  498. CONF_BOOL(conv)
  499. CONF_BOOL(padding)
  500. CONF_BOOL(stride)
  501. CONF_BOOL(group)
  502. CONF_BOOL(non_square)
  503. CONF_BOOL(dilation)
  504. CONF_BOOL(format)
  505. // dtype: 0: f32; 1: f16; 2: i8x8x16 3: i8x8x32
  506. for (int dtype = 0; dtype < (test_int8 ? 4 : 2); ++dtype)
  507. for (int ksize : {1, k_size}) {
  508. // When is_cuda is on, test cases where format is NHWC and
  509. // data type is not INT8x8x32 are disabled.
  510. if (is_cuda) {
  511. if (format && dtype != 3)
  512. continue;
  513. }
  514. auto config2str = [&]() -> std::string {
  515. std::ostringstream ostr;
  516. ostr << conv << padding << stride << group << non_square << dilation
  517. << format << dtype << ksize;
  518. return ostr.str();
  519. };
  520. auto errmsg = [&](const char* name) {
  521. std::string ret;
  522. ret += "checker failed for algorithm ";
  523. ret += name;
  524. ret += " with conv,padding,stride,group,non_square,dilation,format,"
  525. "dtype,ksize=";
  526. ret += config2str();
  527. return ret;
  528. };
  529. MEGDNN_MARK_USED_VAR(errmsg);
  530. Param param;
  531. param.mode =
  532. conv ? Param::Mode::CONVOLUTION : Param::Mode::CROSS_CORRELATION;
  533. param.format = format ? Param::Format::NHWC : Param::Format::NCHW;
  534. if (dtype == 1 && use_io16xc32) {
  535. param.compute_mode = Param::ComputeMode::FLOAT32;
  536. }
  537. size_t IC = 6, OC = 9, G = 3, FH = ksize, FW = ksize;
  538. TensorShape ishp = TensorShape{2, 18, 18, IC}, fshp;
  539. if (format) {
  540. ishp.shape[0] = 2;
  541. ishp.shape[1] = 18;
  542. ishp.shape[2] = 18;
  543. ishp.shape[3] = IC;
  544. } else {
  545. ishp.shape[0] = 2;
  546. ishp.shape[1] = IC;
  547. ishp.shape[2] = 18;
  548. ishp.shape[3] = 18;
  549. }
  550. if (padding) {
  551. param.pad_h = 2 + non_square;
  552. param.pad_w = 2 - non_square;
  553. }
  554. if (non_square) {
  555. if (FH > 2)
  556. FH -= 2;
  557. FW += 1;
  558. ++ishp[format ? 2 : 3];
  559. }
  560. if (group) {
  561. fshp = format ? TensorShape{G, OC / G, FH, FW, IC / G}
  562. : TensorShape{G, OC / G, IC / G, FH, FW};
  563. param.sparse = Param::Sparse::GROUP;
  564. } else {
  565. fshp = format ? TensorShape{OC, FH, FW, IC}
  566. : TensorShape{OC, IC, FH, FW};
  567. }
  568. if (dilation) {
  569. param.dilate_h = 2 - non_square;
  570. param.dilate_w = 2 + non_square;
  571. }
  572. if (stride) {
  573. param.stride_h = 2 + non_square;
  574. param.stride_w = 2 - non_square;
  575. }
  576. DType inp_type, out_type;
  577. if (dtype == 2) {
  578. inp_type = dtype::Int8();
  579. out_type = dtype::Int16();
  580. } else if (dtype == 3) {
  581. inp_type = dtype::Int8();
  582. out_type = dtype::Int32();
  583. } else {
  584. if (!dtype)
  585. inp_type = dtype::Float32();
  586. else
  587. inp_type = dtype::Float16();
  588. out_type = inp_type;
  589. }
  590. checker.set_dtype(0, inp_type)
  591. .set_dtype(1, inp_type)
  592. .set_dtype(2, out_type)
  593. .set_param(param);
  594. auto opr = checker.opr();
  595. opr->param() = param;
  596. std::string param_str;
  597. Algorithm::serialize_write_pod(opr->param(), param_str);
  598. TensorLayout ily{ishp, inp_type}, fly{fshp, inp_type}, oly;
  599. oly.dtype = out_type;
  600. opr->deduce_layout(ily, fly, oly);
  601. int channel_start = 1;
  602. if (format)
  603. channel_start = 3;
  604. float scale = 1.0f / sqrt(fshp[channel_start] * FH * FW);
  605. UniformFloatRNG rng(scale, 2 * scale);
  606. checker.set_rng(0, &rng).set_rng(1, &rng);
  607. for (auto algo : opr->get_all_algorithms_info_safe(ily, fly, oly)) {
  608. used_algos.insert(algo.desc);
  609. opr->execution_policy().algo = algo.desc;
  610. construct_sub_execution_policy_heuristic<ConvolutionForward>(
  611. opr->execution_policy(), {ily, fly, oly}, param_str,
  612. opr->handle());
  613. checker.set_epsilon(eps_getter(dtype == 1, 0, algo.desc.name.c_str()))
  614. .execs({ishp, fshp, {}});
  615. opr->execution_policy() = {};
  616. ASSERT_TRUE(checker.prev_succ()) << errmsg(algo.desc.name.c_str());
  617. }
  618. if (test_backward) {
  619. // backward data
  620. checker_bwd_data.set_dtype(0, inp_type)
  621. .set_dtype(1, out_type)
  622. .set_dtype(2, inp_type)
  623. .set_param(param);
  624. auto opr = checker_bwd_data.opr();
  625. opr->param() = param;
  626. std::string param_str;
  627. Algorithm::serialize_write_pod(opr->param(), param_str);
  628. for (auto algo : opr->get_all_algorithms_info_safe(fly, oly, ily)) {
  629. used_algos_bwd_data.insert(algo.desc);
  630. opr->execution_policy().algo = algo.desc;
  631. construct_sub_execution_policy_heuristic<ConvolutionBackwardData>(
  632. opr->execution_policy(), {fly, oly, ily}, param_str,
  633. opr->handle());
  634. checker_bwd_data
  635. .set_epsilon(
  636. eps_getter(dtype == 1, 1, algo.desc.name.c_str()))
  637. .execl({fly, oly, ily});
  638. opr->execution_policy() = {};
  639. ASSERT_TRUE(checker_bwd_data.prev_succ())
  640. << errmsg(algo.desc.name.c_str());
  641. }
  642. }
  643. if (test_backward) {
  644. // backward filter
  645. checker_bwd_filter.set_dtype(0, inp_type)
  646. .set_dtype(1, out_type)
  647. .set_dtype(2, inp_type)
  648. .set_param(param);
  649. auto opr = checker_bwd_filter.opr();
  650. opr->param() = param;
  651. std::string param_str;
  652. Algorithm::serialize_write_pod(opr->param(), param_str);
  653. for (auto algo : opr->get_all_algorithms_info_safe(ily, oly, fly)) {
  654. used_algos_bwd_flt.insert(algo.desc);
  655. opr->execution_policy().algo = algo.desc;
  656. construct_sub_execution_policy_heuristic<ConvolutionBackwardFilter>(
  657. opr->execution_policy(), {ily, oly, fly}, param_str,
  658. opr->handle());
  659. checker_bwd_filter
  660. .set_epsilon(
  661. eps_getter(dtype == 1, 2, algo.desc.name.c_str()))
  662. .execl({ily, oly, fly});
  663. opr->execution_policy() = {};
  664. ASSERT_TRUE(checker_bwd_filter.prev_succ())
  665. << errmsg(algo.desc.name.c_str());
  666. }
  667. }
  668. }
  669. }
  670. // vim: syntax=cpp.doxygen