You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cutlass_matmul.cpp 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475
  1. /**
  2. * \file dnn/test/cuda/cutlass_matmul.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #include <cuda.h>
  13. #include "megdnn/oprs/linalg.h"
  14. #include "src/common/utils.h"
  15. #include "test/common/checker.h"
  16. #include "test/common/matrix_mul.h"
  17. #include "test/common/tensor.h"
  18. #include "test/common/workspace_wrapper.h"
  19. #include "test/cuda/benchmark.h"
  20. #include "test/cuda/fixture.h"
  21. #include "test/cuda/utils.h"
  22. #define MEGDNN_WITH_BENCHMARK 1
  23. #if CUDA_VERSION >= 9020
  24. namespace megdnn {
  25. namespace test {
  26. namespace {
  27. void test_multibatchsize(
  28. Handle* handle_cuda, DType A_dtype, DType B_dtype, DType C_dtype,
  29. const char* algo, const std::vector<matrix_mul::TestArg>& args,
  30. param::MatrixMul::Format format = param::MatrixMul::Format::DEFAULT,
  31. const std::function<bool(const matrix_mul::TestArg&)>& filter = {}) {
  32. Checker<MatrixMulForward> checker(handle_cuda, false);
  33. if (algo) {
  34. checker.set_before_exec_callback(AlgoChecker<MatrixMulForward>(algo));
  35. }
  36. std::unique_ptr<RNG> rng;
  37. if (A_dtype.enumv() == DTypeEnum::Float32) {
  38. rng = std::make_unique<UniformFloatRNG>(-1, 1);
  39. megdnn_assert(B_dtype.enumv() == DTypeEnum::Float32 &&
  40. C_dtype.enumv() == DTypeEnum::Float32);
  41. }
  42. megdnn_assert(rng != nullptr);
  43. struct Compare {
  44. bool is_same(dt_float32 expected, dt_float32 actual) const {
  45. return expected == actual;
  46. }
  47. };
  48. // copy rhs->lhs, lhs is 8 times of rhs
  49. auto copy = [](SyncedTensor<dt_float32, Compare>& lhs,
  50. SyncedTensor<dt_float32, Compare>& rhs) {
  51. size_t chunk = rhs.layout().span().dist_byte();
  52. size_t tot = lhs.layout().span().dist_byte();
  53. megdnn_assert(tot % chunk == 0);
  54. char* pointer_lhs = reinterpret_cast<char*>(lhs.ptr_mutable_host());
  55. const char* pointer_rhs = reinterpret_cast<const char*>(rhs.ptr_host());
  56. for (size_t i = 0; i < tot; i += chunk) {
  57. std::memcpy(pointer_lhs + i, pointer_rhs, chunk);
  58. }
  59. };
  60. using Param = param::MatrixMul;
  61. megdnn_assert(format == Param::Format::DEFAULT);
  62. for (auto&& arg : args) {
  63. megdnn_assert(arg.mask == 0x0);
  64. // make m, n, k big enough
  65. size_t m = arg.m, n = (arg.n << 3), k = (arg.k << 3);
  66. size_t m_prime = (m << 3);
  67. if (filter && filter(arg))
  68. continue;
  69. TensorShape A{m, k}, B{k, n}, C{m, n};
  70. TensorShape A_prime{m_prime, k}, C_prime{m_prime, n};
  71. SyncedTensor<dt_float32, Compare> A_tensor{handle_cuda, {A, A_dtype}},
  72. B_tensor{handle_cuda, {B, B_dtype}},
  73. C_tensor{handle_cuda, {C, C_dtype}},
  74. A_tensor_prime{handle_cuda, {A_prime, A_dtype}},
  75. C_tensor_prime{handle_cuda, {C_prime, C_dtype}},
  76. C_tensor_batch{handle_cuda, {C_prime, C_dtype}};
  77. rng->gen(A_tensor.tensornd_host());
  78. rng->gen(B_tensor.tensornd_host());
  79. copy(A_tensor_prime, A_tensor);
  80. auto opr_reference = handle_cuda->create_operator<MatrixMulForward>();
  81. {
  82. opr_reference->execution_policy().algo.reset();
  83. for (auto i : opr_reference->get_all_algorithms_info(
  84. A_tensor.layout(), B_tensor.layout(),
  85. C_tensor.layout())) {
  86. if (std::regex_match(
  87. i.desc.name.c_str(),
  88. std::regex("(" + std::string(algo) + ")(.*)"))) {
  89. opr_reference->execution_policy().algo = i.desc;
  90. break;
  91. }
  92. }
  93. megdnn_assert(opr_reference->execution_policy().algo.valid());
  94. size_t ws_size = opr_reference->get_workspace_in_bytes(
  95. A_tensor.layout(), B_tensor.layout(), C_tensor.layout());
  96. WorkspaceWrapper ws_reference(handle_cuda, ws_size);
  97. opr_reference->exec(
  98. A_tensor.tensornd_dev(), B_tensor.tensornd_dev(),
  99. C_tensor.tensornd_dev(), ws_reference.workspace());
  100. }
  101. copy(C_tensor_prime, C_tensor);
  102. checker.set_dtype(0, A_dtype)
  103. .set_dtype(1, B_dtype)
  104. .set_dtype(2, C_dtype)
  105. .set_epsilon(1e-6)
  106. .exect({A_tensor_prime.tensornd_host(),
  107. B_tensor.tensornd_host(),
  108. {}},
  109. {{}, {}, C_tensor_prime.tensornd_host()});
  110. {
  111. opr_reference->execution_policy().algo.reset();
  112. for (auto i : opr_reference->get_all_algorithms_info(
  113. A_tensor_prime.layout(), B_tensor.layout(),
  114. C_tensor_batch.layout())) {
  115. if (std::regex_match(
  116. i.desc.name.c_str(),
  117. std::regex("(" + std::string(algo) + ")(.*)"))) {
  118. opr_reference->execution_policy().algo = i.desc;
  119. break;
  120. }
  121. }
  122. megdnn_assert(opr_reference->execution_policy().algo.valid());
  123. size_t ws_size = opr_reference->get_workspace_in_bytes(
  124. A_tensor_prime.layout(), B_tensor.layout(),
  125. C_tensor_batch.layout());
  126. WorkspaceWrapper ws_reference(handle_cuda, ws_size);
  127. opr_reference->exec(
  128. A_tensor_prime.tensornd_dev(), B_tensor.tensornd_dev(),
  129. C_tensor_batch.tensornd_dev(), ws_reference.workspace());
  130. }
  131. C_tensor_batch.check_with(C_tensor_prime);
  132. }
  133. }
  134. #if MEGDNN_WITH_BENCHMARK
  135. struct BenchArgs {
  136. size_t m, n, k, mask = 0x0;
  137. };
  138. std::vector<BenchArgs> get_square_matmul_args() {
  139. std::vector<BenchArgs> args;
  140. args.emplace_back(BenchArgs{128, 128, 128});
  141. args.emplace_back(BenchArgs{256, 256, 256});
  142. args.emplace_back(BenchArgs{512, 512, 512});
  143. args.emplace_back(BenchArgs{1024, 1024, 1024});
  144. args.emplace_back(BenchArgs{2048, 2048, 2048});
  145. args.emplace_back(BenchArgs{4096, 4096, 4096});
  146. return args;
  147. }
  148. std::vector<BenchArgs> get_feat_model_args() {
  149. std::vector<BenchArgs> args;
  150. args.emplace_back(BenchArgs{2, 4096, 4096});
  151. args.emplace_back(BenchArgs{2, 1024, 6912});
  152. args.emplace_back(BenchArgs{2, 3456, 3456});
  153. args.emplace_back(BenchArgs{2, 2304, 2304});
  154. args.emplace_back(BenchArgs{1, 256, 8192});
  155. args.emplace_back(BenchArgs{2, 864, 864});
  156. args.emplace_back(BenchArgs{2, 9, 64});
  157. args.emplace_back(BenchArgs{4, 4096, 4096});
  158. args.emplace_back(BenchArgs{4, 1024, 6912});
  159. args.emplace_back(BenchArgs{4, 3456, 3456});
  160. args.emplace_back(BenchArgs{4, 2304, 2304});
  161. args.emplace_back(BenchArgs{2, 256, 8192});
  162. args.emplace_back(BenchArgs{4, 864, 864});
  163. args.emplace_back(BenchArgs{4, 9, 64});
  164. args.emplace_back(BenchArgs{8, 4096, 4096});
  165. args.emplace_back(BenchArgs{8, 1024, 6912});
  166. args.emplace_back(BenchArgs{8, 3456, 3456});
  167. args.emplace_back(BenchArgs{8, 2304, 2304});
  168. args.emplace_back(BenchArgs{4, 256, 8192});
  169. args.emplace_back(BenchArgs{8, 864, 864});
  170. args.emplace_back(BenchArgs{4, 9, 64});
  171. args.emplace_back(BenchArgs{16, 4096, 4096});
  172. args.emplace_back(BenchArgs{16, 1024, 6912});
  173. args.emplace_back(BenchArgs{16, 3456, 3456});
  174. args.emplace_back(BenchArgs{16, 2304, 2304});
  175. args.emplace_back(BenchArgs{8, 256, 8192});
  176. args.emplace_back(BenchArgs{16, 864, 864});
  177. args.emplace_back(BenchArgs{8, 9, 64});
  178. args.emplace_back(BenchArgs{32, 4096, 4096});
  179. args.emplace_back(BenchArgs{32, 1024, 6912});
  180. args.emplace_back(BenchArgs{32, 3456, 3456});
  181. args.emplace_back(BenchArgs{32, 2304, 2304});
  182. args.emplace_back(BenchArgs{16, 256, 8192});
  183. args.emplace_back(BenchArgs{32, 864, 864});
  184. args.emplace_back(BenchArgs{32, 9, 64});
  185. args.emplace_back(BenchArgs{64, 4096, 4096});
  186. args.emplace_back(BenchArgs{64, 1024, 6912});
  187. args.emplace_back(BenchArgs{64, 3456, 3456});
  188. args.emplace_back(BenchArgs{64, 2304, 2304});
  189. args.emplace_back(BenchArgs{32, 256, 8192});
  190. args.emplace_back(BenchArgs{64, 864, 864});
  191. args.emplace_back(BenchArgs{64, 9, 64});
  192. args.emplace_back(BenchArgs{128, 4096, 4096});
  193. args.emplace_back(BenchArgs{128, 1024, 6912});
  194. args.emplace_back(BenchArgs{128, 3456, 3456});
  195. args.emplace_back(BenchArgs{128, 2304, 2304});
  196. args.emplace_back(BenchArgs{64, 256, 8192});
  197. args.emplace_back(BenchArgs{128, 864, 864});
  198. args.emplace_back(BenchArgs{128, 9, 64});
  199. return args;
  200. }
  201. std::vector<BenchArgs> get_f16_feat_model_args() {
  202. std::vector<BenchArgs> args;
  203. args.emplace_back(BenchArgs{128, 9216, 9216});
  204. args.emplace_back(BenchArgs{128, 6400, 6400});
  205. args.emplace_back(BenchArgs{128, 5184, 5184});
  206. return args;
  207. }
  208. void benchmark_matrix_mul(
  209. Handle* handle, const std::vector<BenchArgs>& args, DType A_dtype,
  210. DType B_dtype, DType C_dtype, const char* algo = nullptr,
  211. param::MatrixMul::Format format = param::MatrixMul::Format::DEFAULT) {
  212. megdnn_assert(A_dtype.enumv() == B_dtype.enumv());
  213. CUBenchmarker<MatrixMulForward> benchmarker(handle);
  214. CUBenchmarker<MatrixMulForward> benchmarker_cublas(handle);
  215. size_t RUNS = 1000;
  216. benchmarker.set_display(false).set_times(RUNS);
  217. benchmarker_cublas.set_display(false).set_times(RUNS);
  218. benchmarker_cublas.set_before_exec_callback(
  219. AlgoChecker<MatrixMulForward>("CUBLAS"));
  220. benchmarker.set_dtype(0, A_dtype)
  221. .set_dtype(1, B_dtype)
  222. .set_dtype(2, C_dtype);
  223. benchmarker_cublas.set_dtype(0, A_dtype)
  224. .set_dtype(1, B_dtype)
  225. .set_dtype(2, C_dtype);
  226. using Param = MatrixMul::Param;
  227. for (auto&& arg : args) {
  228. size_t m = arg.m, n = arg.n, k = arg.k;
  229. Param param;
  230. param.transposeA = arg.mask & 0x1;
  231. param.transposeB = arg.mask & 0x2;
  232. param.format = format;
  233. size_t A0 = m, A1 = k, B0 = k, B1 = n;
  234. if (param.transposeA) {
  235. std::swap(A0, A1);
  236. }
  237. if (param.transposeB) {
  238. std::swap(B0, B1);
  239. }
  240. benchmarker.set_param(param);
  241. TensorShape A{A0, A1}, B{B0, B1}, C{m, n};
  242. float time_in_ms = 0.f;
  243. if (algo) {
  244. time_in_ms =
  245. algo_benchmark<MatrixMulForward, OprProxy<MatrixMulForward>,
  246. CUTimer>(benchmarker, {A, B, C}, algo) /
  247. RUNS;
  248. } else {
  249. time_in_ms = benchmarker.execs({A, B, C}) / RUNS;
  250. }
  251. benchmarker_cublas.set_param(param);
  252. auto time_in_ms_cublas = benchmarker_cublas.execs({A, B, C}) / RUNS;
  253. float flo = 2.0 * m * n * k / (1e12);
  254. printf("A=%s, B=%s, C=%s, time(algo=%s)=%.2f %.2fTops, "
  255. "time(cublas)=%.2f %.2fTops, "
  256. "perf(algo=%s)/perf(cublas)=%.2f\n",
  257. A.to_string().c_str(), B.to_string().c_str(),
  258. C.to_string().c_str(), algo, time_in_ms,
  259. (flo / (time_in_ms * 1e-3)), time_in_ms_cublas,
  260. (flo / (time_in_ms_cublas * 1e-3)), algo,
  261. time_in_ms_cublas / time_in_ms);
  262. }
  263. }
  264. #endif
  265. } // namespace
  266. TEST_F(CUDA, CUTLASS_GEMM_MULTI_BATCHSIZE) {
  267. auto args = matrix_mul::get_matmul_args_no_mask();
  268. test_multibatchsize(handle_cuda(), dtype::Float32(), dtype::Float32(),
  269. dtype::Float32(),
  270. "CUTLASS_FLOAT32_SIMT_128X128X8_32X64X8", args,
  271. param::MatrixMul::Format::DEFAULT);
  272. }
  273. TEST_F(CUDA, CUTLASS_GEMM_SPLIT_K_MULTI_BATCHSIZE) {
  274. auto args = matrix_mul::get_matmul_args_no_mask();
  275. test_multibatchsize(
  276. handle_cuda(), dtype::Float32(), dtype::Float32(), dtype::Float32(),
  277. "CUTLASS_FLOAT32_SIMT_SPLIT_K_128X128X8_32X64X8", args,
  278. param::MatrixMul::Format::DEFAULT,
  279. [](const matrix_mul::TestArg& arg) { return arg.k <= arg.n; });
  280. }
  281. TEST_F(CUDA, CUTLASS_GEMV_BATCHED_STRIDED_128_MULTI_BATCHSIZE) {
  282. auto args = matrix_mul::get_matmul_args_no_mask();
  283. test_multibatchsize(handle_cuda(), dtype::Float32(), dtype::Float32(),
  284. dtype::Float32(),
  285. "CUTLASS_FLOAT32_SIMT_GEMV_BATCHED_STRIDED_128", args,
  286. param::MatrixMul::Format::DEFAULT);
  287. }
  288. TEST_F(CUDA, CUTLASS_GEMV_BATCHED_STRIDED_64_MULTI_BATCHSIZE) {
  289. auto args = matrix_mul::get_matmul_args_no_mask();
  290. test_multibatchsize(handle_cuda(), dtype::Float32(), dtype::Float32(),
  291. dtype::Float32(),
  292. "CUTLASS_FLOAT32_SIMT_GEMV_BATCHED_STRIDED_64", args,
  293. param::MatrixMul::Format::DEFAULT);
  294. }
  295. TEST_F(CUDA, CUTLASS_GEMV_BATCHED_STRIDED_32_MULTI_BATCHSIZE) {
  296. auto args = matrix_mul::get_matmul_args_no_mask();
  297. test_multibatchsize(handle_cuda(), dtype::Float32(), dtype::Float32(),
  298. dtype::Float32(),
  299. "CUTLASS_FLOAT32_SIMT_GEMV_BATCHED_STRIDED_32", args,
  300. param::MatrixMul::Format::DEFAULT);
  301. }
  302. #define MEGDNN_FOREACH_CUTLASS_KERNEL(cb) \
  303. cb(1, 64, 256, 8, 32, 64, 8); \
  304. cb(2, 256, 64, 8, 64, 32, 8); \
  305. cb(3, 32, 256, 8, 16, 64, 8); \
  306. cb(4, 256, 32, 8, 64, 16, 8); \
  307. cb(5, 128, 128, 8, 32, 64, 8); \
  308. cb(6, 128, 64, 8, 64, 32, 8); \
  309. cb(7, 64, 128, 8, 32, 64, 8); \
  310. cb(8, 128, 32, 8, 64, 32, 8); \
  311. cb(9, 32, 128, 8, 32, 64, 8); \
  312. cb(10, 64, 64, 8, 32, 64, 8); \
  313. cb(11, 32, 64, 8, 32, 64, 8); \
  314. cb(12, 64, 32, 8, 64, 32, 8); \
  315. cb(13, 32, 32, 8, 32, 32, 8); \
  316. cb(14, 8, 32, 8, 8, 32, 8); \
  317. cb(15, 16, 32, 8, 16, 32, 8); \
  318. cb(16, 16, 64, 8, 16, 64, 8); \
  319. cb(17, 16, 128, 8, 16, 64, 8);
  320. #define cb(name, tbm, tbn, tbk, wm, wn, wk) \
  321. TEST_F(CUDA, CUTLASS_GEMM_##name) { \
  322. matrix_mul::check_matrix_mul<MatrixMulForward>( \
  323. dtype::Float32(), dtype::Float32(), dtype::Float32(), \
  324. handle_cuda(), \
  325. "CUTLASS_FLOAT32_SIMT_" #tbm "X" #tbn "X" #tbk "_" #wm "X" #wn \
  326. "X" #wk); \
  327. }
  328. MEGDNN_FOREACH_CUTLASS_KERNEL(cb)
  329. #undef cb
  330. #define cb(name, tbm, tbn, tbk, wm, wn, wk) \
  331. TEST_F(CUDA, CUTLASS_GEMM_SPLIT_K_##name) { \
  332. matrix_mul::check_matrix_mul<MatrixMulForward>( \
  333. dtype::Float32(), dtype::Float32(), dtype::Float32(), \
  334. handle_cuda(), \
  335. "CUTLASS_FLOAT32_SIMT_SPLIT_K_" #tbm "X" #tbn "X" #tbk "_" #wm \
  336. "X" #wn "X" #wk, \
  337. param::MatrixMul::Format::DEFAULT, 8, 1e-3, \
  338. matrix_mul::get_matmul_args_split_k()); \
  339. }
  340. MEGDNN_FOREACH_CUTLASS_KERNEL(cb)
  341. #undef cb
  342. #undef MEGDNN_FOREACH_CUTLASS_KERNEL
  343. #define MEGDNN_FOREACH_CUTLASS_KERNEL(cb) \
  344. cb(1, 256, 128, 32, 64, 64, 32, 8, 8, 4); \
  345. cb(2, 128, 256, 32, 64, 64, 32, 8, 8, 4); \
  346. cb(3, 128, 128, 32, 64, 64, 32, 8, 8, 4);
  347. #define cb(name, tbm, tbn, tbk, wm, wn, wk, im, in, ik) \
  348. TEST_F(CUDA, CUTLASS_F16_884_GEMM_##name) { \
  349. require_compute_capability(7, 0); \
  350. matrix_mul::check_matrix_mul<MatrixMulForward>( \
  351. dtype::Float16(), dtype::Float16(), dtype::Float16(), \
  352. handle_cuda(), \
  353. "CUTLASS_FLOAT16_TENSOR_OP_h" #im #in #ik "_" #tbm "X" #tbn \
  354. "X" #tbk "_" #wm "X" #wn "X" #wk, \
  355. param::MatrixMul::Format::DEFAULT, 8, 1e-2, \
  356. matrix_mul::get_matmul_args()); \
  357. }
  358. MEGDNN_FOREACH_CUTLASS_KERNEL(cb)
  359. #undef cb
  360. #define cb(name, tbm, tbn, tbk, wm, wn, wk, im, in, ik) \
  361. TEST_F(CUDA, CUTLASS_F16_884_GEMM_SPLIT_K_##name) { \
  362. require_compute_capability(7, 0); \
  363. matrix_mul::check_matrix_mul<MatrixMulForward>( \
  364. dtype::Float16(), dtype::Float16(), dtype::Float16(), \
  365. handle_cuda(), \
  366. "CUTLASS_FLOAT16_TENSOR_OP_SPLIT_K_h" #im #in #ik "_" #tbm \
  367. "X" #tbn "X" #tbk "_" #wm "X" #wn "X" #wk, \
  368. param::MatrixMul::Format::DEFAULT, 8, 1e-3, \
  369. matrix_mul::get_matmul_args_split_k(), true, \
  370. param::MatrixMul::ComputeMode::FLOAT32); \
  371. }
  372. MEGDNN_FOREACH_CUTLASS_KERNEL(cb)
  373. #undef cb
  374. #undef MEGDNN_FOREACH_CUTLASS_KERNEL
  375. #define MEGDNN_FOREACH_CUTLASS_KERNEL(cb) \
  376. cb(1, 256, 128, 32, 64, 64, 32, 16, 8, 8); \
  377. cb(2, 128, 256, 32, 64, 64, 32, 16, 8, 8); \
  378. cb(3, 128, 128, 32, 64, 64, 32, 16, 8, 8);
  379. #define cb(name, tbm, tbn, tbk, wm, wn, wk, im, in, ik) \
  380. TEST_F(CUDA, CUTLASS_F16_1688_GEMM_##name) { \
  381. require_compute_capability(7, 5); \
  382. matrix_mul::check_matrix_mul<MatrixMulForward>( \
  383. dtype::Float16(), dtype::Float16(), dtype::Float16(), \
  384. handle_cuda(), \
  385. "CUTLASS_FLOAT16_TENSOR_OP_h" #im #in #ik "_" #tbm "X" #tbn \
  386. "X" #tbk "_" #wm "X" #wn "X" #wk, \
  387. param::MatrixMul::Format::DEFAULT, 8, 1e-2, \
  388. matrix_mul::get_matmul_args(), true, \
  389. param::MatrixMul::ComputeMode::FLOAT32); \
  390. }
  391. MEGDNN_FOREACH_CUTLASS_KERNEL(cb)
  392. #undef cb
  393. #define cb(name, tbm, tbn, tbk, wm, wn, wk, im, in, ik) \
  394. TEST_F(CUDA, CUTLASS_F16_1688_GEMM_SPLIT_K_##name) { \
  395. require_compute_capability(7, 5); \
  396. matrix_mul::check_matrix_mul<MatrixMulForward>( \
  397. dtype::Float16(), dtype::Float16(), dtype::Float16(), \
  398. handle_cuda(), \
  399. "CUTLASS_FLOAT16_TENSOR_OP_SPLIT_K_h" #im #in #ik "_" #tbm \
  400. "X" #tbn "X" #tbk "_" #wm "X" #wn "X" #wk, \
  401. param::MatrixMul::Format::DEFAULT, 8, 1e-3, \
  402. matrix_mul::get_matmul_args_split_k()); \
  403. }
  404. MEGDNN_FOREACH_CUTLASS_KERNEL(cb)
  405. #undef cb
  406. #undef MEGDNN_FOREACH_CUTLASS_KERNEL
  407. #if MEGDNN_WITH_BENCHMARK
  408. TEST_F(CUDA, BENCHMARK_CUTLASS_MATMUL) {
  409. benchmark_matrix_mul(handle_cuda(), get_square_matmul_args(),
  410. dtype::Float32(), dtype::Float32(), dtype::Float32(),
  411. "CUTLASS_FLOAT32_SIMT");
  412. }
  413. TEST_F(CUDA, BENCHMARK_CUTLASS_MATMUL_FEAT) {
  414. benchmark_matrix_mul(handle_cuda(), get_feat_model_args(), dtype::Float32(),
  415. dtype::Float32(), dtype::Float32(),
  416. "CUTLASS_FLOAT32_SIMT");
  417. }
  418. TEST_F(CUDA, BENCHMARK_CUTLASS_F16_MATMUL_FEAT) {
  419. benchmark_matrix_mul(handle_cuda(), get_f16_feat_model_args(),
  420. dtype::Float16(), dtype::Float16(), dtype::Float16(),
  421. "CUTLASS_FLOAT16_TENSOR_OP");
  422. }
  423. #endif
  424. } // namespace test
  425. } // namespace megdnn
  426. #endif
  427. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台