You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_quantize.py 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. import numpy as np
  9. import pytest
  10. from megengine import Parameter, Tensor
  11. from megengine import module as Float
  12. from megengine.module import qat as QAT
  13. from megengine.module import quantized as Q
  14. from megengine.quantization import (
  15. min_max_fakequant_qconfig,
  16. passive_qconfig,
  17. tqt_qconfig,
  18. )
  19. from megengine.quantization.fake_quant import TQT, FakeQuantize
  20. from megengine.quantization.observer import MinMaxObserver, PassiveObserver
  21. from megengine.quantization.quantize import (
  22. _get_quantable_module_names,
  23. apply_easy_quant,
  24. disable_fake_quant,
  25. disable_observer,
  26. enable_fake_quant,
  27. enable_observer,
  28. propagate_qconfig,
  29. quantize,
  30. quantize_qat,
  31. reset_qconfig,
  32. )
  33. class FloatNet(Float.Module):
  34. def __init__(self):
  35. super().__init__()
  36. self.quant = Float.QuantStub()
  37. self.linear = Float.Sequential(Float.Linear(3, 3), Float.Linear(3, 3))
  38. self.dequant = Float.DequantStub()
  39. self.linear[0].bias[...] = Parameter(np.random.rand(3))
  40. self.linear[1].bias[...] = Parameter(np.random.rand(3))
  41. def forward(self, x):
  42. x = self.quant(x)
  43. x = self.linear(x)
  44. x = self.dequant(x)
  45. return x
  46. class QATNet(Float.Module):
  47. def __init__(self):
  48. super().__init__()
  49. self.quant = QAT.QuantStub()
  50. self.linear = Float.Sequential(QAT.Linear(3, 3), QAT.Linear(3, 3))
  51. self.dequant = QAT.DequantStub()
  52. self.linear[0].bias[...] = Parameter(np.random.rand(3))
  53. self.linear[1].bias[...] = Parameter(np.random.rand(3))
  54. def forward(self, x):
  55. x = self.quant(x)
  56. x = self.linear(x)
  57. x = self.dequant(x)
  58. return x
  59. def test_propagate_qconfig():
  60. net = QATNet()
  61. propagate_qconfig(net, min_max_fakequant_qconfig)
  62. assert all(
  63. [
  64. net.quant.weight_observer is None,
  65. net.quant.weight_fake_quant is None,
  66. isinstance(net.quant.act_observer, MinMaxObserver),
  67. isinstance(net.quant.act_fake_quant, FakeQuantize),
  68. isinstance(net.linear[0].weight_observer, MinMaxObserver),
  69. isinstance(net.linear[0].weight_fake_quant, FakeQuantize),
  70. isinstance(net.linear[0].act_observer, MinMaxObserver),
  71. isinstance(net.linear[0].act_fake_quant, FakeQuantize),
  72. isinstance(net.linear[1].weight_observer, MinMaxObserver),
  73. isinstance(net.linear[1].weight_fake_quant, FakeQuantize),
  74. isinstance(net.linear[1].act_observer, MinMaxObserver),
  75. isinstance(net.linear[1].act_fake_quant, FakeQuantize),
  76. net.dequant.weight_observer is None,
  77. net.dequant.weight_fake_quant is None,
  78. net.dequant.act_observer is None,
  79. net.dequant.act_observer is None,
  80. ]
  81. )
  82. def init_qat_net():
  83. net = QATNet()
  84. propagate_qconfig(net, min_max_fakequant_qconfig)
  85. min_val = np.random.randint(-127, 0, size=(3,))
  86. max_val = np.random.randint(1, 127, size=(3,))
  87. net.quant.act_observer.min_val[...] = Parameter(min_val[0])
  88. net.quant.act_observer.max_val[...] = Parameter(max_val[0])
  89. net.linear[0].weight_observer.min_val[...] = Parameter(min_val[1])
  90. net.linear[0].weight_observer.max_val[...] = Parameter(max_val[1])
  91. net.linear[0].act_observer.min_val[...] = Parameter(min_val[2])
  92. net.linear[0].act_observer.max_val[...] = Parameter(max_val[2])
  93. net.linear[1].weight_observer.min_val[...] = Parameter(min_val[1])
  94. net.linear[1].weight_observer.max_val[...] = Parameter(max_val[1])
  95. net.linear[1].act_observer.min_val[...] = Parameter(min_val[2])
  96. net.linear[1].act_observer.max_val[...] = Parameter(max_val[2])
  97. return net
  98. def test_reset_qconfig():
  99. qat_net = init_qat_net()
  100. new_qat_net = reset_qconfig(qat_net, passive_qconfig)
  101. assert (
  102. new_qat_net.linear[0].get_weight_qparams()
  103. == qat_net.linear[0].get_weight_qparams()
  104. )
  105. assert (
  106. new_qat_net.linear[0].get_activation_qparams()
  107. == qat_net.linear[0].get_activation_qparams()
  108. )
  109. assert (
  110. new_qat_net.linear[1].get_weight_qparams()
  111. == qat_net.linear[1].get_weight_qparams()
  112. )
  113. assert (
  114. new_qat_net.linear[1].get_activation_qparams()
  115. == qat_net.linear[1].get_activation_qparams()
  116. )
  117. def test_enable_and_disable_observer():
  118. net = init_qat_net()
  119. enable_observer(net)
  120. assert net.quant.act_observer.enabled is True
  121. assert net.linear[0].weight_observer.enabled is True
  122. assert net.linear[0].act_observer.enabled is True
  123. assert net.linear[1].weight_observer.enabled is True
  124. assert net.linear[1].act_observer.enabled is True
  125. disable_observer(net)
  126. assert net.quant.act_observer.enabled is False
  127. assert net.linear[0].weight_observer.enabled is False
  128. assert net.linear[0].weight_observer.enabled is False
  129. assert net.linear[1].act_observer.enabled is False
  130. assert net.linear[1].act_observer.enabled is False
  131. def test_enable_and_disable_fake_quant():
  132. net = init_qat_net()
  133. disable_fake_quant(net)
  134. assert net.quant.act_fake_quant.enabled is False
  135. assert net.linear[0].weight_fake_quant.enabled is False
  136. assert net.linear[0].act_fake_quant.enabled is False
  137. assert net.linear[1].weight_fake_quant.enabled is False
  138. assert net.linear[1].act_fake_quant.enabled is False
  139. enable_fake_quant(net)
  140. assert net.quant.act_fake_quant.enabled is True
  141. assert net.linear[0].weight_fake_quant.enabled is True
  142. assert net.linear[0].act_fake_quant.enabled is True
  143. assert net.linear[1].weight_fake_quant.enabled is True
  144. assert net.linear[1].act_fake_quant.enabled is True
  145. def init_observer(module, data):
  146. enable_observer(module)
  147. disable_fake_quant(module)
  148. module(data)
  149. disable_observer(module)
  150. enable_fake_quant(module)
  151. def test_enable_and_disable_all():
  152. x = Tensor(np.random.randint(1, 10, size=(3, 3)).astype(np.float32))
  153. net = FloatNet()
  154. y1 = net(x).numpy()
  155. net = quantize_qat(net, min_max_fakequant_qconfig)
  156. init_observer(net, x)
  157. y2 = net(x).numpy()
  158. disable_fake_quant(net)
  159. y3 = net(x).numpy()
  160. enable_fake_quant(net)
  161. y4 = net(x).numpy()
  162. np.testing.assert_allclose(y1, y3)
  163. np.testing.assert_allclose(y2, y4)
  164. with pytest.raises(AssertionError):
  165. np.testing.assert_allclose(y2, y3)
  166. def test_quantize_qat():
  167. net = FloatNet()
  168. qat_net = quantize_qat(net, inplace=False, qconfig=min_max_fakequant_qconfig)
  169. assert isinstance(qat_net.quant, QAT.QuantStub)
  170. assert isinstance(qat_net.linear[0], QAT.Linear)
  171. assert isinstance(qat_net.linear[1], QAT.Linear)
  172. assert isinstance(qat_net.dequant, QAT.DequantStub)
  173. def test_quantize():
  174. qat_net = init_qat_net()
  175. q_net = quantize(qat_net, inplace=False)
  176. assert isinstance(q_net.quant, Q.QuantStub)
  177. assert isinstance(q_net.linear[0], Q.Linear)
  178. assert isinstance(q_net.linear[1], Q.Linear)
  179. assert isinstance(q_net.dequant, Q.DequantStub)
  180. def test_apply_easy_quant():
  181. qat_net = init_qat_net()
  182. data = Tensor(np.random.rand(2, 3, 3, 3), dtype=np.float32)
  183. eq_net = reset_qconfig(qat_net, passive_qconfig, inplace=False)
  184. apply_easy_quant(eq_net, data, 0.9, 1.1, 10)
  185. assert isinstance(eq_net.quant.act_observer, PassiveObserver)
  186. assert isinstance(eq_net.linear[0].weight_observer, PassiveObserver)
  187. assert isinstance(eq_net.linear[0].act_observer, PassiveObserver)
  188. assert isinstance(eq_net.linear[1].weight_observer, PassiveObserver)
  189. assert isinstance(eq_net.linear[1].act_observer, PassiveObserver)
  190. assert eq_net.dequant.act_observer is None
  191. def test_apply_tqt():
  192. qat_net = init_qat_net()
  193. tqt_net = reset_qconfig(qat_net, tqt_qconfig, inplace=False)
  194. assert isinstance(tqt_net.quant.act_fake_quant, TQT)
  195. assert isinstance(tqt_net.linear[0].weight_fake_quant, TQT)
  196. assert isinstance(tqt_net.linear[0].act_fake_quant, TQT)
  197. assert isinstance(tqt_net.linear[1].weight_fake_quant, TQT)
  198. assert isinstance(tqt_net.linear[1].act_fake_quant, TQT)
  199. assert tqt_net.dequant.act_fake_quant is None
  200. def test_get_quantable_module_names():
  201. # need to make sure names from Quantized and QAT are the same
  202. def _get_qat_module_names():
  203. def is_qat(key: str):
  204. value = getattr(QAT, key)
  205. return (
  206. isinstance(value, type)
  207. and issubclass(value, QAT.QATModule)
  208. and value != QAT.QATModule
  209. )
  210. # source should have all quantable modules' names
  211. quantable_module_names = [key for key in dir(QAT) if is_qat(key)]
  212. return quantable_module_names
  213. qat_module_names = _get_qat_module_names()
  214. quantized_module_names = _get_quantable_module_names()
  215. assert set(qat_module_names) == set(quantized_module_names)
  216. for key in qat_module_names:
  217. value = getattr(Float, key)
  218. assert (
  219. isinstance(value, type)
  220. and issubclass(value, Float.Module)
  221. and value != Float.Module
  222. )
  223. def test_disable_quantize():
  224. class Net(Float.Module):
  225. def __init__(self):
  226. super().__init__()
  227. self.conv = Float.ConvBnRelu2d(3, 3, 3)
  228. self.conv.disable_quantize()
  229. def forward(self, x):
  230. return self.conv(x)
  231. net = Net()
  232. qat_net = quantize_qat(net, inplace=False)
  233. assert isinstance(qat_net.conv, Float.ConvBnRelu2d)
  234. assert isinstance(qat_net.conv.conv, Float.Conv2d)
  235. def test_convert_with_custom_mapping():
  236. class FloatExample(Float.Module):
  237. def forward(self, x):
  238. return x
  239. class QATExample(QAT.QATModule):
  240. def forward(self, x):
  241. return x
  242. @classmethod
  243. def from_float_module(cls, float_module):
  244. return cls()
  245. class Net(Float.Module):
  246. def __init__(self):
  247. super().__init__()
  248. self.example = FloatExample()
  249. def forward(self, x):
  250. return self.example(x)
  251. net = Net()
  252. qat_net = quantize_qat(net, inplace=False, mapping={FloatExample: QATExample})
  253. assert isinstance(qat_net.example, QATExample)