You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

base.h 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711
  1. /**
  2. * \file dnn/include/megdnn/oprs/base.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include <type_traits>
  14. #include "megdnn/basic_types.h"
  15. #include "megdnn/handle.h"
  16. #include "megdnn/internal/visibility_prologue.h"
  17. namespace megdnn {
  18. class Handle;
  19. /**
  20. * \brief base class for all operators
  21. *
  22. * This is an helper class. Users should not use OperatorBase directly.
  23. * Operators should be created by handle->create_opr<>().
  24. *
  25. * Each operator must provides the following constexpr values:
  26. *
  27. * * NR_INPUTS: number of input vars
  28. * * NR_OUTPUTS: number of output vars
  29. * * OPERATOR_TYPE: operator type as an enum
  30. *
  31. * If the operator has dynamic inputs or in_out param, the corresponding
  32. * NR_INPUTS is -1.
  33. *
  34. * For an operator whose NR_INPUTS >= 0 and NR_OUTPUTS >= 0, the operator must
  35. * also provide following methods:
  36. *
  37. * * void exec(_megdnn_in inputs..., _megdnn_tensor_out outputs...,
  38. * _megdnn_workspace workspace)
  39. * * void deduce_layout(const TensorLayout& inputs...,
  40. * TensorLayout& outputs...)
  41. * * size_t get_workspace_in_bytes(const TensorLayout &inputs...,
  42. * const TensorLayout &outputs)
  43. */
  44. class OperatorBase {
  45. public:
  46. explicit OperatorBase(Handle* handle) : m_handle(handle) {}
  47. virtual ~OperatorBase();
  48. //! get the handle from which this operator is created
  49. Handle* handle() const { return m_handle; }
  50. //! whether this opr guarantees that its exec() is thread-safe
  51. virtual bool is_thread_safe() const { return false; }
  52. /*!
  53. * \brief set the tracker to be used with MegcoreAsyncErrorInfo
  54. *
  55. * Most operators do not have async errors so this function has a
  56. * default empty implementation.
  57. */
  58. virtual void set_error_tracker(void*) {}
  59. private:
  60. Handle* m_handle;
  61. };
  62. namespace detail {
  63. /**
  64. * \brief AlgoSelectionStrategy is the advance information for selecting
  65. * algo
  66. */
  67. enum class AlgoSelectionStrategy {
  68. HEURISTIC = 0, //!< heristic to select the algos
  69. FAST_RUN = 1,
  70. FULL_RUN = 2,
  71. };
  72. /**
  73. * \brief separate algo by datatype for Matmul and conv
  74. */
  75. enum class AlgoDataType : uint32_t {
  76. FLOAT32 = 1 << 0,
  77. FLOAT16 = 1 << 1,
  78. QINT8X8X32 = 1 << 2,
  79. QUINT8X8X32 = 1 << 3,
  80. INT8X8X16 = 1 << 4,
  81. INT16X16X32 = 1 << 5,
  82. INT4X4X16 = 1 << 6,
  83. QINT4x4x32 = 1 << 7,
  84. };
  85. /*!
  86. * \brief Abstract representation of an algorithm for implementing
  87. * the operator
  88. */
  89. class Algorithm {
  90. public:
  91. static constexpr uint32_t INVALID_ALGO_TYPE = static_cast<uint32_t>(-1);
  92. /**
  93. * \brief the attribe of the algo, such as REPRODUCIBLE, NAIVE
  94. *
  95. */
  96. enum class Attribute : uint32_t {
  97. /**
  98. * \brief general algo.
  99. */
  100. DEFAULT = 0,
  101. /**
  102. * \brief whether the execution result is
  103. * reproducible across multiple runs.
  104. */
  105. REPRODUCIBLE = 1 << 0,
  106. /**
  107. * \brief whether the algo is naive
  108. * Mark algorithms with simple implementation as NAIVE, so we can filter
  109. * these algorithms to speed up fastrun.
  110. * */
  111. NAIVE = 1 << 1,
  112. /**
  113. * \brief whether the algo is usable once shape changed.
  114. * */
  115. USABLE_DEPEND_ON_SHAPE = 1 << 2,
  116. /**
  117. * \brief whether the accuracy of the algo is dependent with respect
  118. * to batch
  119. * In the case of using algorithm with this attribute, even if the
  120. * content of each batch is the same, the output under multiple batch
  121. * input and single batch input may not equal
  122. * */
  123. ACCURACY_DEPEND_ON_BATCH = 1 << 3,
  124. };
  125. /**
  126. * \brief Algorithm information, we can get real algo from
  127. * AlgorithmInfo::Info::Desc
  128. */
  129. struct Info {
  130. struct Desc {
  131. //! backend of the algo belonging to
  132. Handle::HandleType handle_type;
  133. //! indicate the real algo implementation
  134. uint32_t type = INVALID_ALGO_TYPE;
  135. //! serialized param of the algo type
  136. std::string param;
  137. //! algorithm name
  138. std::string name;
  139. bool valid() const { return type != INVALID_ALGO_TYPE; }
  140. void reset() { type = INVALID_ALGO_TYPE; }
  141. bool operator==(const Desc& rhs) const {
  142. return handle_type == rhs.handle_type && type == rhs.type &&
  143. param == rhs.param && name == rhs.name;
  144. }
  145. } desc;
  146. Attribute attribute;
  147. bool valid() const { return desc.valid(); }
  148. void reset() { desc.reset(); }
  149. //! desc donate the algo
  150. bool operator==(const Info& rhs) const { return desc == rhs.desc; }
  151. };
  152. virtual ~Algorithm() = default;
  153. /**
  154. * \brief get the attribute of the algo
  155. */
  156. virtual Attribute attribute() const = 0;
  157. virtual const char* name() const = 0;
  158. //! serialized param
  159. virtual std::string param() const { return {}; }
  160. virtual uint32_t type() const = 0;
  161. //! if algo contain all of the attribute in attr
  162. bool contain_attribute_all(const Attribute& attr) const;
  163. //! if algo contain any attribute in attr
  164. bool contain_attribute_any(const Attribute& attr) const;
  165. void check_attribute(
  166. const Attribute& positive_attr = Attribute::DEFAULT,
  167. const Attribute& negative_attr = Attribute::DEFAULT) const;
  168. static std::string attribute_str(const Attribute& attr);
  169. Handle::HandleType handle_type() const { return m_handle_type; }
  170. Info::Desc desc() const { return {handle_type(), type(), param(), name()}; }
  171. Info info() const { return {desc(), attribute()}; }
  172. template <typename T>
  173. static void serialize_write_pod(const T& val, std::string& result) {
  174. static_assert(
  175. std::is_trivially_copyable<T>::value,
  176. "type should be trivially copyable");
  177. static_assert(
  178. !std::is_pointer<T>::value,
  179. "serialize pointer is unsafe in eager execution mode");
  180. result.append(reinterpret_cast<const char*>(&val), sizeof(T));
  181. }
  182. static void serialize_write_pod(const char* val, std::string& result) {
  183. result.append(val, strlen(val));
  184. }
  185. static void serialize_write_pod(const std::string& val, std::string& result) {
  186. result.append(val.data(), val.size());
  187. }
  188. template <typename T>
  189. static T deserialize_read_pod(const std::string& data, size_t offset = 0) {
  190. static_assert(std::is_trivially_copyable<T>::value, "invalid type");
  191. T ret;
  192. //! A pointer to an object or incomplete type may be converted to a
  193. //! pointer to a different object or incomplete type. If the resulting
  194. //! pointer is not correctly aligned for the pointed-to type, the
  195. //! behavior is undefined.
  196. //!
  197. //! so here we should use memcpy instead of
  198. //! *reinterpret_cast<const T*>(&data[offset]);
  199. memcpy(&ret, data.data() + offset, sizeof(T));
  200. return ret;
  201. }
  202. static std::string deserialize_read_pod(
  203. const std::string& data, size_t offset = 0, size_t size = 0) {
  204. return std::string(data.data() + offset, size);
  205. }
  206. template <typename T>
  207. static T deserialize_read_pod(const char* data, size_t offset = 0) {
  208. static_assert(std::is_trivially_copyable<T>::value, "invalid type");
  209. T ret;
  210. //! A pointer to an object or incomplete type may be converted to a
  211. //! pointer to a different object or incomplete type. If the resulting
  212. //! pointer is not correctly aligned for the pointed-to type, the
  213. //! behavior is undefined.
  214. //!
  215. //! so here we should use memcpy instead of
  216. //! *reinterpret_cast<const T*>(&data[offset]);
  217. memcpy(&ret, data + offset, sizeof(T));
  218. return ret;
  219. }
  220. enum class OprType : uint32_t {
  221. MATRIX_MUL_FORWARD,
  222. BATCHED_MATRIX_MUL_FORWARD,
  223. CONVOLUTION_FORWARD,
  224. CONVOLUTION_BACKWARD_DATA,
  225. CONVOLUTION_BACKWARD_FILTER,
  226. CONVOLUTION3D_FORWARD,
  227. CONVOLUTION3D_BACKWARD_DATA,
  228. CONVOLUTION3D_BACKWARD_FILTER,
  229. LOCAL_SHARE_FORWARD,
  230. LOCAL_SHARE_BACKWARD_DATA,
  231. LOCAL_SHARE_BACKWARD_FILTER,
  232. DEFORMABLE_CONV_FORWARD,
  233. DEFORMABLE_CONV_BACKWARD_DATA,
  234. DEFORMABLE_CONV_BACKWARD_FILTER,
  235. CONVBIAS_FORWARD,
  236. BATCH_CONV_FORWARD,
  237. POOLING_FORWARD,
  238. POOLING_BACKWARD,
  239. };
  240. struct SearchItem {
  241. OprType opr_type;
  242. //! serialized param
  243. std::string param;
  244. TensorLayoutArray layouts;
  245. };
  246. /**
  247. * \brief get subopr list of the algo
  248. *
  249. * \param layouts origin layouts of the parent opr
  250. * \param opr parent opr
  251. */
  252. virtual std::vector<SearchItem> get_subopr_list(
  253. const TensorLayoutArray&, const OperatorBase*) const {
  254. return {};
  255. }
  256. protected:
  257. Handle::HandleType m_handle_type = Handle::HandleType::NAIVE;
  258. };
  259. MEGDNN_DEF_ENUM_CLASS_BIT_OPR(Algorithm::Attribute)
  260. //! policy for executing the operator
  261. struct ExecutionPolicy {
  262. //! INVALID_ALGO_TYPE algo_type means using heuristic
  263. Algorithm::Info::Desc algo;
  264. std::vector<ExecutionPolicy> sub_policy;
  265. };
  266. /*!
  267. * \brief define Algorithm and ExecutionPolicy for oprs that have
  268. * multiple impl algos
  269. *
  270. * \tparam Opr the operator class
  271. * \tparam nargs number of arguments
  272. */
  273. template <class Opr, int nargs>
  274. class MultiAlgoOpr;
  275. //! base def
  276. template <class Opr>
  277. class MultiAlgoOpr<Opr, -1> {
  278. public:
  279. using AlgorithmInfo = detail::Algorithm::Info;
  280. using AlgorithmDesc = detail::Algorithm::Info::Desc;
  281. using Algorithm = detail::Algorithm;
  282. /*!
  283. * \brief get a string representation for current algorithm set;
  284. *
  285. * get_all_algorithms_safe() may return different algorithms only if
  286. * algorithm set name differs. This is used for checking cache
  287. * validity.
  288. */
  289. virtual const char* get_algorithm_set_name() const = 0;
  290. ExecutionPolicy& execution_policy() { return m_execution_policy; }
  291. const ExecutionPolicy& execution_policy() const { return m_execution_policy; }
  292. virtual Algorithm* get_algorithm_from_desc(const AlgorithmDesc&) = 0;
  293. protected:
  294. ~MultiAlgoOpr() = default;
  295. private:
  296. ExecutionPolicy m_execution_policy;
  297. };
  298. //! specialize for nargs == 2
  299. template <class Opr>
  300. class MultiAlgoOpr<Opr, 2> : public MultiAlgoOpr<Opr, -1> {
  301. public:
  302. using Algorithm = detail::Algorithm;
  303. using AlgorithmInfo = detail::Algorithm::Info;
  304. using AlgoAttribute = detail::Algorithm::Attribute;
  305. //! get all possible algorithm decriptions for the specified layouts
  306. std::vector<AlgorithmInfo> get_all_algorithms_info(
  307. const TensorLayout& p0, const TensorLayout& p1) {
  308. std::vector<AlgorithmInfo> ret;
  309. for (auto&& algo : get_all_algorithms(p0, p1)) {
  310. ret.emplace_back(algo->info());
  311. }
  312. return ret;
  313. }
  314. std::vector<AlgorithmInfo> get_all_algorithms_info_safe(
  315. const TensorLayout& p0, const TensorLayout& p1) {
  316. std::vector<AlgorithmInfo> ret;
  317. for (auto&& algo : get_all_algorithms_safe(p0, p1)) {
  318. ret.emplace_back(algo->info());
  319. }
  320. return ret;
  321. }
  322. /**
  323. * \brief Returns the best algorithm information which indicate the
  324. * algorithm by heuristic.
  325. *
  326. * The selected algorithm should not use workspace more than
  327. * \p workspace_limit_in_bytes.
  328. */
  329. AlgorithmInfo get_algorithm_info_heuristic(
  330. const TensorLayout& p0, const TensorLayout& p1,
  331. size_t workspace_limit_in_bytes = std::numeric_limits<size_t>::max(),
  332. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  333. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) {
  334. return get_algorithm_heuristic(
  335. p0, p1, workspace_limit_in_bytes, positive_attr, negative_attr)
  336. ->info();
  337. }
  338. protected:
  339. ~MultiAlgoOpr() = default;
  340. //! get all possible algorithms for the specified layouts
  341. virtual std::vector<Algorithm*> get_all_algorithms(
  342. const TensorLayout& p0, const TensorLayout& p1) = 0;
  343. virtual std::vector<Algorithm*> get_all_algorithms_safe(
  344. const TensorLayout& p0, const TensorLayout& p1) = 0;
  345. /**
  346. * \brief Returns the best algorithm by heuristic.
  347. *
  348. * The selected algorithm should not use workspace more than
  349. * \p workspace_limit_in_bytes.
  350. */
  351. virtual Algorithm* get_algorithm_heuristic(
  352. const TensorLayout& p0, const TensorLayout& p1,
  353. size_t workspace_limit_in_bytes = std::numeric_limits<size_t>::max(),
  354. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  355. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) = 0;
  356. };
  357. //! specialize for nargs == 3
  358. template <class Opr>
  359. class MultiAlgoOpr<Opr, 3> : public MultiAlgoOpr<Opr, -1> {
  360. public:
  361. using Algorithm = detail::Algorithm;
  362. using AlgorithmInfo = detail::Algorithm::Info;
  363. using AlgoAttribute = detail::Algorithm::Attribute;
  364. //! get all possible algorithm decriptions for the specified layouts
  365. std::vector<AlgorithmInfo> get_all_algorithms_info(
  366. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2) {
  367. std::vector<AlgorithmInfo> ret;
  368. for (auto&& algo : get_all_algorithms(p0, p1, p2)) {
  369. ret.emplace_back(algo->info());
  370. }
  371. return ret;
  372. }
  373. std::vector<AlgorithmInfo> get_all_algorithms_info_safe(
  374. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2) {
  375. std::vector<AlgorithmInfo> ret;
  376. for (auto&& algo : get_all_algorithms_safe(p0, p1, p2)) {
  377. ret.emplace_back(algo->info());
  378. }
  379. return ret;
  380. }
  381. /**
  382. * \brief Returns the best algorithm information which indicate the
  383. * algorithm by heuristic.
  384. *
  385. * The selected algorithm should not use workspace more than
  386. * \p workspace_limit_in_bytes.
  387. */
  388. AlgorithmInfo get_algorithm_info_heuristic(
  389. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  390. size_t workspace_limit_in_bytes = std::numeric_limits<size_t>::max(),
  391. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  392. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) {
  393. return get_algorithm_heuristic(
  394. p0, p1, p2, workspace_limit_in_bytes, positive_attr,
  395. negative_attr)
  396. ->info();
  397. }
  398. protected:
  399. ~MultiAlgoOpr() = default;
  400. //! get all possible algorithms for the specified layouts
  401. virtual std::vector<Algorithm*> get_all_algorithms(
  402. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2) = 0;
  403. virtual std::vector<Algorithm*> get_all_algorithms_safe(
  404. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2) = 0;
  405. /**
  406. * \brief Returns the best algorithm by heuristic.
  407. *
  408. * The selected algorithm should not use workspace more than
  409. * \p workspace_limit_in_bytes.
  410. */
  411. virtual Algorithm* get_algorithm_heuristic(
  412. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  413. size_t workspace_limit_in_bytes = std::numeric_limits<size_t>::max(),
  414. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  415. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) = 0;
  416. };
  417. //! specializae for nargs == 4
  418. template <class Opr>
  419. class MultiAlgoOpr<Opr, 4> : public MultiAlgoOpr<Opr, -1> {
  420. public:
  421. using Algorithm = detail::Algorithm;
  422. using AlgorithmInfo = detail::Algorithm::Info;
  423. using AlgoAttribute = detail::Algorithm::Attribute;
  424. //! get all possible algorithm decriptions for the specified layouts
  425. std::vector<AlgorithmInfo> get_all_algorithms_info(
  426. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  427. const TensorLayout& p3) {
  428. std::vector<AlgorithmInfo> ret;
  429. for (auto&& algo : get_all_algorithms(p0, p1, p2, p3)) {
  430. ret.emplace_back(algo->info());
  431. }
  432. return ret;
  433. }
  434. std::vector<AlgorithmInfo> get_all_algorithms_info_safe(
  435. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  436. const TensorLayout& p3) {
  437. std::vector<AlgorithmInfo> ret;
  438. for (auto&& algo : get_all_algorithms_safe(p0, p1, p2, p3)) {
  439. ret.emplace_back(algo->info());
  440. }
  441. return ret;
  442. }
  443. /**
  444. * \brief Returns the best algorithm information which indicate the
  445. * algorithm by heuristic.
  446. *
  447. * The selected algorithm should not use workspace more than
  448. * \p workspace_limit_in_bytes.
  449. */
  450. AlgorithmInfo get_algorithm_info_heuristic(
  451. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  452. const TensorLayout& p3,
  453. size_t workspace_limit_in_bytes = std::numeric_limits<size_t>::max(),
  454. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  455. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) {
  456. return get_algorithm_heuristic(
  457. p0, p1, p2, p3, workspace_limit_in_bytes, positive_attr,
  458. negative_attr)
  459. ->info();
  460. }
  461. protected:
  462. ~MultiAlgoOpr() = default;
  463. //! get all possible algorithms for the specified layouts
  464. virtual std::vector<Algorithm*> get_all_algorithms(
  465. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  466. const TensorLayout& p3) = 0;
  467. virtual std::vector<Algorithm*> get_all_algorithms_safe(
  468. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  469. const TensorLayout& p3) = 0;
  470. /**
  471. * \brief Returns the best algorithm by heuristic.
  472. *
  473. * The selected algorithm should not use workspace more than
  474. * \p workspace_limit_in_bytes.
  475. */
  476. virtual Algorithm* get_algorithm_heuristic(
  477. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  478. const TensorLayout& p3,
  479. size_t workspace_limit_in_bytes = std::numeric_limits<size_t>::max(),
  480. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  481. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) = 0;
  482. };
  483. //! specializae for nargs == 5
  484. template <class Opr>
  485. class MultiAlgoOpr<Opr, 5> : public MultiAlgoOpr<Opr, -1> {
  486. public:
  487. using Algorithm = detail::Algorithm;
  488. using AlgorithmInfo = detail::Algorithm::Info;
  489. using AlgoAttribute = detail::Algorithm::Attribute;
  490. //! get all possible algorithm decriptions for the specified layouts
  491. std::vector<AlgorithmInfo> get_all_algorithms_info(
  492. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  493. const TensorLayout& p3, const TensorLayout& p4) {
  494. std::vector<AlgorithmInfo> ret;
  495. for (auto&& algo : get_all_algorithms(p0, p1, p2, p3, p4)) {
  496. ret.emplace_back(algo->info());
  497. }
  498. return ret;
  499. }
  500. std::vector<AlgorithmInfo> get_all_algorithms_info_safe(
  501. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  502. const TensorLayout& p3, const TensorLayout& p4) {
  503. std::vector<AlgorithmInfo> ret;
  504. for (auto&& algo : get_all_algorithms_safe(p0, p1, p2, p3, p4)) {
  505. ret.emplace_back(algo->info());
  506. }
  507. return ret;
  508. }
  509. /**
  510. * \brief Returns the best algorithm information which indicate the
  511. * algorithm by heuristic.
  512. *
  513. * The selected algorithm should not use workspace more than
  514. * \p workspace_limit_in_bytes.
  515. */
  516. AlgorithmInfo get_algorithm_info_heuristic(
  517. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  518. const TensorLayout& p3, const TensorLayout& p4,
  519. size_t workspace_limit_in_bytes = std::numeric_limits<size_t>::max(),
  520. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  521. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) {
  522. return get_algorithm_heuristic(
  523. p0, p1, p2, p3, p4, workspace_limit_in_bytes, positive_attr,
  524. negative_attr)
  525. ->info();
  526. }
  527. protected:
  528. ~MultiAlgoOpr() = default;
  529. //! get all possible algorithms for the specified layouts
  530. virtual std::vector<Algorithm*> get_all_algorithms(
  531. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  532. const TensorLayout& p3, const TensorLayout& p4) = 0;
  533. virtual std::vector<Algorithm*> get_all_algorithms_safe(
  534. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  535. const TensorLayout& p3, const TensorLayout& p4) = 0;
  536. /**
  537. * \brief Returns the best algorithm by heuristic.
  538. *
  539. * The selected algorithm should not use workspace more than
  540. * \p workspace_limit_in_bytes.
  541. */
  542. virtual Algorithm* get_algorithm_heuristic(
  543. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  544. const TensorLayout& p3, const TensorLayout& p4,
  545. size_t workspace_limit_in_bytes = std::numeric_limits<size_t>::max(),
  546. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  547. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) = 0;
  548. };
  549. //! specializae for nargs == 8
  550. template <class Opr>
  551. class MultiAlgoOpr<Opr, 8> : public MultiAlgoOpr<Opr, -1> {
  552. public:
  553. using Algorithm = detail::Algorithm;
  554. using AlgorithmInfo = detail::Algorithm::Info;
  555. using AlgoAttribute = detail::Algorithm::Attribute;
  556. //! get all possible algorithm decriptions for the specified layouts
  557. std::vector<AlgorithmInfo> get_all_algorithms_info(
  558. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  559. const TensorLayout& p3, const TensorLayout& p4, const TensorLayout& p5,
  560. const TensorLayout& p6, const TensorLayout& p7) {
  561. std::vector<AlgorithmInfo> ret;
  562. for (auto&& algo : get_all_algorithms(p0, p1, p2, p3, p4, p5, p6, p7)) {
  563. ret.emplace_back(algo->info());
  564. }
  565. return ret;
  566. }
  567. std::vector<AlgorithmInfo> get_all_algorithms_info_safe(
  568. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  569. const TensorLayout& p3, const TensorLayout& p4, const TensorLayout& p5,
  570. const TensorLayout& p6, const TensorLayout& p7) {
  571. std::vector<AlgorithmInfo> ret;
  572. for (auto&& algo : get_all_algorithms_safe(p0, p1, p2, p3, p4, p5, p6, p7)) {
  573. ret.emplace_back(algo->info());
  574. }
  575. return ret;
  576. }
  577. /**
  578. * \brief Returns the best algorithm information which indicate the
  579. * algorithm by heuristic.
  580. *
  581. * The selected algorithm should not use workspace more than
  582. */
  583. AlgorithmInfo get_algorithm_info_heuristic(
  584. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  585. const TensorLayout& p3, const TensorLayout& p4, const TensorLayout& p5,
  586. const TensorLayout& p6, const TensorLayout& p7,
  587. size_t workspace_limit_in_bytes = std::numeric_limits<size_t>::max(),
  588. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  589. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) {
  590. return get_algorithm_heuristic(
  591. p0, p1, p2, p3, p4, p5, p6, p7, workspace_limit_in_bytes,
  592. positive_attr, negative_attr)
  593. ->info();
  594. }
  595. protected:
  596. ~MultiAlgoOpr() = default;
  597. //! get all possible algorithms for the specified layouts
  598. virtual std::vector<Algorithm*> get_all_algorithms(
  599. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  600. const TensorLayout& p3, const TensorLayout& p4, const TensorLayout& p5,
  601. const TensorLayout& p6, const TensorLayout& p7) = 0;
  602. virtual std::vector<Algorithm*> get_all_algorithms_safe(
  603. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  604. const TensorLayout& p3, const TensorLayout& p4, const TensorLayout& p5,
  605. const TensorLayout& p6, const TensorLayout& p7) = 0;
  606. /**
  607. * \brief Returns the best algorithm by heuristic.
  608. *
  609. * The selected algorithm should not use workspace more than
  610. * \p workspace_limit_in_bytes.
  611. */
  612. virtual Algorithm* get_algorithm_heuristic(
  613. const TensorLayout& p0, const TensorLayout& p1, const TensorLayout& p2,
  614. const TensorLayout& p3, const TensorLayout& p4, const TensorLayout& p5,
  615. const TensorLayout& p6, const TensorLayout& p7,
  616. size_t workspace_limit_in_bytes = std::numeric_limits<size_t>::max(),
  617. const AlgoAttribute& positive_attr = AlgoAttribute::DEFAULT,
  618. const AlgoAttribute& negative_attr = AlgoAttribute::DEFAULT) = 0;
  619. };
  620. } // namespace detail
  621. using Algorithm = detail::Algorithm;
  622. using AlgoAttribute = Algorithm::Attribute;
  623. using ExecutionPolicy = detail::ExecutionPolicy;
  624. } // namespace megdnn
  625. #include "megdnn/internal/visibility_epilogue.h"
  626. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台