You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

algos.h 9.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215
  1. /**
  2. * \file dnn/src/armv7/matrix_mul/algos.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #pragma once
  12. #include "src/arm_common/matrix_mul/algos.h"
  13. #include "src/armv7/matrix_mul/opr_impl.h"
  14. #include "src/fallback/matrix_mul/gemm_common.h"
  15. namespace megdnn {
  16. namespace armv7 {
  17. class MatrixMulImpl::AlgoF32 final : public AlgoBase {
  18. public:
  19. bool is_reproducible() const override { return true; }
  20. const char* name() const override { return "ARMV7_F32"; }
  21. bool usable(const KernSizeParam&) const override;
  22. size_t get_workspace(const KernSizeParam&) const override;
  23. kern_t get_kern(const KernSizeParam&) const override;
  24. void* type() const override { return sm_arm_common_algo_type; }
  25. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  26. };
  27. class MatrixMulImpl::AlgoF32MK4Pack4x12 final : public AlgoBase {
  28. public:
  29. bool is_reproducible() const override { return true; }
  30. const char* name() const override { return "ARMV7_F32_MK4_PACK_4X12"; }
  31. bool usable(const KernSizeParam&) const override;
  32. size_t get_workspace(const KernSizeParam&) const override;
  33. kern_t get_kern(const KernSizeParam&) const override;
  34. void* type() const override { return sm_arm_common_algo_type; }
  35. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  36. };
  37. class MatrixMulImpl::AlgoF32MK4_4x8 final : public AlgoBase {
  38. public:
  39. bool is_reproducible() const override { return true; }
  40. const char* name() const override { return "ARMV7_F32_MK4_4x8"; }
  41. bool usable(const KernSizeParam&) const override;
  42. size_t get_workspace(const KernSizeParam&) const override;
  43. kern_t get_kern(const KernSizeParam&) const override;
  44. void* type() const override { return sm_arm_common_algo_type; }
  45. PackMode packmode() const override { return PackMode::NO_PACK; }
  46. };
  47. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  48. class MatrixMulImpl::AlgoF16K4x16x1 final : public AlgoBase {
  49. public:
  50. bool is_reproducible() const override { return true; }
  51. const char* name() const override { return "AARCH32_F16_K4X16X1"; }
  52. bool usable(const KernSizeParam&) const override;
  53. size_t get_workspace(const KernSizeParam&) const override;
  54. kern_t get_kern(const KernSizeParam&) const override;
  55. void* type() const override { return sm_arm_common_algo_type; }
  56. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  57. };
  58. class MatrixMulImpl::AlgoF16MK8_4x8 final : public AlgoBase {
  59. public:
  60. bool is_reproducible() const override { return true; }
  61. const char* name() const override { return "AARCH32_F16_MK8_4X8"; }
  62. bool usable(const KernSizeParam&) const override;
  63. size_t get_workspace(const KernSizeParam&) const override;
  64. kern_t get_kern(const KernSizeParam&) const override;
  65. void* type() const override { return sm_arm_common_algo_type; }
  66. PackMode packmode() const override { return PackMode::NO_PACK; }
  67. };
  68. #endif
  69. #if __ARM_FEATURE_DOTPROD
  70. class MatrixMulImpl::AlgoInt8x8x32K6x8x4 final : public AlgoBase {
  71. public:
  72. bool is_reproducible() const override { return true; }
  73. const char* name() const override { return "AARCH32_INT8_K6X8X4"; }
  74. bool usable(const KernSizeParam&) const override;
  75. size_t get_workspace(const KernSizeParam&) const override;
  76. kern_t get_kern(const KernSizeParam&) const override;
  77. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  78. };
  79. class MatrixMulImpl::AlgoQuint8DotK4x8x4 final : public AlgoBase {
  80. public:
  81. bool is_reproducible() const override { return true; }
  82. const char* name() const override { return "AARCH32_QUINT8_K4X8X4"; }
  83. bool usable(const KernSizeParam&) const override;
  84. size_t get_workspace(const KernSizeParam&) const override;
  85. kern_t get_kern(const KernSizeParam&) const override;
  86. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  87. };
  88. class MatrixMulImpl::AlgoInt8x8x32MK4_8x6x4DotProd final : public AlgoBase {
  89. public:
  90. bool is_reproducible() const override { return true; }
  91. const char* name() const override {
  92. return "AARCH32_INT8_MK4_8X6X4_DOTPROD";
  93. }
  94. bool usable(const KernSizeParam&) const override;
  95. size_t get_workspace(const KernSizeParam&) const override;
  96. kern_t get_kern(const KernSizeParam&) const override;
  97. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  98. };
  99. #endif
  100. class MatrixMulImpl::AlgoF32Gemv final
  101. : public arm_common::MatrixMulImpl::AlgoF32Gemv {};
  102. class MatrixMulImpl::AlgoInt8x8x32K4x2x16 final : public AlgoBase {
  103. public:
  104. bool is_reproducible() const override { return true; }
  105. const char* name() const override { return "ARMV7_INT8X8X32_K4X2X16"; }
  106. bool usable(const KernSizeParam&) const override;
  107. bool preferred(const KernSizeParam&) const override;
  108. size_t get_workspace(const KernSizeParam&) const override;
  109. kern_t get_kern(const KernSizeParam&) const override;
  110. void* type() const override { return sm_arm_common_algo_type; }
  111. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  112. };
  113. class MatrixMulImpl::AlgoInt8x8x32K4x8x8 final : public AlgoBase {
  114. public:
  115. bool is_reproducible() const override { return true; }
  116. const char* name() const override { return "ARMV7_INT8X8X32_K4X8X8"; }
  117. bool usable(const KernSizeParam&) const override;
  118. bool preferred(const KernSizeParam&) const override;
  119. size_t get_workspace(const KernSizeParam&) const override;
  120. kern_t get_kern(const KernSizeParam&) const override;
  121. void* type() const override { return sm_arm_common_algo_type; }
  122. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  123. };
  124. #if !__ARM_FEATURE_DOTPROD
  125. class MatrixMulImpl::AlgoInt8x8x32Gemv final
  126. : public arm_common::MatrixMulImpl::AlgoInt8x8x32Gemv {};
  127. #endif
  128. class MatrixMulImpl::AlgoQuint8K4x8x8 final : public AlgoBase {
  129. public:
  130. bool is_reproducible() const override { return true; }
  131. const char* name() const override { return "ARMV7_QUINT8_K4X8X8"; }
  132. bool usable(const KernSizeParam&) const override;
  133. size_t get_workspace(const KernSizeParam&) const override;
  134. kern_t get_kern(const KernSizeParam&) const override;
  135. void* type() const override { return sm_arm_common_algo_type; }
  136. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  137. };
  138. class MatrixMulImpl::AlgoInt8x8x16K4x2x16 final : public AlgoBase {
  139. public:
  140. bool is_reproducible() const override { return true; }
  141. const char* name() const override { return "ARMV7_INT8X8X16_K4X2X16"; }
  142. bool usable(const KernSizeParam&) const override;
  143. bool preferred(const KernSizeParam&) const override;
  144. size_t get_workspace(const KernSizeParam&) const override;
  145. kern_t get_kern(const KernSizeParam&) const override;
  146. void* type() const override { return sm_arm_common_algo_type; }
  147. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  148. };
  149. class MatrixMulImpl::AlgoInt8x8x16K4x8x8 final : public AlgoBase {
  150. public:
  151. bool is_reproducible() const override { return true; }
  152. const char* name() const override { return "ARMV7_INT8X8X16_K4X8X8"; }
  153. bool usable(const KernSizeParam&) const override;
  154. bool preferred(const KernSizeParam&) const override;
  155. size_t get_workspace(const KernSizeParam&) const override;
  156. kern_t get_kern(const KernSizeParam&) const override;
  157. void* type() const override { return sm_arm_common_algo_type; }
  158. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  159. };
  160. class MatrixMulImpl::AlgoInt16x16x32K12x4x1 final : public AlgoBase {
  161. public:
  162. bool is_reproducible() const override { return true; }
  163. const char* name() const override { return "ARMV7_INT16X16X32_K12X4X1"; }
  164. bool usable(const KernSizeParam&) const override;
  165. bool preferred(const KernSizeParam&) const override;
  166. size_t get_workspace(const KernSizeParam&) const override;
  167. kern_t get_kern(const KernSizeParam&) const override;
  168. void* type() const override { return sm_arm_common_algo_type; }
  169. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  170. };
  171. class MatrixMulImpl::AlgoInt16x16x32MK8_4x8 final : public AlgoBase {
  172. public:
  173. bool is_reproducible() const override { return true; }
  174. const char* name() const override { return "ARMV7_INT16X16X32_MK8_4X8"; }
  175. bool usable(const KernSizeParam&) const override;
  176. size_t get_workspace(const KernSizeParam&) const override;
  177. kern_t get_kern(const KernSizeParam&) const override;
  178. void* type() const override { return sm_arm_common_algo_type; }
  179. PackMode packmode() const override { return PackMode::NO_PACK; }
  180. };
  181. class MatrixMulImpl::AlgoInt8x8x32MK4_4x2x16 final : public AlgoBase {
  182. public:
  183. bool is_reproducible() const override { return true; }
  184. const char* name() const override { return "ARMV7_INT8X8X32_MK4_4X2X16"; }
  185. bool usable(const KernSizeParam&) const override;
  186. bool preferred(const KernSizeParam&) const override;
  187. size_t get_workspace(const KernSizeParam&) const override;
  188. kern_t get_kern(const KernSizeParam&) const override;
  189. void* type() const override { return sm_arm_common_algo_type; }
  190. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  191. };
  192. } // namespace armv7
  193. } // namespace megdnn
  194. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台