You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling.cpp 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604
  1. /**
  2. * \file dnn/test/arm_common/pooling.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "test/arm_common/fixture.h"
  12. #include "test/common/benchmarker.h"
  13. #include "test/common/checker.h"
  14. #include "test/common/pooling.h"
  15. #include "test/common/rng.h"
  16. #include "test/common/task_record_check.h"
  17. namespace megdnn {
  18. namespace test {
  19. TEST_F(ARM_COMMON, POOLING) {
  20. using Param = param::Pooling;
  21. // clang-format off
  22. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  23. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  24. for (size_t p: {1, 2})
  25. {
  26. Param param;
  27. param.mode = Param::Mode::MAX;
  28. param.window_h = param.window_w = 3;
  29. param.stride_h = param.stride_w = 2;
  30. param.pad_h = param.pad_w = p;
  31. Checker<Pooling> checker(handle());
  32. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  33. param.mode = Param::Mode::AVERAGE;
  34. param.window_h = param.window_w = 3;
  35. param.stride_h = param.stride_w = 2;
  36. param.pad_h = param.pad_w = p;
  37. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  38. param.mode = Param::Mode::MAX;
  39. param.window_h = param.window_w = 4;
  40. param.stride_h = param.stride_w = 2;
  41. param.pad_h = param.pad_w = p;
  42. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  43. param.mode = Param::Mode::MAX;
  44. param.window_h = param.window_w = 5;
  45. param.stride_h = param.stride_w = 2;
  46. param.pad_h = param.pad_w = p;
  47. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  48. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  49. }
  50. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  51. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  52. for (size_t p: {1, 2})
  53. {
  54. Param param;
  55. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  56. param.window_h = param.window_w = 3;
  57. param.stride_h = param.stride_w = 1;
  58. param.pad_h = param.pad_w = p;
  59. Checker<Pooling> checker(handle());
  60. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  61. }
  62. // clang-format on
  63. }
  64. TEST_F(ARM_COMMON, POOLING_RECORD) {
  65. using Param = param::Pooling;
  66. TaskRecordChecker<Pooling> checker(0);
  67. // clang-format off
  68. for (size_t ih: {2, 3, 5, 7, 11, 13, 17})
  69. for (size_t iw: {2, 3, 5, 7, 11, 13, 17})
  70. for (size_t p: {1, 2})
  71. {
  72. Param param;
  73. param.mode = Param::Mode::MAX;
  74. param.window_h = param.window_w = 3;
  75. param.stride_h = param.stride_w = 2;
  76. param.pad_h = param.pad_w = p;
  77. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  78. param.mode = Param::Mode::AVERAGE;
  79. param.window_h = param.window_w = 3;
  80. param.stride_h = param.stride_w = 2;
  81. param.pad_h = param.pad_w = p;
  82. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  83. param.mode = Param::Mode::MAX;
  84. param.window_h = param.window_w = 4;
  85. param.stride_h = param.stride_w = 2;
  86. param.pad_h = param.pad_w = p;
  87. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  88. param.mode = Param::Mode::MAX;
  89. param.window_h = param.window_w = 5;
  90. param.stride_h = param.stride_w = 2;
  91. param.pad_h = param.pad_w = p;
  92. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  93. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  94. }
  95. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  96. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  97. for (size_t p: {1, 2})
  98. {
  99. Param param;
  100. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  101. param.window_h = param.window_w = 3;
  102. param.stride_h = param.stride_w = 1;
  103. param.pad_h = param.pad_w = p;
  104. Checker<Pooling> checker(handle());
  105. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  106. }
  107. // clang-format on
  108. }
  109. TEST_F(ARM_COMMON, POOLING_INT8_W2x2_S2x2) {
  110. // clang-format off
  111. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  112. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  113. for (size_t ph: {0, 1})
  114. for (size_t pw: {0, 1})
  115. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  116. {
  117. Checker<Pooling> checker(handle());
  118. checker.set_dtype(0, dtype::Int8());
  119. param::Pooling param;
  120. param.mode = param::Pooling::Mode::MAX;
  121. param.pad_h = ph;
  122. param.pad_w = pw;
  123. param.stride_h = param.stride_w = 2;
  124. param.window_h = param.window_w = 2;
  125. checker.set_param(param).exec(TensorShapeArray{{2, 3, ih, iw}, {}});
  126. }
  127. // clang-format on
  128. }
  129. TEST_F(ARM_COMMON, POOLING_INT8_W3x3_S2x2) {
  130. // clang-format off
  131. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  132. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  133. for (size_t ph: {0, 1, 2})
  134. for (size_t pw: {0, 1, 2})
  135. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  136. {
  137. Checker<Pooling> checker(handle());
  138. checker.set_dtype(0, dtype::Int8());
  139. param::Pooling param;
  140. param.mode = param::Pooling::Mode::MAX;
  141. param.pad_h = ph;
  142. param.pad_w = pw;
  143. param.stride_h = param.stride_w = 2;
  144. param.window_h = param.window_w = 3;
  145. checker.set_param(param).exec(TensorShapeArray{{2, 3, ih, iw}, {}});
  146. }
  147. // clang-format on
  148. }
  149. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  150. TEST_F(ARM_COMMON, POOLING_FP16) {
  151. Checker<Pooling> checker(handle());
  152. checker.set_dtype(0, dtype::Float16{})
  153. .set_dtype(1, dtype::Float16{})
  154. .set_epsilon(3e-3);
  155. using Param = param::Pooling;
  156. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  157. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  158. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  159. for (size_t window : {2, 3}) {
  160. Param param;
  161. param.mode = mode;
  162. param.window_h = param.window_w = window;
  163. param.stride_h = param.stride_w = 1;
  164. param.pad_h = param.pad_w = window / 2;
  165. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
  166. //! == 3)
  167. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  168. //! test for SH = SW = 2 && FH = FW = 2
  169. param.stride_h = param.stride_w = 2;
  170. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  171. }
  172. }
  173. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  174. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  175. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  176. for (size_t ph : {0, 1, 2})
  177. for (size_t pw : {0, 1, 2})
  178. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  179. param::Pooling param;
  180. param.mode = param::Pooling::Mode::MAX;
  181. param.pad_h = ph;
  182. param.pad_w = pw;
  183. param.stride_h = param.stride_w = 2;
  184. param.window_h = param.window_w = 3;
  185. checker.set_param(param).exec(
  186. TensorShapeArray{{2, 3, ih, iw}, {}});
  187. }
  188. //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
  189. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  190. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  191. for (size_t p : {1, 2}) {
  192. Param param;
  193. param.mode = Param::Mode::MAX;
  194. param.window_h = param.window_w = 4;
  195. param.stride_h = param.stride_w = 2;
  196. param.pad_h = param.pad_w = p;
  197. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  198. }
  199. //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
  200. for (size_t ih : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  201. for (size_t iw : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  202. for (size_t p : {1, 2}) {
  203. Param param;
  204. param.mode = Param::Mode::MAX;
  205. param.window_h = param.window_w = 5;
  206. param.stride_h = param.stride_w = 2;
  207. param.pad_h = param.pad_w = p;
  208. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  209. }
  210. }
  211. #endif
  212. TEST_F(ARM_COMMON, POOLING_QUANTIZED) {
  213. Checker<Pooling> checker(handle());
  214. UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
  215. UniformIntRNG rng2{0, UINT8_MAX >> 1};
  216. using Param = param::Pooling;
  217. for (auto type : std::vector<DType>{
  218. dtype::QuantizedS8(1.1f),
  219. dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
  220. if (type.enumv() == DTypeEnum::QuantizedS8) {
  221. checker.set_rng(0, &rng1);
  222. } else {
  223. megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
  224. checker.set_rng(0, &rng2);
  225. }
  226. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  227. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  228. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  229. for (size_t window : {2, 3}) {
  230. Param param;
  231. param.mode = mode;
  232. param.window_h = param.window_w = window;
  233. param.stride_h = param.stride_w = 1;
  234. param.pad_h = param.pad_w = window / 2;
  235. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
  236. //! FH
  237. //! == 3)
  238. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  239. //! test for SH = SW = 2 && FH = FW = 2
  240. param.stride_h = param.stride_w = 2;
  241. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  242. }
  243. }
  244. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  245. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  246. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  247. for (size_t ph : {0, 1, 2})
  248. for (size_t pw : {0, 1, 2})
  249. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  250. param::Pooling param;
  251. param.mode = param::Pooling::Mode::MAX;
  252. param.pad_h = ph;
  253. param.pad_w = pw;
  254. param.window_h = param.window_w = 3;
  255. param.stride_h = param.stride_w = 2;
  256. checker.set_param(param).exec(
  257. TensorShapeArray{{2, 3, ih, iw}, {}});
  258. }
  259. //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
  260. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  261. for (size_t iw :
  262. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  263. for (size_t p : {1, 2}) {
  264. Param param;
  265. param.mode = Param::Mode::MAX;
  266. param.window_h = param.window_w = 4;
  267. param.stride_h = param.stride_w = 2;
  268. param.pad_h = param.pad_w = p;
  269. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  270. }
  271. //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
  272. for (size_t ih : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  273. for (size_t iw : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  274. for (size_t p : {1, 2}) {
  275. Param param;
  276. param.mode = Param::Mode::MAX;
  277. param.window_h = param.window_w = 5;
  278. param.stride_h = param.stride_w = 2;
  279. param.pad_h = param.pad_w = p;
  280. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  281. }
  282. }
  283. }
  284. #if MEGDNN_WITH_BENCHMARK
  285. void benchmark_nchw44_fp32(Handle* handle) {
  286. using Param = param::Pooling;
  287. auto run = [&](size_t n, size_t c, size_t h, size_t w, size_t filter, size_t stride,
  288. size_t pad, Param::Mode mode) {
  289. Param param;
  290. param.window_h = param.window_w = filter;
  291. param.stride_h = param.stride_w = stride;
  292. param.pad_h = param.pad_w = pad;
  293. param.format = Param::Format::NCHW;
  294. param.mode = mode;
  295. TensorShape nchw_shape = {n, c, h, w};
  296. TensorShape nchw44_shape = {n, c / 4, h, w, 4};
  297. TensorLayout dst_layout;
  298. auto opr = handle->create_operator<Pooling>();
  299. opr->param() = param;
  300. opr->deduce_layout({nchw_shape, dtype::Float32()}, dst_layout);
  301. float calc_amount =
  302. dst_layout.total_nr_elems() * param.window_h * param.window_w;
  303. Benchmarker<Pooling> benchmarker_float_nchw(handle);
  304. Benchmarker<Pooling> benchmarker_float_nchw44(handle);
  305. Benchmarker<Pooling> benchmarker_int_nchw44(handle);
  306. size_t RUN = 500;
  307. auto t1 = benchmarker_float_nchw.set_display(false)
  308. .set_times(RUN)
  309. .set_param(param)
  310. .exec({nchw_shape, {}});
  311. param.format = Param::Format::NCHW44;
  312. auto t2 = benchmarker_int_nchw44.set_display(false)
  313. .set_times(RUN)
  314. .set_param(param)
  315. .execl({{nchw44_shape, dtype::QuantizedS8(1.0)},
  316. {{}, dtype::QuantizedS8(1.0)}});
  317. auto t3 = benchmarker_float_nchw44.set_display(false)
  318. .set_times(RUN)
  319. .set_param(param)
  320. .exec({nchw44_shape, {}});
  321. printf("{%zu %zu %zu %zu} filter = %zu, stride = %zu pad = %zu\n"
  322. "nchw_fp32={%.3f ms, %.3f Mflops}, "
  323. "nchw44_int={%.3f ms, %.3f Mflops}, "
  324. "nchw44_fp32={%.3f ms, %.3f Mflops, speed_up %f}\n\n",
  325. n, c, h, w, filter, stride, pad, t1 / RUN,
  326. calc_amount / (t1 / RUN * 1000), t2 / RUN,
  327. calc_amount / (t2 / RUN * 1000), t3 / RUN,
  328. calc_amount / (t3 / RUN * 1000), t1 / t3);
  329. };
  330. // Resnet50
  331. run(1, 64, 112, 112, 3, 2, 1, param::Pooling::Mode::MAX);
  332. run(1, 2048, 7, 7, 7, 1, 0, param::Pooling::Mode::AVERAGE);
  333. // VGG16
  334. run(1, 64, 224, 224, 2, 2, 0, param::Pooling::Mode::MAX);
  335. run(1, 128, 112, 112, 2, 2, 0, param::Pooling::Mode::MAX);
  336. run(1, 256, 56, 56, 2, 2, 0, param::Pooling::Mode::MAX);
  337. run(1, 512, 28, 28, 2, 2, 0, param::Pooling::Mode::MAX);
  338. run(1, 512, 14, 14, 2, 2, 0, param::Pooling::Mode::MAX);
  339. }
  340. TEST_F(ARM_COMMON, BENCHMARK_POOLING_NCHW44_FP32) {
  341. benchmark_nchw44_fp32(handle());
  342. }
  343. TEST_F(ARM_COMMON_MULTI_THREADS, BENCHMARK_POOLING_NCHW44_FP32) {
  344. benchmark_nchw44_fp32(handle());
  345. }
  346. TEST_F(ARM_COMMON, BENCHMARK_POOLING_INT8_W3x3_S2x2) {
  347. using Param = param::Pooling;
  348. auto run = [&](const TensorShapeArray& shapes, Param param) {
  349. auto handle_naive = create_cpu_handle(2);
  350. TensorLayoutArray layouts;
  351. layouts.emplace_back(shapes[0], dtype::Int8());
  352. layouts.emplace_back(shapes[1], dtype::Int8());
  353. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  354. Benchmarker<Pooling> benchmarker_float(handle());
  355. Benchmarker<Pooling> benchmarker_int(handle());
  356. size_t RUN = 10;
  357. auto t1 = benchmarker_naive.set_display(false)
  358. .set_times(RUN)
  359. .set_param(param)
  360. .exec(shapes);
  361. auto t2 = benchmarker_float.set_display(false)
  362. .set_times(RUN)
  363. .set_param(param)
  364. .exec(shapes);
  365. auto t3 = benchmarker_int.set_display(false)
  366. .set_times(RUN)
  367. .set_param(param)
  368. .execl(layouts);
  369. printf("naive=%.3fms float=%.3fms, int=%.3fms\n", t1 / RUN, t2 / RUN, t3 / RUN);
  370. auto speedup = t2 / t3;
  371. ASSERT_GE(speedup, 2.0);
  372. };
  373. Param param;
  374. param.window_h = param.window_w = 3;
  375. param.stride_h = param.stride_w = 2;
  376. param.pad_h = param.pad_w = 1;
  377. std::cout << "3x3 with 2x2 stride max pooling:" << std::endl;
  378. run({{1, 3, 640, 480}, {}}, param);
  379. }
  380. TEST_F(ARM_COMMON, BENCHMARK_POOLING_W4x4_S2x2) {
  381. using Param = param::Pooling;
  382. auto run = [&](const TensorShapeArray& shapes, Param param) {
  383. std::cout << "N:" << shapes[0][0] << " "
  384. << "IC:" << shapes[0][1] << " "
  385. << "IH:" << shapes[0][2] << " "
  386. << "IW:" << shapes[0][3] << std::endl;
  387. auto handle_naive = create_cpu_handle(2);
  388. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  389. Benchmarker<Pooling> benchmarker_float(handle());
  390. size_t RUN = 10;
  391. auto t1 = benchmarker_naive.set_display(false)
  392. .set_times(RUN)
  393. .set_param(param)
  394. .exec(shapes);
  395. auto t2 = benchmarker_float.set_display(false)
  396. .set_times(RUN)
  397. .set_param(param)
  398. .exec(shapes);
  399. TensorLayout dst_layout;
  400. auto opr = handle()->create_operator<Pooling>();
  401. opr->param() = param;
  402. opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
  403. float calc_amount =
  404. dst_layout.total_nr_elems() * param.window_h * param.window_w;
  405. printf("naive={%.3fms, %.3fMflops}, neon={%.3fms, %.3fMflops}\n", t1 / RUN,
  406. calc_amount / (t1 / RUN * 1000), t2 / RUN,
  407. calc_amount / (t2 / RUN * 1000));
  408. };
  409. Param param;
  410. param.window_h = param.window_w = 4;
  411. param.stride_h = param.stride_w = 2;
  412. param.pad_h = param.pad_w = 1;
  413. std::cout << "4x4 with 2x2 stride max pooling:" << std::endl;
  414. run({{1, 24, 160, 128}, {}}, param);
  415. run({{1, 4, 240, 135}, {}}, param);
  416. run({{1, 32, 120, 67}, {}}, param);
  417. run({{1, 64, 60, 33}, {}}, param);
  418. }
  419. TEST_F(ARM_COMMON, BENCHMARK_POOLING_W5x5_S2x2) {
  420. using Param = param::Pooling;
  421. auto run = [&](const TensorShapeArray& shapes, Param param) {
  422. std::cout << "N:" << shapes[0][0] << " "
  423. << "IC:" << shapes[0][1] << " "
  424. << "IH:" << shapes[0][2] << " "
  425. << "IW:" << shapes[0][3] << std::endl;
  426. auto handle_naive = create_cpu_handle(2);
  427. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  428. Benchmarker<Pooling> benchmarker_float(handle());
  429. size_t RUN = 10;
  430. auto t1 = benchmarker_naive.set_display(false)
  431. .set_times(RUN)
  432. .set_param(param)
  433. .exec(shapes);
  434. auto t2 = benchmarker_float.set_display(false)
  435. .set_times(RUN)
  436. .set_param(param)
  437. .exec(shapes);
  438. TensorLayout dst_layout;
  439. auto opr = handle()->create_operator<Pooling>();
  440. opr->param() = param;
  441. opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
  442. float calc_amount =
  443. dst_layout.total_nr_elems() * param.window_h * param.window_w;
  444. printf("naive={%.3fms, %.3fMflops}, neon={%.3fms, %.3fMflops}\n", t1 / RUN,
  445. calc_amount / (t1 / RUN * 1000), t2 / RUN,
  446. calc_amount / (t2 / RUN * 1000));
  447. };
  448. Param param;
  449. param.window_h = param.window_w = 5;
  450. param.stride_h = param.stride_w = 2;
  451. param.pad_h = param.pad_w = 1;
  452. std::cout << "5x5 with 2x2 stride max pooling:" << std::endl;
  453. run({{1, 24, 160, 128}, {}}, param);
  454. run({{1, 4, 240, 135}, {}}, param);
  455. run({{1, 32, 120, 67}, {}}, param);
  456. run({{1, 64, 60, 33}, {}}, param);
  457. }
  458. TEST_F(ARM_COMMON, BENCHMARK_POOLING_FP16) {
  459. using Param = param::Pooling;
  460. auto run = [&](const TensorShapeArray& shapes, Param param) {
  461. TensorLayoutArray layouts;
  462. layouts.emplace_back(shapes[0], dtype::Float16());
  463. layouts.emplace_back(shapes[1], dtype::Float16());
  464. Benchmarker<Pooling> benchmarker_float(handle());
  465. Benchmarker<Pooling> benchmarker_half(handle());
  466. size_t RUN = 10;
  467. auto tf = benchmarker_float.set_display(false)
  468. .set_times(RUN)
  469. .set_param(param)
  470. .exec(shapes) /
  471. RUN;
  472. auto th = benchmarker_half.set_display(false)
  473. .set_times(RUN)
  474. .set_param(param)
  475. .execl(layouts) /
  476. RUN;
  477. TensorLayout dst_layout;
  478. auto opr = handle()->create_operator<Pooling>();
  479. opr->param() = param;
  480. opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
  481. float computations = dst_layout.total_nr_elems() * param.window_h *
  482. param.window_w / (1024.f * 1024 * 1024);
  483. printf("float=%.3fms %f gflops, float16=%.3fms %f gflops speedup: %f\n", tf,
  484. computations / tf * 1e3, th, computations / th * 1e3, tf / th);
  485. };
  486. Param param;
  487. param.window_h = param.window_w = 2;
  488. param.stride_h = param.stride_w = 1;
  489. param.pad_h = param.pad_w = 1;
  490. printf("2x2 with 1x1 stride max pooling:\n");
  491. run({{1, 3, 640, 480}, {}}, param);
  492. for (size_t oh : {640, 128})
  493. for (size_t ow : {480, 112}) {
  494. param.window_h = param.window_w = 3;
  495. param.stride_h = param.stride_w = 2;
  496. param.pad_h = param.pad_w = 1;
  497. param.mode = Param::Mode::AVERAGE;
  498. printf("3x3 with 2x2 stride average pooling.\n");
  499. run({{1, 3, oh, ow}, {}}, param);
  500. for (size_t pw : {2, 3, 4, 5}) {
  501. param.window_h = param.window_w = pw;
  502. param.stride_h = param.stride_w = 2;
  503. param.pad_h = param.pad_w = 1;
  504. param.mode = Param::Mode::MAX;
  505. printf("%zux%zu with 2x2 stride max pooling:\n", pw, pw);
  506. run({{1, 3, oh, ow}, {}}, param);
  507. }
  508. }
  509. }
  510. TEST_F(ARM_COMMON, BENCHMARK_POOLING_QUANTIZED) {
  511. using Param = param::Pooling;
  512. auto run = [&](const TensorShapeArray& shapes, Param param) {
  513. auto handle_naive = create_cpu_handle(2);
  514. TensorLayoutArray layouts;
  515. layouts.emplace_back(shapes[0], dtype::QuantizedS8(1.1f));
  516. layouts.emplace_back(shapes[1], dtype::QuantizedS8(1.1f));
  517. Benchmarker<Pooling> benchmarker_int(handle());
  518. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  519. size_t RUN = 10;
  520. auto time_int =
  521. benchmarker_int.set_display(false).set_times(RUN).set_param(param).exec(
  522. shapes) /
  523. RUN;
  524. auto time_naive = benchmarker_naive.set_display(false)
  525. .set_times(RUN)
  526. .set_param(param)
  527. .execl(layouts) /
  528. RUN;
  529. TensorLayout dst_layout;
  530. auto opr = handle()->create_operator<Pooling>();
  531. opr->param() = param;
  532. opr->deduce_layout({shapes[0], dtype::QuantizedS8(1.1f)}, dst_layout);
  533. float computations = dst_layout.total_nr_elems() * param.window_h *
  534. param.window_w / (1024.f * 1024 * 1024);
  535. printf("naive=%.3fms %f gflops, int8=%.3fms %f gflops speedup: %f\n",
  536. time_naive, computations / time_naive * 1e3, time_int,
  537. computations / time_int * 1e3, time_naive / time_int);
  538. };
  539. Param param;
  540. param.window_h = param.window_w = 2;
  541. param.stride_h = param.stride_w = 1;
  542. param.pad_h = param.pad_w = 1;
  543. printf("2x2 with 1x1 stride max pooling:\n");
  544. run({{1, 3, 640, 480}, {}}, param);
  545. // clang-format off
  546. for (size_t oh : {640, 128})
  547. for (size_t ow : {480, 112})
  548. for (size_t pw : {2, 3, 4, 5}) {
  549. param.window_h = param.window_w = pw;
  550. param.stride_h = param.stride_w = 2;
  551. param.pad_h = param.pad_w = 1;
  552. printf("%zux%zu with 2x2 stride max pooling:\n", pw, pw);
  553. run({{1, 3, oh, ow}, {}}, param);
  554. }
  555. // clang-format on
  556. }
  557. #endif
  558. } // namespace test
  559. } // namespace megdnn
  560. // vim: syntax=cpp.doxygen