You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

traced_module.py 87 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. import builtins
  9. import collections
  10. import copy
  11. import fnmatch
  12. import functools
  13. import inspect
  14. import keyword
  15. import re
  16. import weakref
  17. from importlib import import_module
  18. from inspect import getcallargs, getmembers, isclass, ismethod
  19. from itertools import chain
  20. from types import FunctionType
  21. from typing import (
  22. Any,
  23. Callable,
  24. Dict,
  25. Iterable,
  26. List,
  27. Optional,
  28. Sequence,
  29. Tuple,
  30. Type,
  31. Union,
  32. )
  33. from .. import functional as F
  34. from .. import get_logger
  35. from .. import module as M
  36. from ..core._imperative_rt.core2 import Tensor as RawTensor
  37. from ..core._imperative_rt.core2 import (
  38. is_tracing_module,
  39. set_module_tracing,
  40. unset_module_tracing,
  41. )
  42. from ..core._trace_option import set_symbolic_shape
  43. from ..module import Module
  44. from ..module import external as MExternal
  45. from ..module.qat import QATModule
  46. from ..quantization.fake_quant import LSQ, TQT, FakeQuantize, _FakeQuantize
  47. from ..quantization.observer import (
  48. ExponentialMovingAverageObserver,
  49. HistogramObserver,
  50. MinMaxObserver,
  51. Observer,
  52. PassiveObserver,
  53. SyncExponentialMovingAverageObserver,
  54. SyncMinMaxObserver,
  55. )
  56. from ..tensor import Tensor
  57. from ..version import __version__
  58. from .expr import (
  59. Apply,
  60. CallFunction,
  61. CallMethod,
  62. Constant,
  63. Expr,
  64. GetAttr,
  65. Input,
  66. get_suffix_name,
  67. is_apply_def,
  68. is_call_function,
  69. is_call_module,
  70. is_call_tensor_method,
  71. is_constant,
  72. is_getattr,
  73. is_input,
  74. )
  75. from .fake_quant import FakeQuantize as TM_FakeQuant
  76. from .module_tracer import (
  77. PatchedFn,
  78. Patcher,
  79. active_module_tracer,
  80. get_tensor_wrapable_method,
  81. module_tracer,
  82. set_active_module_tracer,
  83. )
  84. from .node import ModuleNode, Node, NodeMixin, TensorNode
  85. from .pytree import (
  86. USER_REGISTERED_CONTAINER_TYPE,
  87. USER_REGISTERED_LEAF_TYPE,
  88. ArgsIndex,
  89. TreeDef,
  90. _register_supported_type,
  91. tree_flatten,
  92. )
  93. from .serialization import (
  94. _ModuleState,
  95. load_apply_expr,
  96. load_call_module_expr,
  97. load_call_tensor_method_expr,
  98. load_functional,
  99. )
  100. from .utils import (
  101. _check_builtin_module_attr,
  102. _check_obj_attr,
  103. _convert_kwargs_to_args,
  104. replace_container_with_module_container,
  105. )
  106. logger = get_logger(__name__)
  107. def _is_builtin_name(name: str) -> bool:
  108. return (
  109. name in builtins.__dict__
  110. or name in keyword.kwlist
  111. or name in {"inf", "nan", "NoneType"}
  112. )
  113. def _is_leaf(node):
  114. assert isinstance(node, RawTensor), "doesn't support {} in return values".format(
  115. type(node)
  116. )
  117. return isinstance(node, RawTensor)
  118. _enable_graph_surgery_mode = False
  119. def _graph_surgery_mode():
  120. return _enable_graph_surgery_mode
  121. def _set_graph_surgery_mode(mode: bool):
  122. global _enable_graph_surgery_mode
  123. pre_mode = _enable_graph_surgery_mode
  124. _enable_graph_surgery_mode = mode
  125. return pre_mode
  126. def _node_to_tensor(*args, **kwargs):
  127. tensors = []
  128. nodes, tree_def = tree_flatten((args, kwargs))
  129. for n in nodes:
  130. if isinstance(n, TensorNode):
  131. if n.top_graph is not None:
  132. active_module_tracer().current_scope()._add_input(n)
  133. value = n.value
  134. if value is None:
  135. flag = _set_graph_surgery_mode(False)
  136. unset_module_tracing()
  137. value = F.zeros(shape=n._shape, dtype=n._dtype)
  138. set_module_tracing()
  139. _set_graph_surgery_mode(flag)
  140. orig_n = NodeMixin.get(value, None)
  141. if orig_n is None or "setitem" not in orig_n._name:
  142. NodeMixin.wrap_safe(value, n)
  143. tensors.append(value)
  144. else:
  145. tensors.append(n)
  146. tensors = tree_def.unflatten(tensors)
  147. return tensors
  148. def _tensor_to_node(tensors):
  149. if tensors is None:
  150. return None
  151. nodes = []
  152. tensors, out_def = tree_flatten(tensors)
  153. for t in tensors:
  154. if isinstance(t, Tensor):
  155. n = NodeMixin.get(t, None)
  156. if isinstance(n, TensorNode):
  157. n.value = t
  158. nodes.append(n)
  159. else:
  160. nodes.append(t)
  161. else:
  162. nodes.append(t)
  163. nodes = out_def.unflatten(nodes)
  164. return nodes
  165. def _wrap_method_to_tensor_node():
  166. def _any_method(name, func):
  167. def _any(*args, **kwargs):
  168. if is_tracing_module() and _graph_surgery_mode():
  169. args, kwargs = _node_to_tensor(*args, **kwargs)
  170. attr = getattr(args[0], name)
  171. outs = attr
  172. if callable(attr):
  173. outs = attr(*(args[1:]), **kwargs)
  174. if name == "__setitem__":
  175. _node_to_tensor(outs)
  176. return None
  177. outs = _tensor_to_node(outs)
  178. return outs
  179. else:
  180. outs = func
  181. if callable(func):
  182. outs = func(*args, **kwargs)
  183. if isinstance(func, property):
  184. outs = func.__get__(*args, **kwargs)
  185. return outs
  186. return _any
  187. tensor_method_patch = []
  188. for method in get_tensor_wrapable_method():
  189. patch = PatchedFn(TensorNode, method)
  190. if type(getattr(Tensor, method)) == property:
  191. # Only support property.getter
  192. patch.set_func(property(_any_method(method, patch.origin_fn)))
  193. else:
  194. patch.set_func(_any_method(method, patch.origin_fn))
  195. tensor_method_patch.append(patch)
  196. return tensor_method_patch
  197. def _convert_node_and_tensor(orig_func):
  198. @functools.wraps(orig_func)
  199. def _convert(*args, **kwargs):
  200. if is_tracing_module() and _graph_surgery_mode():
  201. args, kwargs = _node_to_tensor(*args, **kwargs)
  202. rst = orig_func(*args, **kwargs, method_func=_convert)
  203. rst = _tensor_to_node(rst)
  204. return rst
  205. else:
  206. rst = orig_func(*args, **kwargs)
  207. return rst
  208. return _convert
  209. def _wrap_mnode_getattr(orig_getattr):
  210. @functools.wraps(orig_getattr)
  211. def wraped_fn(self, name):
  212. if is_tracing_module() and _graph_surgery_mode():
  213. obj = self.owner
  214. current_graph = active_module_tracer().current_scope()
  215. if self.top_graph is not None:
  216. current_graph._add_input(self)
  217. attr = getattr(obj, name)
  218. node = attr
  219. if not isinstance(attr, TracedModuleBuilder):
  220. if isinstance(attr, Module):
  221. attr = TracedModuleBuilder(attr)
  222. setattr(obj, name, attr)
  223. if isinstance(attr, (NodeMixin, RawTensor)):
  224. NodeMixin.wrap(
  225. attr,
  226. lambda: GetAttr.make(
  227. self,
  228. type=NodeMixin.get_wrapped_type(attr),
  229. attr_name=name,
  230. name="",
  231. ),
  232. )
  233. if isinstance(attr, (NodeMixin, RawTensor)):
  234. node = NodeMixin.get(attr)
  235. if isinstance(node, ModuleNode) and isinstance(attr, (NodeMixin, Module)):
  236. node._owner = weakref.ref(attr)
  237. return node
  238. else:
  239. node = object.__getattribute__(self, name)
  240. return node
  241. return wraped_fn
  242. def _wrap_mnode_call(orig_call):
  243. @functools.wraps(orig_call)
  244. def wraped_fn(self, *args, **kwargs):
  245. if is_tracing_module() and _graph_surgery_mode():
  246. obj = self.owner
  247. if self.top_graph is not None:
  248. active_module_tracer().current_scope()._add_input(self)
  249. rst = obj(*args, **kwargs)
  250. else:
  251. raise TypeError("'ModuleNode' object is not callable")
  252. return rst
  253. return wraped_fn
  254. class _InsertExprs:
  255. def __init__(self, graph, expr: Optional[Expr] = None):
  256. self.graph = graph
  257. while graph.top_graph is not None:
  258. graph = graph.top_graph
  259. assert graph.inputs[0].owner._is_top
  260. self.root_graph = graph
  261. self.global_scope = InternalGraph(self.graph._name, self.graph._qualname)
  262. self.global_scope._namespace.merge(self.graph._namespace)
  263. self.expr = expr
  264. self._tensor_method_patch = None
  265. def __enter__(self):
  266. self.use_sym_shape = set_symbolic_shape(True)
  267. node_id, expr_id = self.root_graph._total_ids
  268. Node._set_next_id(node_id)
  269. Expr._set_next_id(expr_id)
  270. set_module_tracing()
  271. _set_graph_surgery_mode(True)
  272. assert active_module_tracer() is None
  273. set_active_module_tracer(
  274. module_tracer(lambda x: _convert_node_and_tensor(_wrapped_function(x)))
  275. )
  276. active_module_tracer().patcher.__enter__()
  277. for cls, name, func in [
  278. [ModuleNode, "__getattr__", _wrap_mnode_getattr],
  279. [ModuleNode, "__call__", _wrap_mnode_call],
  280. [TracedModuleBuilder, "__call__", _convert_node_and_tensor],
  281. ]:
  282. active_module_tracer().patcher.patch_function(cls, name, func)
  283. self._tensor_method_patch = _wrap_method_to_tensor_node()
  284. active_module_tracer().push_scope(self.global_scope)
  285. def __exit__(self, ty, va, tr):
  286. if va is not None:
  287. return False
  288. active_module_tracer().patcher.__exit__(ty, va, tr)
  289. while self._tensor_method_patch:
  290. pf = self._tensor_method_patch.pop()
  291. pf.set_func(pf.origin_fn)
  292. # delete ModuleNode.__call__ to avoid entering the
  293. # ModuleNode.__init__ method when call a ModuleNode object.
  294. delattr(ModuleNode, "__call__")
  295. module = self.graph.inputs[0].owner
  296. def build_traced_module(
  297. module: TracedModuleBuilder, target_module: TracedModule
  298. ):
  299. for k, v in module.__dict__.items():
  300. if isinstance(v, TracedModuleBuilder):
  301. traced_v = v.build()
  302. build_traced_module(v, traced_v)
  303. setattr(target_module, k, traced_v)
  304. build_traced_module(module, module)
  305. set_symbolic_shape(self.use_sym_shape)
  306. _set_graph_surgery_mode(False)
  307. set_active_module_tracer(None)
  308. unset_module_tracing()
  309. extra_inp_nodes = set(self.global_scope.inputs)
  310. max_inp_expr_idx = -1
  311. for node in extra_inp_nodes:
  312. assert (
  313. node.top_graph == self.graph
  314. ), "The input node ({}) is not in the graph ({})".format(node, self.graph)
  315. if node.expr in self.graph._exprs:
  316. max_inp_expr_idx = max(
  317. max_inp_expr_idx, self.graph._exprs.index(node.expr)
  318. )
  319. max_inp_expr_idx += 1
  320. insert_index = -1
  321. if self.expr in self.graph._exprs:
  322. insert_index = self.graph._exprs.index(self.expr)
  323. insert_index += 1
  324. if insert_index < max_inp_expr_idx:
  325. insert_index = max_inp_expr_idx
  326. for expr in self.global_scope._exprs:
  327. self.graph._exprs.insert(insert_index, expr)
  328. insert_index += 1
  329. self.graph._namespace.merge(self.global_scope._namespace)
  330. self.root_graph._total_ids = (Node._get_next_id(), Expr._get_next_id())
  331. self.root_graph.inputs[0].owner._update_ref()
  332. for node in self.root_graph.nodes():
  333. if isinstance(node, TensorNode):
  334. node.value = None
  335. return True
  336. class NameSpace:
  337. def __init__(self, name, qualname):
  338. self.name = name
  339. self.qualname = qualname
  340. self._used_names = {}
  341. def create_unique_name(self, name: str, node: Any = None) -> str:
  342. assert isinstance(name, str), "The name must be a string"
  343. if name in self._used_names and (self._used_names[name] is node):
  344. return name
  345. name = re.sub("[^0-9a-zA-Z_]+", "_", name)
  346. if name[0].isdigit():
  347. name = "_{}".format(name)
  348. while (
  349. name in self._used_names and self._used_names[name] is not None
  350. ) or _is_builtin_name(name):
  351. match = re.match(r"(.*)_(\d+)$", name)
  352. if match is None:
  353. name = name + "_1"
  354. else:
  355. base, num = match.group(1, 2)
  356. name = "{}_{}".format(base, int(num) + 1)
  357. self._used_names.setdefault(name)
  358. if node is not None:
  359. self.associate_name_with_obj(name, node)
  360. return name
  361. def auto_naming_for_outputs(self, expr: Expr):
  362. _add_suffix = lambda x: x + "_out"
  363. if is_call_module(expr):
  364. call_node = expr.inputs[0]
  365. qualname = "%s.[out]" % (call_node.qualname)
  366. name = call_node.name
  367. elif is_call_tensor_method(expr):
  368. name = expr.method.strip("_")
  369. qualname = "{}.[{}]".format(
  370. self.qualname, self.create_unique_name("method_%s" % (name)),
  371. )
  372. elif is_call_function(expr):
  373. name = expr.func.__name__
  374. qualname = "{}.[{}]".format(
  375. self.qualname, self.create_unique_name("func_%s" % name),
  376. )
  377. elif is_apply_def(expr):
  378. name = str(expr.opdef).lower()
  379. qualname = "{}.[{}]".format(
  380. self.qualname, self.create_unique_name("def_%s" % name),
  381. )
  382. elif is_getattr(expr):
  383. qualname = "{}.{}".format(expr.inputs[0].qualname, expr.name)
  384. name = get_suffix_name(self.qualname, qualname)
  385. _add_suffix = lambda x: x
  386. elif is_constant(expr) or is_input(expr):
  387. name = (
  388. expr.name if expr.name else "const_" + type(expr.value).__name__.lower()
  389. )
  390. qualname = "{}.[{}]".format(self.qualname, name)
  391. _add_suffix = lambda x: x
  392. for node in expr.outputs:
  393. cur_name = node._name if node._name else _add_suffix(name)
  394. node._name = self.create_unique_name(cur_name, node)
  395. if node._qualname == "":
  396. node._qualname = qualname
  397. assert get_suffix_name(self.qualname, qualname) is not None
  398. def merge(self, other: "NameSpace"):
  399. self._used_names.update(other.used_names)
  400. def associate_name_with_obj(self, name: str, node: Node):
  401. assert name in self.used_names
  402. assert self.used_names[name] is None, "The name(%s) is already in use" % (name)
  403. self._used_names[name] = node
  404. def unassociate_name_with_obj(self, node: Node):
  405. assert node.name in self.used_names
  406. # assert self.used_names[node.name] is node
  407. self._used_names[node.name] = None
  408. @property
  409. def used_names(self):
  410. return self._used_names
  411. class InternalGraph:
  412. r"""``InternalGraph`` is the main data structure used in the TracedModule.
  413. It is used to represent the execution procedure of Module's forward method.
  414. For example, the following code
  415. .. code-block::
  416. import megengine.random as rand
  417. import megengine.functional as F
  418. import megengine.module as M
  419. import megengine.traced_module as tm
  420. class MyModule(M.Module):
  421. def __init__(self):
  422. super().__init__()
  423. self.param = rand.normal(size=(3, 4))
  424. self.linear = M.Linear(4, 5)
  425. def forward(self, x):
  426. return F.relu(self.linear(x + self.param))
  427. net = MyModule()
  428. inp = F.zeros(shape = (3, 4))
  429. traced_module = tm.trace_module(net, inp)
  430. Will produce the following ``InternalGraph``::
  431. print(traced_module.graph)
  432. .. code-block:: text
  433. MyModule.Graph (self, x) {
  434. %2: linear = getattr(self, "linear") -> (Linear)
  435. %3: param = getattr(self, "param") -> (Tensor)
  436. %4: add_out = x.__add__(param, )
  437. %5: linear_out = linear(add_out, )
  438. %6: relu_out = nn.relu(linear_out, )
  439. return relu_out
  440. }
  441. """
  442. _exprs = None # type: List[Expr]
  443. _inputs = None # type: List[Node]
  444. _outputs = None # type: List[Node]
  445. _top_graph = None # type: InternalGraph
  446. _total_ids = None # type: List[int]
  447. def __init__(self, name: str, qualname: str):
  448. self._exprs = []
  449. self._inputs = []
  450. self._outputs = []
  451. self._watch_point = []
  452. self._end_point = []
  453. self._namespace = NameSpace(name, qualname)
  454. self._rst = collections.defaultdict(list)
  455. self._name = name
  456. self._qualname = qualname
  457. def _insert(self, expr):
  458. self._exprs.append(expr)
  459. @property
  460. def name(self) -> str:
  461. r"""Get the name of this graph."""
  462. return self._name
  463. @name.setter
  464. def name(self, new_name: str):
  465. r"""Set a new name to this graph."""
  466. mod = self.inputs[0].owner
  467. graph = self.top_graph
  468. assert graph is not None or mod._is_top, "The parent graph cannot be None."
  469. if graph is not None:
  470. assert graph._namespace.used_names.get(new_name, None) is None, (
  471. "The name(%s) is already in use. Please try a different one again."
  472. % (new_name)
  473. )
  474. new_name = graph._namespace.create_unique_name(new_name, self)
  475. self._name = new_name
  476. @property
  477. def qualname(self) -> str:
  478. r"""Get the `qualname` of this graph. The `qualname` can be used to get the
  479. submodule from the traced Module or Module.
  480. Example:
  481. .. code-block::
  482. import megengine.module as M
  483. import megengine.traced_module as tm
  484. import megengine as mge
  485. class block(M.Module):
  486. def __init__(self):
  487. super().__init__()
  488. self.relu = M.ReLU()
  489. def forward(self, x):
  490. return self.relu(x)
  491. class module(M.Module):
  492. def __init__(self):
  493. super().__init__()
  494. self.block = block()
  495. def forward(self, x):
  496. x = self.block(x)
  497. return x
  498. net = module()
  499. traced_net = tm.trace_module(net, mge.Tensor([0.]))
  500. qualname = traced_net.block.graph.qualname # qualname = "module.block"
  501. qualname = qualname.split(".", 1)[-1] # qualname = "block"
  502. assert qualname in list(map(lambda x: x[0], net.named_modules()))
  503. assert qualname in list(map(lambda x: x[0], traced_net.named_modules()))
  504. """
  505. return self._qualname
  506. @property
  507. def inputs(self) -> List[Node]:
  508. r"""Get the list of input Nodes of this graph.
  509. Returns:
  510. A list of ``Node``.
  511. """
  512. return self._inputs
  513. @property
  514. def outputs(self) -> List[Node]:
  515. r"""Get the list of output Nodes of this graph.
  516. Returns:
  517. A list of ``Node``.
  518. """
  519. return self._outputs
  520. @property
  521. def top_graph(self):
  522. r"""Get the parent graph of this graph.
  523. Returns:
  524. An ``InternalGraph``.
  525. """
  526. if self._top_graph:
  527. return self._top_graph()
  528. return None
  529. def exprs(self, recursive=True):
  530. r"""Get the Exprs that constitute this graph.
  531. Args:
  532. recursive: whether to get the Exprs in the subgraph.
  533. Default: True
  534. Returns:
  535. A ``ExprFilter`` containing all Exprs of this graph.
  536. """
  537. return ExprFilter(_expr_iter(self, recursive))
  538. def nodes(self, recursive=True):
  539. r"""Get the Nodes that constitute this graph.
  540. Args:
  541. recursive: whether to get the Nodes in the subgraph.
  542. Default: True
  543. Returns:
  544. A ``NodeFilter`` containing all Nodes of this graph.
  545. """
  546. return NodeFilter(_node_iter(self, recursive))
  547. def get_function_by_type(self, func: Callable = None, recursive=True):
  548. r"""Filter Exprs by the type of ``CallFunction``.
  549. Args:
  550. func: a built-in function, such as ``F.relu``.
  551. recursive: whether to get the Exprs in the subgraph.
  552. Default: True
  553. Returns:
  554. A :class:`~.TracedModule.ExprFilterCallFunction`.
  555. """
  556. return self.exprs(recursive).call_function(func)
  557. def get_method_by_type(self, method: str = None, recursive=True):
  558. r"""Filter Exprs by the type of ``CallMethod``.
  559. Args:
  560. method: a method string, such as "__add__".
  561. recursive: whether to get the Exprs in the subgraph.
  562. Default: True
  563. Returns:
  564. A :class:`~.TracedModule.ExprFilterCallMethod`.
  565. """
  566. return self.exprs(recursive).call_method(method)
  567. def get_expr_by_id(self, expr_id: List[int] = None, recursive=True):
  568. r"""Filter Exprs by their ``id``.
  569. Args:
  570. expr_id: a list of :class:`int`.
  571. recursive: whether to get the Exprs in the subgraph.
  572. Default: True
  573. Returns:
  574. A :class:`~.TracedModule.ExprFilterExprId`.
  575. """
  576. return self.exprs(recursive).expr_id(expr_id)
  577. def get_module_by_type(self, module_cls: Module, recursive=True):
  578. r"""Filter Nodes by the ``module_type`` of ``ModuleNode``.
  579. Args:
  580. module_cls: a subclass of :class:`~.Module`.
  581. recursive: whether to get the Nodes in the subgraph.
  582. Default: True
  583. Returns:
  584. A :class:`~.TracedModule.NodeFilterType`.
  585. """
  586. return self.nodes(recursive).type(module_cls)
  587. def get_node_by_id(self, node_id: List[int] = None, recursive=True):
  588. r"""Filter Nodes by their ``id``.
  589. The ``id`` of the ``Node`` can be obtained by the following code
  590. .. code-block::
  591. # node : Node
  592. print("{:i}".format(node))
  593. print(node.__format__("i"))
  594. # graph : InternalGraph
  595. print("{:i}".format(graph))
  596. print(graph.__format__("i"))
  597. Args:
  598. node_id: a list of :class:`int`.
  599. recursive: whether to get the Nodes in the subgraph.
  600. Default: True
  601. Returns:
  602. A :class:`~.TracedModule.NodeFilterNodeId`.
  603. """
  604. return self.nodes(recursive).node_id(node_id)
  605. def get_node_by_name(
  606. self, name: str = None, ignorecase: bool = True, recursive=True
  607. ):
  608. r"""Filter Nodes by their full name.
  609. The full name of the ``Node`` can be obtained by the following code
  610. .. code-block::
  611. # node : Node
  612. print("{:p}".format(node))
  613. print(node.__format__("p"))
  614. # graph : InternalGraph
  615. print("{:p}".format(graph))
  616. print(graph.__format__("p"))
  617. Args:
  618. name: a string in glob syntax that can contain ``?`` and
  619. ``*`` to match a single or arbitrary characters.
  620. ignorecase: whether to ignroe case.
  621. Default: True
  622. recursive: whether to get the Nodes in the subgraph.
  623. Default: True
  624. Returns:
  625. A :class:`~.TracedModule.NodeFilterName`.
  626. """
  627. return self.nodes(recursive).name(name, ignorecase)
  628. def _add_input(self, i):
  629. self._inputs.append(i)
  630. def _add_output(self, o):
  631. self._outputs.append(o)
  632. def get_dep_exprs(self, nodes: Sequence[Node]) -> List[Expr]:
  633. r"""Get the dependent Exprs of the ``nodes``.
  634. Args:
  635. nodes: a list of :class:`Node`.
  636. Returns:
  637. A list of dependent :class:`Expr`.
  638. """
  639. if not isinstance(nodes, Sequence):
  640. nodes = (nodes,)
  641. ret = list()
  642. queue = list(nodes)
  643. visited_queue = list()
  644. while queue:
  645. node = queue.pop()
  646. visited_queue.append(node)
  647. expr = node.expr
  648. if expr not in ret:
  649. ret.append(expr)
  650. for i in expr.inputs:
  651. if i not in queue and i not in visited_queue:
  652. queue.append(i)
  653. return ret
  654. def reset_inputs(self, *args, **kwargs):
  655. forma_mnode = self.inputs[0]
  656. moudle = forma_mnode.owner
  657. assert moudle._is_top, "reset_inputs only supports top graph"
  658. inputs, tree_def = tree_flatten(((moudle, *args), kwargs))
  659. def create_node(val: Tensor):
  660. name = self._namespace.create_unique_name("args")
  661. node = Input(
  662. type=TensorNode, name=name, qualname="%s.[%s]" % (self._qualname, name)
  663. ).outputs[0]
  664. self._namespace.associate_name_with_obj(node.name, node)
  665. node.shape = val.shape
  666. node.dtype = val.dtype
  667. return node
  668. formal_node_inputs = [
  669. forma_mnode,
  670. ]
  671. org_argdef = list(moudle.argdef_graph_map.keys())[0]
  672. for v in inputs[1:]:
  673. assert isinstance(v, RawTensor)
  674. formal_node_inputs.append(create_node(v))
  675. self._inputs[:] = formal_node_inputs
  676. moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
  677. moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
  678. return formal_node_inputs[1:]
  679. def add_input_node(
  680. self, shape: Tuple[int], dtype: str = "float32", name: str = "args"
  681. ):
  682. r"""Add an input node to the graph.
  683. The new Node will be the last of the positional arguments.
  684. Args:
  685. shape: the shape of the new input Node.
  686. dtype: the dtype of the new input Node.
  687. Default: float32
  688. name: the name of the new input Node. When the name is used in the graph,
  689. a suffix will be added to it.
  690. """
  691. forma_mnode = self.inputs[0]
  692. moudle = forma_mnode.owner
  693. assert moudle._is_top, "add_input_node only supports top graph"
  694. def create_node(name=None):
  695. name = self._namespace.create_unique_name(name)
  696. node = Input(
  697. type=TensorNode, name=name, qualname="%s.[%s]" % (self._qualname, name)
  698. ).outputs[0]
  699. self._namespace.associate_name_with_obj(node.name, node)
  700. node.shape = shape
  701. node.dtype = dtype
  702. return node
  703. org_argdef = list(moudle.argdef_graph_map.keys())[0]
  704. args, kwargs = org_argdef.unflatten(self._inputs)
  705. formal_inp_node = create_node(name)
  706. inputs, tree_def = tree_flatten(
  707. ((*args, formal_inp_node), kwargs),
  708. is_const_leaf=lambda x: not isinstance(x, (TensorNode, ModuleNode)),
  709. )
  710. self._inputs[:] = inputs[:]
  711. moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
  712. moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
  713. return formal_inp_node
  714. def reset_outputs(self, outputs):
  715. r"""Reset the output Nodes of the graph.
  716. .. note::
  717. This method only supports resetting the output of graphs
  718. that do not have a parent graph.
  719. Args:
  720. outputs: an object which inner element is Node. Support tuple, list
  721. dict, etc.
  722. For example, the following code
  723. .. code-block::
  724. import megengine.functional as F
  725. import megengine.module as M
  726. import megengine.traced_module as tm
  727. class MyModule(M.Module):
  728. def forward(self, x):
  729. x = x + 1
  730. return x
  731. net = MyModule()
  732. inp = F.zeros(shape = (1, ))
  733. traced_module = tm.trace_module(net, inp)
  734. graph = traced_module.graph
  735. inp_node = graph.inputs[1]
  736. out_node = graph.outputs[0]
  737. graph.reset_outputs((out_node, {"input": inp_node}))
  738. out = traced_module(inp)
  739. Will produce the following ``InternalGraph`` and ``out``::
  740. print(graph)
  741. print(out)
  742. .. code-block:: text
  743. MyModule.Graph (self, x) {
  744. %2: add_out = x.__add__(1, )
  745. return add_out, x
  746. }
  747. (Tensor([1.], device=xpux:0), {'input': Tensor([0.], device=xpux:0)})
  748. """
  749. outputs, out_def = tree_flatten(
  750. outputs, is_leaf=lambda x: isinstance(x, TensorNode),
  751. )
  752. forma_mnode = self.inputs[0]
  753. moudle = forma_mnode.owner
  754. assert moudle._is_top, "reset_outputs only supports top graph"
  755. tree_def = list(moudle.argdef_graph_map.keys())[0]
  756. self._outputs[:] = outputs
  757. moudle.argdef_outdef_map[tree_def] = out_def
  758. def add_output_node(self, node: TensorNode):
  759. r"""Add an output node to the Graph.
  760. The Graph output will become a ``tuple`` after calling ``add_output_node``.
  761. The first element of the ``tuple`` is the original output, and the second
  762. is the ``node``.
  763. For example, the following code
  764. .. code-block::
  765. import megengine.functional as F
  766. import megengine.module as M
  767. import megengine.traced_module as tm
  768. class MyModule(M.Module):
  769. def forward(self, x):
  770. x = x + 1
  771. return x
  772. net = MyModule()
  773. inp = F.zeros(shape = (1, ))
  774. traced_module = tm.trace_module(net, inp)
  775. graph = traced_module.graph
  776. inp_node = graph.inputs[1]
  777. out_node = graph.outputs[0]
  778. graph.add_output_node(inp_node)
  779. graph.add_output_node(out_node)
  780. out = traced_module(inp)
  781. Will produce the following ``InternalGraph`` and ``out``::
  782. print(graph)
  783. print(out)
  784. .. code-block:: text
  785. MyModule.Graph (self, x) {
  786. %2: add_out = x.__add__(1, )
  787. return add_out, x, add_out
  788. }
  789. ((Tensor([1.], device=xpux:0), Tensor([0.], device=xpux:0)), Tensor([1.], device=xpux:0))
  790. """
  791. forma_mnode = self.inputs[0]
  792. moudle = forma_mnode.owner
  793. assert moudle._is_top, "add_output_node only supports top graph"
  794. tree_def = list(moudle.argdef_graph_map.keys())[0]
  795. org_out_def = moudle.argdef_outdef_map[tree_def]
  796. org_outs = org_out_def.unflatten(self._outputs)
  797. outputs, out_def = tree_flatten(
  798. (org_outs, node), is_leaf=lambda x: isinstance(x, TensorNode),
  799. )
  800. self._outputs[:] = outputs
  801. moudle.argdef_outdef_map[tree_def] = out_def
  802. def insert_exprs(self, expr: Optional[Expr] = None):
  803. r"""Initialize the trace mode and insertion position.
  804. When used within a 'with' statement, this will temporary set the trace mode and
  805. then restore normal mode when the with statement exits::
  806. with graph.insert_exprs(e): # set the trace mode
  807. ... # trace function or module
  808. ... # inert exprs into graph and resotre normal mode
  809. Args:
  810. expr: the ``expr`` after which to insert. If None, the insertion position will be
  811. automatically set based on the input node.
  812. Returns:
  813. A resource manager that will initialize trace mode on ``__enter__`` and
  814. restore normal mode on ``__exit__``.
  815. """
  816. if expr is not None:
  817. assert expr.top_graph == self, "Expr to insert after is not in graph."
  818. return _InsertExprs(self, expr)
  819. def replace_node(self, repl_dict: Dict[Node, Node]):
  820. r"""Replace the Nodes in the graph.
  821. Args:
  822. repl_dict: the map {old_Node: new_Node} that specifies how to replace the Nodes.
  823. """
  824. while repl_dict:
  825. node, repl_node = repl_dict.popitem()
  826. assert type(node) == type(
  827. repl_node
  828. ), "The type of {}({}) and {}({}) are not the same".format(
  829. node, type(node).__name__, repl_node, type(repl_node).__name__
  830. )
  831. # check graph inputs and outputs
  832. for i, n in enumerate(self.outputs):
  833. if n is node:
  834. self.outputs[i] = repl_node
  835. # update users of node and repl_node
  836. # update inputs of expr in node.users
  837. graph = repl_node.top_graph
  838. assert graph is not None
  839. assert graph is self
  840. index = -1
  841. if not isinstance(repl_node.expr, Input):
  842. index = graph._exprs.index(repl_node.expr)
  843. dep_exprs = self.get_dep_exprs(repl_node)
  844. i = 0
  845. while i < len(node.users):
  846. n = node.users[i]
  847. if n in graph._exprs and index >= graph._exprs.index(n):
  848. i += 1
  849. continue
  850. if n in dep_exprs:
  851. logger.info("Find a loop: ignore this replacement once")
  852. logger.info("node: %s" % node.__repr__())
  853. logger.info("expr: %s" % n.__repr__())
  854. i += 1
  855. continue
  856. repl_node.users.append(n)
  857. node.users.pop(i)
  858. idx = n.inputs.index(node)
  859. n.inputs[idx] = repl_node
  860. def _merge_getattr_expr(self):
  861. getattr_nodes_map = dict() # Dcit[(Node, str), Node]
  862. node_to_attrname = dict() # Dict[Node, (Node, Str)]
  863. for expr in filter(lambda x: isinstance(x, GetAttr), self._exprs):
  864. base_node, attr_name = expr.inputs[0], expr.name
  865. if expr.inputs[0] in node_to_attrname:
  866. base_node, base_name = node_to_attrname[expr.inputs[0]]
  867. attr_name = "{}.{}".format(base_name, expr.name)
  868. if get_suffix_name(self.qualname, expr.outputs[0].qualname) != attr_name:
  869. expected_qualname = base_node.qualname + "." + attr_name
  870. logger.warning(
  871. "{}.qualname expects {}, got {} actually. You can re-trace this "
  872. "TracedModel to make the name correct.".format(
  873. expr.outputs[0], expected_qualname, expr.outputs[0].qualname
  874. )
  875. )
  876. expr.outputs[0]._qualname = expected_qualname
  877. key = (base_node, attr_name)
  878. node_to_attrname[expr.outputs[0]] = key
  879. if key in getattr_nodes_map:
  880. existed_node = getattr_nodes_map[key]
  881. repl_node = expr.outputs[0]
  882. for expr in repl_node.users:
  883. existed_node.users.append(expr)
  884. idx = expr.inputs.index(repl_node)
  885. expr.inputs[idx] = existed_node
  886. repl_node.users = []
  887. else:
  888. if attr_name != expr.name:
  889. expr.name = attr_name
  890. expr.inputs[0].users.remove(expr)
  891. self.inputs[0].users.append(expr)
  892. expr.inputs[0] = self.inputs[0]
  893. getattr_nodes_map[key] = expr.outputs[0]
  894. def compile(self):
  895. r"""Delete unused expr."""
  896. self._merge_getattr_expr()
  897. dep_exprs = self.get_dep_exprs(self.outputs)
  898. i = 0
  899. while i < len(self._exprs):
  900. expr = self._exprs[i]
  901. if expr in dep_exprs or expr._disable_remove:
  902. i += 1
  903. continue
  904. for n in expr.inputs:
  905. n.users.remove(expr)
  906. self._exprs.remove(expr)
  907. for n in expr.outputs:
  908. self._namespace.unassociate_name_with_obj(n)
  909. def _reset_ids(self):
  910. for total_expr_id, expr in enumerate(self.exprs()):
  911. expr._id = total_expr_id
  912. for total_node_id, node in enumerate(self.nodes()):
  913. node._id = total_node_id
  914. self._total_ids = (total_node_id + 1, total_expr_id + 1)
  915. def _re_associate_name(self):
  916. self._namespace.used_names.clear()
  917. for node in self.nodes(False):
  918. node._name = self._namespace.create_unique_name(node.name, node)
  919. def interpret(self, *inputs):
  920. node2value = {}
  921. end_nodes_set = set(self._end_point)
  922. endnode2value = {}
  923. def get_all_endnode_val(n, v):
  924. if n in end_nodes_set:
  925. endnode2value[n] = v
  926. end_nodes_set.remove(n)
  927. return not end_nodes_set
  928. return False
  929. ref_count = lambda n: len(n.users) + (1 if n in self._outputs else 0)
  930. for n, v in zip(self._inputs, inputs):
  931. if ref_count(n) > 0:
  932. node2value[n] = [v, ref_count(n)]
  933. if n in self._watch_point:
  934. self._rst[n].append(v)
  935. if n in self._end_point and get_all_endnode_val(n, v):
  936. return list(endnode2value[i] for i in self._end_point)
  937. for expr in self._exprs:
  938. values = expr.interpret(*list(node2value[i][0] for i in expr.inputs))
  939. for n in expr.inputs:
  940. node2value[n][1] -= 1
  941. if node2value[n][1] == 0:
  942. node2value.pop(n)
  943. if values is not None:
  944. assert len(values) == len(expr.outputs)
  945. for n, v in zip(expr.outputs, values):
  946. if ref_count(n) > 0:
  947. node2value[n] = [v, ref_count(n)]
  948. if n in self._watch_point:
  949. self._rst[n] = v
  950. if self._end_point and get_all_endnode_val(n, v):
  951. return list(endnode2value[i] for i in self._end_point)
  952. return list(node2value[i][0] for i in self._outputs)
  953. def eval(self, *inputs: Tuple[Tensor]):
  954. r"""Call this method to execute the graph.
  955. Args:
  956. inputs: the tensors corresponding to the ``graph.inputs[1:]``.
  957. """
  958. assert len(inputs) == len(self._inputs) - 1
  959. inp = [self._inputs[0].owner] + list(inputs)
  960. return self.interpret(*inp)
  961. def __repr__(self):
  962. return self.__format__()
  963. def __format__(self, format_spec: str = "") -> str:
  964. saved_format_spec = Node._set_format_spec(format_spec)
  965. name = ""
  966. if self._name:
  967. name = "%s.Graph" % self._name
  968. res = "{} ({}) {{\n\t{}\n\treturn {}\n}}".format(
  969. name,
  970. ", ".join(str(i) for i in self._inputs),
  971. "\n\t".join("{}".format(str(i)) for i in self._exprs),
  972. ", ".join(str(i) for i in self._outputs),
  973. )
  974. Node._set_format_spec(saved_format_spec)
  975. return res
  976. def __getstate__(self):
  977. state = {
  978. "_exprs": self._exprs,
  979. "_inputs": self._inputs,
  980. "_outputs": self._outputs,
  981. "_watch_point": [],
  982. "_end_point": [],
  983. "_namespace": self._namespace,
  984. "_rst": collections.defaultdict(list),
  985. "_name": self._name,
  986. "_qualname": self._qualname,
  987. }
  988. if self._total_ids:
  989. state["_total_ids"] = self._total_ids
  990. _check_obj_attr(state)
  991. return state
  992. def __setstate__(self, state):
  993. old_version = False
  994. if "_module_name" in state:
  995. old_version = True
  996. state["_qualname"] = state.pop("_module_name")
  997. prefix_name = state.pop("_prefix_name")
  998. if prefix_name:
  999. state["_name"] = "{}_{}".format(prefix_name, state["_name"])
  1000. self.__dict__.update(state)
  1001. if old_version:
  1002. self.inputs[0]._qualname = self._qualname
  1003. for e in self.exprs(False):
  1004. if isinstance(e, GetAttr):
  1005. e.outputs[0]._qualname = "{}.{}".format(
  1006. e.inputs[0]._qualname, e.name
  1007. )
  1008. for n in self.nodes(False):
  1009. if isinstance(n.expr, CallMethod) and isinstance(
  1010. n.expr.inputs[0], ModuleNode
  1011. ):
  1012. n._qualname = n.expr.inputs[0]._qualname + ".[out]"
  1013. continue
  1014. if (
  1015. not isinstance(n.expr, GetAttr)
  1016. and isinstance(n, TensorNode)
  1017. and n._qualname
  1018. ):
  1019. n._qualname = "{}.{}".format(self._qualname, n._qualname)
  1020. self._namespace = NameSpace(self._name, self._qualname)
  1021. self._re_associate_name()
  1022. def __copy__(self):
  1023. cls = self.__class__
  1024. result = cls.__new__(cls)
  1025. result.__dict__.update(self.__dict__)
  1026. return result
  1027. def __deepcopy__(self, memo):
  1028. if id(self) in memo:
  1029. return memo[id(self)]
  1030. cls = self.__class__
  1031. result = cls.__new__(cls)
  1032. state = {}
  1033. memo[id(self)] = result
  1034. for k, v in self.__dict__.items():
  1035. if not isinstance(v, weakref.ReferenceType):
  1036. state[k] = copy.deepcopy(v, memo)
  1037. result.__dict__.update(state)
  1038. return result
  1039. def _get_meth_name(obj, func):
  1040. tp = obj if isinstance(obj, type) else type(obj)
  1041. for cls in tp.mro():
  1042. for k, v in cls.__dict__.items():
  1043. if v == func:
  1044. return k
  1045. return None
  1046. def _wrapped_function(orig_func):
  1047. @functools.wraps(orig_func)
  1048. def wrapped_fn(*args, **kwargs):
  1049. method_func = kwargs.pop("method_func", wrapped_fn)
  1050. if is_tracing_module():
  1051. unset_module_tracing()
  1052. inputs, tree_def = tree_flatten((args, kwargs))
  1053. for i in inputs:
  1054. if not NodeMixin.get(i, None):
  1055. if isinstance(i, (RawTensor, NodeMixin)):
  1056. NodeMixin.wrap_safe(i, Constant.make(i))
  1057. args, kwargs = _convert_kwargs_to_args(orig_func, args, kwargs)
  1058. meth_name = _get_meth_name(args[0], method_func)
  1059. arg_type = args[0] if isinstance(args[0], type) else type(args[0])
  1060. if meth_name and arg_type and issubclass(arg_type, RawTensor):
  1061. inputs, tree_def = tree_flatten((args, kwargs))
  1062. self = inputs[0]
  1063. if meth_name == "__new__":
  1064. if all([not isinstance(i, RawTensor) for i in inputs]):
  1065. # only trace Tensor.__new__() when there are tensors in args
  1066. set_module_tracing()
  1067. return orig_func(*args, **kwargs)
  1068. if isinstance(args[1], RawTensor):
  1069. node = NodeMixin.get(inputs[1])
  1070. inputs[1] = copy.copy(inputs[1])
  1071. # copy inputs[1] to avoid tensor and Tensor(tensor) share same m_tensor,
  1072. # which will cause they have same _NodeMixin__node in tracing.
  1073. NodeMixin.wrap_safe(inputs[1], node)
  1074. args, kwargs = tree_def.unflatten(inputs)
  1075. call_node = CallMethod.make(self, meth_name)
  1076. else:
  1077. call_node = CallMethod.make(NodeMixin.get(self), meth_name)
  1078. call_node.add_inputs(inputs[1:])
  1079. else:
  1080. inputs, tree_def = tree_flatten((args, kwargs))
  1081. call_node = CallFunction.make(orig_func)
  1082. call_node.add_inputs(inputs)
  1083. call_node.arg_def = tree_def
  1084. rst = orig_func(*args, **kwargs)
  1085. if meth_name == "__setitem__":
  1086. rst = self
  1087. if rst is not None:
  1088. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  1089. call_node.out_def = out_def
  1090. else:
  1091. outputs = None
  1092. call_node.add_outputs(outputs)
  1093. set_module_tracing()
  1094. return rst
  1095. return orig_func(*args, **kwargs)
  1096. return wrapped_fn
  1097. class TracedModuleBuilder(NodeMixin):
  1098. _mod = None # type: Module
  1099. _body = None # type: InternalGraph
  1100. _is_builtin = None # type: bool
  1101. _argdef_graph_map = None # type: Dict[Treedef, "InternalGraph"]
  1102. _argdef_outdef_map = None # type: Dict[Treedef, Treedef]
  1103. nodes = None
  1104. __builder_attributes__ = [
  1105. "_mod",
  1106. "_body",
  1107. "_NodeMixin__node",
  1108. "_is_builtin",
  1109. "build",
  1110. "_record_wrapped_nodes",
  1111. "_argdef_graph_map",
  1112. "_argdef_outdef_map",
  1113. "_check_qat_module",
  1114. "nodes",
  1115. "__class__",
  1116. "__dict__",
  1117. "_is_top",
  1118. ]
  1119. def __init__(self, mod, is_top_module=False):
  1120. super(TracedModuleBuilder, self).__init__()
  1121. assert isinstance(mod, Module)
  1122. self._mod = mod
  1123. self._body = None
  1124. self._is_top = is_top_module
  1125. self._is_builtin = (
  1126. True
  1127. if isinstance(mod, (Observer, _FakeQuantize))
  1128. else module_tracer.is_builtin(mod)
  1129. )
  1130. if isinstance(self._mod, QATModule):
  1131. unset_module_tracing()
  1132. self._check_qat_module(self._mod)
  1133. set_module_tracing()
  1134. self._argdef_graph_map = {}
  1135. self._argdef_outdef_map = {}
  1136. self.nodes = set()
  1137. # The builder will be passed to self._mod.forward as 'self' argument. If the 'forward' uses super().xxx to call method of its base classes, the trace procedure will throw exceprion, because the builder doesn't inherit from self._mod.__bases__.
  1138. # modify self.__class__ and let the builder inherit from TracedModuleBuilder and mod.__class__.
  1139. self.__class__ = type(
  1140. "TracedModuleBuilder",
  1141. (TracedModuleBuilder, mod.__class__),
  1142. dict(TracedModuleBuilder.__dict__),
  1143. )
  1144. def _check_qat_module(self, qat_module):
  1145. def isbuiltin(m):
  1146. return m is None or module_tracer.is_builtin(m)
  1147. if qat_module.with_act:
  1148. act_observer = qat_module.act_observer
  1149. act_fakequant = qat_module.act_fake_quant
  1150. if not isbuiltin(act_observer) or not isbuiltin(act_fakequant):
  1151. qparams = (
  1152. act_observer.get_qparams()
  1153. if hasattr(act_observer, "get_qparams")
  1154. else act_fakequant.get_qparams()
  1155. )
  1156. dtype = (
  1157. act_observer.dtype
  1158. if hasattr(act_observer, "dtype")
  1159. else act_fakequant.dtype
  1160. )
  1161. qat_module.act_observer = None
  1162. qat_module.act_fake_quant = TM_FakeQuant(dtype)
  1163. qat_module.act_fake_quant.set_qparams(qparams)
  1164. if qat_module.with_weight:
  1165. weight_observer = qat_module.weight_observer
  1166. weight_fakequant = qat_module.weight_fake_quant
  1167. if not isbuiltin(weight_observer) or not isbuiltin(weight_fakequant):
  1168. qparams = (
  1169. weight_observer.get_qparams()
  1170. if hasattr(weight_observer, "get_qparams")
  1171. else weight_fakequant.get_qparams()
  1172. )
  1173. dtype = (
  1174. weight_observer.dtype
  1175. if hasattr(weight_observer, "dtype")
  1176. else weight_fakequant.dtype
  1177. )
  1178. qat_module.weight_observer = None
  1179. qat_module.weight_fake_quant = TM_FakeQuant(dtype)
  1180. qat_module.weight_fake_quant.set_qparams(qparams)
  1181. def build(self):
  1182. if self._is_builtin:
  1183. assert module_tracer.is_builtin(self._mod)
  1184. mod_type = type(self._mod)
  1185. for node in self.nodes:
  1186. node.module_type = mod_type
  1187. return self._mod
  1188. elif isinstance(self._mod, TracedModule) and _graph_surgery_mode():
  1189. return self._mod
  1190. else:
  1191. is_qat = isinstance(self._mod, QATModule) or (
  1192. isinstance(self._mod, TracedModule) and self._mod.is_qat
  1193. )
  1194. traced_module = TracedModule(
  1195. self._is_top, self._argdef_graph_map, self._argdef_outdef_map, is_qat
  1196. )
  1197. for _, g in self._argdef_graph_map.items():
  1198. g.compile()
  1199. if self._is_top:
  1200. g._total_ids = (Node._get_next_id(), Expr._get_next_id())
  1201. for k, v in self.__dict__.items():
  1202. if k not in TracedModuleBuilder.__builder_attributes__:
  1203. if isinstance(v, TracedModuleBuilder):
  1204. v = v.build()
  1205. setattr(traced_module, k, v)
  1206. elif isinstance(v, RawTensor):
  1207. setattr(traced_module, k, v)
  1208. if isinstance(self._mod, QATModule):
  1209. unset_module_tracing()
  1210. traced_module.with_act = self._mod.with_act
  1211. traced_module.with_weight = self._mod.with_weight
  1212. if not hasattr(traced_module, "act_fake_quant"):
  1213. traced_module.act_fake_quant = None
  1214. if not hasattr(traced_module, "act_observer"):
  1215. traced_module.act_observer = None
  1216. if not hasattr(traced_module, "weight_fake_quant"):
  1217. traced_module.weight_fake_quant = None
  1218. if not hasattr(traced_module, "weight_observer"):
  1219. traced_module.weight_observer = None
  1220. set_module_tracing()
  1221. if self._is_top:
  1222. traced_module._update_ref()
  1223. return traced_module
  1224. def _record_wrapped_nodes(self, node):
  1225. self.nodes.add(node)
  1226. def __call__(self, *args, **kwargs):
  1227. assert isinstance(self._mod, Module)
  1228. is_graph_surgery_mode = _graph_surgery_mode()
  1229. if isinstance(self._mod, TracedModule) and is_graph_surgery_mode:
  1230. _set_graph_surgery_mode(False)
  1231. # prepare args and kwargs for inner graph
  1232. if "method_func" in kwargs:
  1233. kwargs.pop("method_func")
  1234. args, kwargs = _convert_kwargs_to_args(self._mod.forward, args, kwargs, True)
  1235. def mark_constant(x):
  1236. node = NodeMixin.get(x, None)
  1237. if node is None: # capture as constant
  1238. NodeMixin.wrap(x, lambda: Constant.make(x))
  1239. inputs, tree_def = tree_flatten(((self, *args), kwargs))
  1240. for i in inputs:
  1241. mark_constant(i)
  1242. callnode = CallMethod.make(NodeMixin.get(self))
  1243. callnode.add_inputs(inputs[1:])
  1244. callnode.arg_def = tree_def
  1245. if self._is_builtin or tree_def in self._argdef_graph_map:
  1246. unset_module_tracing()
  1247. rst = self._mod(*args, **kwargs)
  1248. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  1249. set_module_tracing()
  1250. if self._is_builtin:
  1251. self._body = None
  1252. elif tree_def in self._argdef_graph_map:
  1253. self._body = self._argdef_graph_map[tree_def]
  1254. else:
  1255. orig_self = NodeMixin.get(self)
  1256. parent_graph = active_module_tracer().current_scope()
  1257. module_qualname = orig_self._qualname
  1258. self._body = InternalGraph(
  1259. name=parent_graph._namespace.create_unique_name(module_qualname),
  1260. qualname=module_qualname,
  1261. )
  1262. parent_graph._namespace.associate_name_with_obj(self._body.name, self._body)
  1263. active_module_tracer().push_scope(self._body)
  1264. # rebind self to new input node
  1265. NodeMixin.wrap_safe(
  1266. self,
  1267. Input.make(
  1268. name="self",
  1269. qualname=module_qualname,
  1270. type=NodeMixin.get_wrapped_type(self),
  1271. ),
  1272. )
  1273. origin_inp_node = [NodeMixin.get(i, None) for i in inputs[1:]]
  1274. # prepare args and kwargs for inner graph
  1275. index_args, index_kwargs = tree_def.unflatten(
  1276. [
  1277. ArgsIndex(0),
  1278. *list(ArgsIndex(i + 1) for i in range(len(origin_inp_node))),
  1279. ]
  1280. )
  1281. key2idx = getcallargs(type(self._mod).forward, *index_args, **index_kwargs)
  1282. idx2key = {}
  1283. for k, v in key2idx.items():
  1284. if isinstance(v, ArgsIndex):
  1285. idx2key[v.index] = k
  1286. else:
  1287. flatten_argidx, _ = tree_flatten(v)
  1288. for _i, v in enumerate(flatten_argidx):
  1289. if isinstance(v, ArgsIndex):
  1290. idx2key[v.index] = k + "_%d" % _i
  1291. def wrap(x, name):
  1292. if isinstance(x, (RawTensor, NodeMixin)):
  1293. NodeMixin.wrap(
  1294. x,
  1295. lambda: Input.make(
  1296. type=NodeMixin.get_wrapped_type(x),
  1297. name=name,
  1298. qualname="%s.[%s]" % (module_qualname, name),
  1299. ),
  1300. )
  1301. return x
  1302. args = [self]
  1303. orig_traced_inputs = (
  1304. None
  1305. if not isinstance(self._mod, TracedModule)
  1306. else self._mod.argdef_graph_map[tree_def].inputs
  1307. )
  1308. ind = 1
  1309. for v in inputs[1:]:
  1310. if isinstance(v, (RawTensor, NodeMixin)):
  1311. args_name = (
  1312. orig_traced_inputs[ind]._name
  1313. if orig_traced_inputs
  1314. else idx2key[ind]
  1315. )
  1316. ind += 1
  1317. args.append(wrap(v, args_name))
  1318. else:
  1319. args.append(v)
  1320. args, kwargs = tree_def.unflatten(args)
  1321. active_module_tracer().patcher.auto_patch(
  1322. getattr(getattr(self._mod, "forward", self._mod), "__globals__", {})
  1323. )
  1324. rst = type(self._mod).forward(*args, **kwargs)
  1325. if _graph_surgery_mode():
  1326. rst = _node_to_tensor(rst)[0][0]
  1327. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  1328. for i in (
  1329. outputs if isinstance(outputs, collections.abc.Sequence) else (outputs,)
  1330. ):
  1331. mark_constant(i)
  1332. active_module_tracer().current_scope()._add_output(NodeMixin.get(i))
  1333. NodeMixin.wrap_safe(self, orig_self)
  1334. for arg, node in zip(inputs[1:], origin_inp_node):
  1335. if node:
  1336. NodeMixin.wrap_safe(arg, node)
  1337. active_module_tracer().pop_scope()
  1338. # rebind output to outer graph
  1339. callnode.out_def = out_def
  1340. callnode.add_outputs(outputs)
  1341. self._argdef_graph_map[callnode.arg_def] = self._body
  1342. self._argdef_outdef_map[callnode.arg_def] = out_def
  1343. _set_graph_surgery_mode(is_graph_surgery_mode)
  1344. return rst
  1345. def __setattr__(self, name, value):
  1346. object.__setattr__(self, name, value)
  1347. def __repr__(self):
  1348. return repr(self._mod)
  1349. def __getattr__(self, name):
  1350. if name not in self._mod.__dict__:
  1351. attr = getattr(type(self._mod), name).__get__(self, type(self))
  1352. else:
  1353. attr = getattr(self._mod, name)
  1354. if (
  1355. isinstance(attr, FunctionType)
  1356. and id(attr) in active_module_tracer().patcher.patched_fn_ids
  1357. ):
  1358. return active_module_tracer().patcher.wrap_fn(attr)
  1359. if isinstance(attr, (List, Dict)):
  1360. flag = _set_graph_surgery_mode(False)
  1361. unset_module_tracing()
  1362. has_module, m_container = replace_container_with_module_container(attr)
  1363. if m_container:
  1364. attr = m_container
  1365. if has_module and not m_container:
  1366. raise ValueError(
  1367. "Can not trace the module that uses the same container to store"
  1368. " Module and Non-Module objects."
  1369. )
  1370. set_module_tracing()
  1371. _set_graph_surgery_mode(flag)
  1372. if isinstance(attr, Module):
  1373. attr = TracedModuleBuilder(attr)
  1374. if isinstance(attr, (Module, RawTensor)):
  1375. setattr(self, name, attr)
  1376. NodeMixin.wrap(
  1377. attr,
  1378. lambda: GetAttr.make(
  1379. NodeMixin.get(self),
  1380. type=NodeMixin.get_wrapped_type(attr),
  1381. attr_name=name,
  1382. name="",
  1383. ),
  1384. )
  1385. return attr
  1386. def __getattribute__(self, name):
  1387. if name in TracedModuleBuilder.__builder_attributes__:
  1388. return object.__getattribute__(self, name)
  1389. else:
  1390. wrapped = object.__getattribute__(self, name)
  1391. class_members = dict(inspect.getmembers(self.__class__))
  1392. if name in self._mod.__dict__:
  1393. mod_attr = getattr(self._mod, name)
  1394. if name in class_members:
  1395. if (
  1396. not isinstance(wrapped, TracedModuleBuilder)
  1397. and wrapped is not mod_attr
  1398. ):
  1399. wrapped = self.__getattr__(name)
  1400. if isinstance(wrapped, TracedModuleBuilder):
  1401. if not isinstance(mod_attr, (List, Dict, QATModule)):
  1402. assert mod_attr is wrapped._mod
  1403. else:
  1404. assert mod_attr is wrapped
  1405. if isinstance(wrapped, (NodeMixin, RawTensor)):
  1406. NodeMixin.wrap(
  1407. wrapped,
  1408. lambda: GetAttr.make(
  1409. NodeMixin.get(self),
  1410. type=NodeMixin.get_wrapped_type(wrapped),
  1411. attr_name=name,
  1412. name="",
  1413. ),
  1414. )
  1415. return wrapped
  1416. class _expr_iter:
  1417. def __init__(self, graph: InternalGraph, recursive: bool = True):
  1418. self.graph = graph
  1419. self.recursive = recursive
  1420. self._visited_graph = set()
  1421. def __iter__(self):
  1422. yield from self._gen_expr(self.graph)
  1423. def _gen_expr(self, graph: InternalGraph):
  1424. visit_inp = set()
  1425. for inp_node in graph.inputs:
  1426. if inp_node not in visit_inp:
  1427. yield inp_node.expr
  1428. visit_inp.add(inp_node)
  1429. for expr in graph._exprs:
  1430. yield expr
  1431. if (
  1432. self.recursive
  1433. and hasattr(expr, "graph")
  1434. and expr.graph is not None
  1435. and id(expr.graph) not in self._visited_graph
  1436. ):
  1437. self._visited_graph.add(id(expr.graph))
  1438. yield from self._gen_expr(expr.graph)
  1439. class _node_iter:
  1440. def __init__(self, graph: InternalGraph, recursive: bool = True) -> None:
  1441. nodes = []
  1442. node_ids = set()
  1443. for expr in graph.exprs(recursive):
  1444. for n in expr.outputs:
  1445. assert id(n) not in node_ids
  1446. nodes.append(n)
  1447. node_ids.add(id(n))
  1448. self.nodes = nodes
  1449. def __iter__(self):
  1450. for node in self.nodes:
  1451. yield node
  1452. class BaseFilter:
  1453. r"""``BaseFilter`` exposes some methods for converting ``_node_iter/_expr_iter`` to ``list``, ``dict``, etc."""
  1454. def __init__(self, iter: Iterable):
  1455. self._iter = iter
  1456. def __iter__(self):
  1457. return iter(self._iter)
  1458. def as_list(self):
  1459. r"""Consume this iterator and return its content as a list.
  1460. Returns:
  1461. A list of ``Node`` or ``Expr``.
  1462. """
  1463. return list(self)
  1464. def as_dict(self):
  1465. r"""Construct an ordered dict to map from ``id`` to objects in this iterator.
  1466. Returns:
  1467. An :class:`OrderedDict`.
  1468. """
  1469. return collections.OrderedDict((i._id, i) for i in self)
  1470. def as_unique(self):
  1471. """Assert that this iterator yields only one ``Node`` or ``Expr`` and return it.
  1472. Rerurns:
  1473. A ``Node`` or ``Expr``.
  1474. """
  1475. rst = self.as_list()
  1476. assert len(rst) == 1, "{} elements found".format(len(rst))
  1477. (elem,) = self
  1478. return elem
  1479. def as_count(self):
  1480. r"""Consume this iterator and get the number of elements."""
  1481. return sum(1 for _ in self)
  1482. class ExprFilter(BaseFilter):
  1483. """Filter on Expr iterator.
  1484. This class is an iterator of :class:`.Expr` objects and multiple
  1485. filtering conditions and mappers can be chained.
  1486. """
  1487. def call_function(self, func):
  1488. r"""Filter by specific ``CallFunction.func``.
  1489. See :meth:`~.InternalGraph.get_function_by_type` for details.
  1490. """
  1491. return ExprFilterCallFunction(self, func)
  1492. def call_method(self, method):
  1493. r"""Filter by specific ``CallMethod.method``.
  1494. See :meth:`~.InternalGraph.get_function_by_type` for details.
  1495. """
  1496. return ExprFilterCallMethod(self, method)
  1497. def expr_id(self, expr_id: List[int]):
  1498. r"""Filter Exprs by their ``id``.
  1499. See :meth:`~.InternalGraph.get_function_by_type` for details.
  1500. """
  1501. return ExprFilterExprId(self, expr_id)
  1502. class NodeFilter(BaseFilter):
  1503. """Filter on Node iterator.
  1504. This class is an iterator of :class:`~.traced_module.Node` objects and multiple
  1505. filtering conditions and mappers can be chained.
  1506. """
  1507. def type(self, owner_type):
  1508. r"""Filter by specific Module type.
  1509. See :meth:`~.InternalGraph.get_module_by_type` for details.
  1510. """
  1511. return NodeFilterType(self, owner_type)
  1512. def node_id(self, node_id: List[int]):
  1513. r"""Filter Nodes by their ``id``.
  1514. See :meth:`~.InternalGraph.get_node_by_id` for details.
  1515. """
  1516. return NodeFilterNodeId(self, node_id)
  1517. def name(self, name: str, ignorecase: bool = True):
  1518. r"""Filter Nodes by their full name.
  1519. See :meth:`~.InternalGraph.get_node_by_name` for details.
  1520. """
  1521. return NodeFilterName(self, name, ignorecase)
  1522. class NodeFilterType(NodeFilter):
  1523. """See :meth:`~.InternalGraph.get_module_by_type`"""
  1524. def __init__(self, expr_iter, owner_type):
  1525. super().__init__(expr_iter)
  1526. self.owner_type = owner_type
  1527. def __iter__(self):
  1528. for node in self._iter:
  1529. if not isinstance(node, ModuleNode):
  1530. continue
  1531. if not hasattr(node, "owner"):
  1532. continue
  1533. if isinstance(node.owner, self.owner_type):
  1534. yield node
  1535. class NodeFilterNodeId(NodeFilter):
  1536. """See :meth:`~.InternalGraph.get_node_by_id`"""
  1537. def __init__(self, expr_iter, node_id: List[int]):
  1538. super().__init__(expr_iter)
  1539. if not isinstance(node_id, Sequence):
  1540. node_id = [node_id]
  1541. self.node_id = node_id
  1542. def __iter__(self):
  1543. for node in self._iter:
  1544. if node._id in self.node_id:
  1545. yield node
  1546. class NodeFilterName(NodeFilter):
  1547. """See :meth:`~.InternalGraph.get_node_by_name`"""
  1548. _re = None
  1549. def __init__(self, node_iter, pattern, ignorecase):
  1550. super().__init__(node_iter)
  1551. self.pattern = pattern
  1552. self._re = self.make_re(pattern, ignorecase)
  1553. @classmethod
  1554. def make_re(cls, pattern, ignorecase=True):
  1555. assert isinstance(pattern, str), "bad pattern: {!r}".format(pattern)
  1556. assert isinstance(ignorecase, bool)
  1557. flags = 0
  1558. if ignorecase:
  1559. flags |= re.IGNORECASE
  1560. return re.compile(fnmatch.translate(pattern), flags=flags)
  1561. def __iter__(self):
  1562. for i in self._iter:
  1563. graph = i.top_graph
  1564. name = "{}_{}".format(graph._name, i._name)
  1565. if self.pattern == name or self._re.match(name):
  1566. yield i
  1567. class ExprFilterCallFunction(ExprFilter):
  1568. """See :meth:`~.InternalGraph.get_function_by_type`"""
  1569. def __init__(self, expr_iter, func: Callable = None):
  1570. super().__init__(expr_iter)
  1571. self.func = func
  1572. def __iter__(self):
  1573. for expr in self._iter:
  1574. if not isinstance(expr, CallFunction):
  1575. continue
  1576. if self.func is None or expr.func == self.func:
  1577. yield expr
  1578. class ExprFilterCallMethod(ExprFilter):
  1579. """See :meth:`~.InternalGraph.get_method_by_type`"""
  1580. def __init__(self, expr_iter, method: str = None):
  1581. super().__init__(expr_iter)
  1582. self.method = method
  1583. def __iter__(self):
  1584. for expr in self._iter:
  1585. if not isinstance(expr, CallMethod):
  1586. continue
  1587. if self.method is None or expr.method == self.method:
  1588. yield expr
  1589. class ExprFilterExprId(ExprFilter):
  1590. """See :meth:`~.InternalGraph.get_expr_by_id`"""
  1591. def __init__(self, expr_iter, expr_id: List[int]):
  1592. super().__init__(expr_iter)
  1593. if not isinstance(expr_id, Sequence):
  1594. expr_id = [expr_id]
  1595. self.expr_id = expr_id
  1596. def __iter__(self):
  1597. for expr in self._iter:
  1598. if expr._id in self.expr_id:
  1599. yield expr
  1600. class TracedModule(Module):
  1601. r"""``TracedModule`` is the Module created by tracing normal module.
  1602. It owns an argdef to graph(InternalGraph) map. The forward method of ``TracedModule``
  1603. will get a graph from ``argdef_graph_map`` according to the argdef of input ``args/kwargs``
  1604. and interpret it.
  1605. .. note::
  1606. ``TracedModule`` can only be created by :func:`~.trace_module`. See :func:`~.trace_module`
  1607. for more details.
  1608. """
  1609. # m_node = None # type: ModuleNode
  1610. argdef_graph_map = None
  1611. argdef_outdef_map = None
  1612. def __init__(self, is_top, argdef_graph_map, argdef_outdef_map, is_qat=False):
  1613. super(TracedModule, self).__init__()
  1614. self.argdef_graph_map = argdef_graph_map
  1615. self.argdef_outdef_map = argdef_outdef_map
  1616. self._is_top = is_top
  1617. self.watch_points = []
  1618. self.watch_node_value = {}
  1619. self.end_points = []
  1620. self.is_qat = is_qat
  1621. self.argspec = None
  1622. def forward(self, *args, **kwargs):
  1623. if hasattr(self, "argspec") and self.argspec is not None:
  1624. args, kwargs = _convert_kwargs_to_args(self.argspec, args, kwargs, True)
  1625. inputs, treedef = tree_flatten(((self, *args), kwargs))
  1626. assert treedef in self.argdef_graph_map
  1627. inputs = filter(
  1628. lambda i: isinstance(i, (Module, TracedModuleBuilder, RawTensor)), inputs
  1629. ) # allow TracedModuleBuilder for retrace.
  1630. outputs = self.argdef_graph_map[treedef].interpret(*inputs)
  1631. if self.watch_points:
  1632. self.watch_node_value = {}
  1633. for n in self.watch_points:
  1634. self.watch_node_value[n] = n.top_graph._rst.pop(n)
  1635. if self.end_points:
  1636. return outputs
  1637. out_def = self.argdef_outdef_map[treedef]
  1638. outputs = out_def.unflatten(outputs)
  1639. return outputs
  1640. def set_watch_points(self, nodes):
  1641. r"""Initialize the :attr:`~.TracedModule.watch_points`.
  1642. You can call this function to get the ``Tensor/Module`` corresponding to a ``Node`` at runtime.
  1643. Args:
  1644. nodes: a list of ``Node``.
  1645. For example, the following code
  1646. .. code-block::
  1647. import megengine.module as M
  1648. import megengine as mge
  1649. import megengine.traced_module as tm
  1650. class MyModule(M.Module):
  1651. def forward(self, x):
  1652. x = x + 1 + 2
  1653. return x
  1654. net = MyModule()
  1655. inp = mge.Tensor([0])
  1656. traced_module = tm.trace_module(net, inp)
  1657. add_1_node = traced_module.graph.get_node_by_id(2).as_unique()
  1658. traced_module.set_watch_points(add_1_node)
  1659. out = traced_module(inp)
  1660. Will get the following ``watch_node_value``::
  1661. print(traced_module.watch_node_value)
  1662. .. code-block:: text
  1663. {add_out: Tensor([1.], device=xpux:0)}
  1664. """
  1665. if not isinstance(nodes, Sequence):
  1666. nodes = [nodes]
  1667. self.watch_points = nodes
  1668. if nodes:
  1669. nodes[0].top_graph._watch_point = []
  1670. for n in nodes:
  1671. n.top_graph._watch_point.append(n)
  1672. def clear_watch_points(self):
  1673. r"""Clear the :attr:`~.TracedModule.watch_points` and :attr:`~.TracedModule.watch_node_value`.
  1674. """
  1675. for n in self.watch_points:
  1676. n.top_graph._watch_point = []
  1677. self.watch_points = []
  1678. self.watch_node_value = {}
  1679. def set_end_points(self, nodes: Sequence[Node]):
  1680. r"""Initialize the :attr:`~.TracedModule.end_points`.
  1681. When all the ``nodes`` are generated, the Module will stop execution and return directly.
  1682. Args:
  1683. nodes: a list of ``Node``.
  1684. For example, the following code
  1685. .. code-block::
  1686. import megengine.module as M
  1687. import megengine as mge
  1688. import megengine.traced_module as tm
  1689. class MyModule(M.Module):
  1690. def forward(self, x):
  1691. x = x + 1 + 2
  1692. return x
  1693. net = MyModule()
  1694. inp = mge.Tensor([0])
  1695. traced_module = tm.trace_module(net, inp)
  1696. add_1_node = traced_module.graph.get_node_by_id(2).as_unique()
  1697. traced_module.set_end_points(add_1_node)
  1698. out = traced_module(inp)
  1699. Will get the following ``out``::
  1700. print(out)
  1701. .. code-block:: text
  1702. [Tensor([1.], device=xpux:0)]
  1703. """
  1704. if not isinstance(nodes, Sequence):
  1705. nodes = [nodes]
  1706. self.end_points = nodes
  1707. graphs = list(self.argdef_graph_map.values())
  1708. for n in nodes:
  1709. assert n.top_graph in graphs
  1710. n.top_graph._end_point.append(n)
  1711. def clear_end_points(self):
  1712. r"""Clear the :attr:`~.TracedModule.end_points`.
  1713. """
  1714. for n in self.end_points:
  1715. n.top_graph._end_point = []
  1716. self.end_points = []
  1717. @property
  1718. def graph(self) -> InternalGraph:
  1719. """Return the ``InternalGraph`` of this ``TracedModule``.
  1720. """
  1721. assert len(self.argdef_graph_map) == 1
  1722. return list(self.argdef_graph_map.values())[0]
  1723. def _update_ref(self, actual_node_map: Union[Dict] = None, top_graph=None):
  1724. for inp_def, graph in self.argdef_graph_map.items():
  1725. if top_graph is not None:
  1726. graph._top_graph = weakref.ref(top_graph)
  1727. for n in graph._inputs + graph._outputs:
  1728. n.expr._top_graph = weakref.ref(graph)
  1729. n._top_graph = weakref.ref(graph)
  1730. graph._inputs[0]._owner = weakref.ref(self)
  1731. for i, n in enumerate(graph._inputs):
  1732. n.actual_node = []
  1733. if actual_node_map is not None and inp_def in actual_node_map.keys():
  1734. n.actual_node = list(list(zip(*(actual_node_map[inp_def])))[i])
  1735. node2obj = {}
  1736. next_actual_node_map = collections.defaultdict(
  1737. lambda: collections.defaultdict(list)
  1738. )
  1739. node2obj[graph._inputs[0]] = self
  1740. for expr in graph._exprs:
  1741. for n in expr.inputs + expr.outputs:
  1742. n._top_graph = weakref.ref(graph)
  1743. expr._top_graph = weakref.ref(graph)
  1744. if isinstance(expr, GetAttr) and isinstance(
  1745. expr.outputs[0], ModuleNode
  1746. ):
  1747. obj = expr.interpret(node2obj[expr.inputs[0]])[0]
  1748. expr.outputs[0]._owner = weakref.ref(obj)
  1749. node2obj[expr.outputs[0]] = obj
  1750. if isinstance(expr, Constant) and isinstance(
  1751. expr.outputs[0], ModuleNode
  1752. ):
  1753. obj = expr.value
  1754. expr.outputs[0]._owner = weakref.ref(obj)
  1755. node2obj[expr.outputs[0]] = obj
  1756. if (
  1757. isinstance(expr, CallMethod)
  1758. and expr.method == "__call__"
  1759. and isinstance(expr.inputs[0], ModuleNode)
  1760. ):
  1761. obj = node2obj[expr.inputs[0]]
  1762. if expr.arg_def is not None:
  1763. next_actual_node_map[obj][expr.arg_def].append(expr.inputs)
  1764. for obj in node2obj.values():
  1765. if obj is self:
  1766. continue
  1767. mnode_map = None
  1768. if obj in next_actual_node_map.keys():
  1769. mnode_map = next_actual_node_map[obj]
  1770. if isinstance(obj, TracedModule):
  1771. obj._update_ref(mnode_map, graph)
  1772. def flatten(self):
  1773. r"""Get a new TracedModule, which eliminates ``GetAttr`` and has no hierarchy.
  1774. Retruns:
  1775. A new :class:`TracedModule`.
  1776. """
  1777. new_module = copy.deepcopy(self)
  1778. def _replace_inputs_and_outputs(expr: Expr, repl_dict: Dict[Node, Node]):
  1779. inputs, outputs = expr.inputs, expr.outputs
  1780. for i, node in enumerate(inputs):
  1781. if node in repl_dict:
  1782. inputs[i] = repl_dict[node]
  1783. for i, node in enumerate(outputs):
  1784. if node in repl_dict:
  1785. outputs[i] = repl_dict[node]
  1786. outputs[i].expr = expr
  1787. def _flatten_subgraph(
  1788. parent_graph: InternalGraph,
  1789. graph: InternalGraph,
  1790. call: CallMethod,
  1791. module: Module,
  1792. ):
  1793. repl_dict, node2obj, rename_blacklist = {}, {}, []
  1794. if call is not None:
  1795. graph = copy.deepcopy(graph)
  1796. node2obj[call.inputs[0]] = module
  1797. repl_dict = dict(zip(graph._inputs, call.inputs))
  1798. for ind, out in enumerate(graph.outputs):
  1799. if isinstance(out.expr, Input):
  1800. assert out in repl_dict
  1801. call_out = call.outputs[ind]
  1802. for expr in call.outputs[ind].users:
  1803. for index, inp in enumerate(expr.inputs):
  1804. if inp is call_out:
  1805. expr.inputs[index] = repl_dict[out]
  1806. repl_dict[out].users.append(expr)
  1807. if parent_graph is not None:
  1808. for index, parent_out in enumerate(parent_graph._outputs):
  1809. if parent_out is call_out:
  1810. parent_graph._outputs[index] = repl_dict[out]
  1811. continue
  1812. repl_dict[out] = call.outputs[ind]
  1813. if isinstance(out, TensorNode):
  1814. call.outputs[ind]._qualname = out._qualname
  1815. for node, repl_node in repl_dict.items():
  1816. assert node in graph._inputs or node in graph._outputs
  1817. repl_node.users.extend(node.users)
  1818. rename_blacklist = list(chain(call.inputs, call.outputs))
  1819. node2obj[graph._inputs[0]] = module
  1820. prefix_name = call.inputs[0]._name if call else ""
  1821. flattened_exprs = []
  1822. for expr in graph._exprs:
  1823. exprs = [expr]
  1824. if call is not None:
  1825. _replace_inputs_and_outputs(expr, repl_dict)
  1826. if isinstance(expr, GetAttr):
  1827. mnode = expr.inputs[0]
  1828. node2obj[expr.outputs[0]] = expr.interpret(node2obj[mnode])[0]
  1829. if isinstance(expr, CallMethod):
  1830. obj_node = expr.inputs[0]
  1831. if isinstance(obj_node, ModuleNode) and isinstance(
  1832. obj_node.expr, GetAttr
  1833. ):
  1834. obj = node2obj[obj_node]
  1835. expr_graph = (
  1836. obj.argdef_graph_map[expr.arg_def]
  1837. if hasattr(obj, "argdef_graph_map")
  1838. else None
  1839. )
  1840. if expr_graph is not None and not obj.is_qat:
  1841. exprs = _flatten_subgraph(graph, expr_graph, expr, obj)
  1842. if parent_graph is not None:
  1843. for node in expr.outputs:
  1844. name = node._name
  1845. if node not in rename_blacklist:
  1846. name = "{}_{}".format(prefix_name, name)
  1847. node._name = parent_graph._namespace.create_unique_name(
  1848. name, node
  1849. )
  1850. flattened_exprs.extend(exprs)
  1851. if call is not None:
  1852. for i in call.inputs:
  1853. i.users.remove(call)
  1854. return flattened_exprs
  1855. new_module.graph._exprs = _flatten_subgraph(
  1856. None, new_module.graph, None, new_module
  1857. )
  1858. new_module.graph._re_associate_name()
  1859. new_module.graph.compile()
  1860. new_module._update_ref()
  1861. new_module.graph._reset_ids()
  1862. return new_module
  1863. def __getstate__(self):
  1864. d = self.__dict__.copy()
  1865. for k in Module.__dict__:
  1866. d.pop(k, None)
  1867. _check_obj_attr(d)
  1868. for k in d:
  1869. if module_tracer.is_builtin(d[k]):
  1870. assert _check_builtin_module_attr(
  1871. d[k]
  1872. ), "Module {} can not be serialized. ".format(type(d[k]))
  1873. d[k] = _ModuleState.get_module_state(d[k])
  1874. dump_info = {
  1875. "version": __version__,
  1876. "register_type": USER_REGISTERED_LEAF_TYPE,
  1877. "register_container_type": USER_REGISTERED_CONTAINER_TYPE,
  1878. "register_mdule": USER_REGISTERED_MODULE,
  1879. "register_function": USER_REGISTERED_FUNCTION,
  1880. }
  1881. d["dump_info"] = dump_info
  1882. return d
  1883. def __setstate__(self, state):
  1884. for k, v in state.items():
  1885. if isinstance(v, _ModuleState):
  1886. state[k] = v.to_module()
  1887. self.__dict__.update(state)
  1888. self._update_ref()
  1889. for _, graph in self.argdef_graph_map.items():
  1890. for expr in graph._exprs:
  1891. if isinstance(expr, CallFunction):
  1892. load_functional(expr)
  1893. if isinstance(expr, CallMethod):
  1894. if expr.method == "__call__":
  1895. load_call_module_expr(expr)
  1896. else:
  1897. load_call_tensor_method_expr(expr)
  1898. if isinstance(expr, Apply):
  1899. load_apply_expr(expr)
  1900. for _, graph in self.argdef_graph_map.items():
  1901. ind = 0
  1902. while ind < len(graph._exprs):
  1903. cur_expr = graph._exprs[ind]
  1904. has_new_expr = False
  1905. for i in cur_expr.inputs:
  1906. if i.expr not in graph._exprs and not isinstance(i.expr, Input):
  1907. graph._exprs.insert(ind, i.expr)
  1908. has_new_expr = True
  1909. if not has_new_expr:
  1910. ind += 1
  1911. for expr in graph._exprs:
  1912. for i in expr.inputs:
  1913. if expr.inputs.count(i) != i.users.count(expr):
  1914. add_or_del_count = expr.inputs.count(i) - i.users.count(expr)
  1915. if add_or_del_count > 0:
  1916. i.users.extend([expr] * add_or_del_count)
  1917. else:
  1918. [i.users.remove(expr) for i in range(-add_or_del_count)]
  1919. for o in expr.outputs:
  1920. if o.expr is not expr:
  1921. assert o not in o.expr.outputs
  1922. o.expr = expr
  1923. for node in graph.nodes(False):
  1924. # remove users of node which doesn't use node as input
  1925. node.users = [e for e in node.users if node in e.inputs]
  1926. for expr in graph._exprs:
  1927. graph._namespace.auto_naming_for_outputs(expr)
  1928. self._update_ref()
  1929. for _, graph in self.argdef_graph_map.items():
  1930. graph._reset_ids()
  1931. def __copy__(self):
  1932. cls = self.__class__
  1933. result = cls.__new__(cls)
  1934. result.__dict__.update(self.__dict__)
  1935. return result
  1936. def __deepcopy__(self, memo):
  1937. cls = self.__class__
  1938. result = cls.__new__(cls)
  1939. state = {}
  1940. memo[id(self)] = result
  1941. for k, v in self.__dict__.items():
  1942. if not isinstance(v, weakref.ReferenceType):
  1943. state[k] = copy.deepcopy(v, memo)
  1944. result.__dict__.update(state)
  1945. result._update_ref()
  1946. return result
  1947. def cpp_apply_module_trace(opdef, *args):
  1948. return Apply.apply_module_trace_hook(opdef, *args)
  1949. USER_REGISTERED_MODULE = []
  1950. USER_REGISTERED_FUNCTION = []
  1951. def register_as_builtin(mod_cls: Type[Module]) -> None:
  1952. r"""Registers class ``mod_cls`` (subclass of :class:`~.Module`) as builtin module.
  1953. Args:
  1954. mod_cls: the module class which will be treated as builtin module in tracing.
  1955. """
  1956. USER_REGISTERED_MODULE.append((mod_cls.__module__, mod_cls.__qualname__))
  1957. module_tracer.register_as_builtin(mod_cls)
  1958. def wrap(func: Callable):
  1959. r"""Call this function to register ``func`` as a builtin function.
  1960. This function can be called at module-level scope to register ``func`` as a builtin function.
  1961. A builtin function will be converted to a :class:`CallFunction` Expr in tracing::
  1962. def my_func(x, y):
  1963. return x + y
  1964. import megengine.traced_module as tm
  1965. tm.wrap(my_func)
  1966. This function can also equivalently be used as a decorator::
  1967. @tm.wrap
  1968. def my_func(x, y):
  1969. return x + y
  1970. Args:
  1971. func: the function of the global function to insert into the graph when it's called.
  1972. """
  1973. USER_REGISTERED_FUNCTION.append((func.__module__, func.__qualname__))
  1974. assert callable(func), "func must be a callable"
  1975. assert hasattr(func, "__code__")
  1976. fn_name = func.__code__.co_name
  1977. currentframe = inspect.currentframe()
  1978. assert currentframe is not None
  1979. f = currentframe.f_back
  1980. assert f is not None
  1981. assert (
  1982. f.f_code.co_name == "<module>"
  1983. ), "wrap must be called at the top level of a module"
  1984. Patcher._builtin_functions.append((f.f_globals, fn_name))
  1985. return func
  1986. def _register_all_builtin_module():
  1987. for sub_mod in [M, M.qat, M.quantized, MExternal]:
  1988. for m in getmembers(sub_mod):
  1989. if (
  1990. isclass(m[1])
  1991. and issubclass(m[1], M.Module)
  1992. and m[1] is not M.Sequential
  1993. ):
  1994. module_tracer.register_as_builtin(m[1])
  1995. module_tracer.register_as_builtin(Observer)
  1996. module_tracer.register_as_builtin(MinMaxObserver)
  1997. module_tracer.register_as_builtin(SyncMinMaxObserver)
  1998. module_tracer.register_as_builtin(ExponentialMovingAverageObserver)
  1999. module_tracer.register_as_builtin(SyncExponentialMovingAverageObserver)
  2000. module_tracer.register_as_builtin(HistogramObserver)
  2001. module_tracer.register_as_builtin(PassiveObserver)
  2002. module_tracer.register_as_builtin(LSQ)
  2003. module_tracer.register_as_builtin(TQT)
  2004. module_tracer.register_as_builtin(FakeQuantize)
  2005. module_tracer.register_as_builtin(TM_FakeQuant)
  2006. def trace_module(
  2007. mod: Module, *args: Tuple[Any], **kwargs: Dict[str, Any]
  2008. ) -> TracedModule:
  2009. r"""Traces module ``mod`` and returns corresponding :class:`TracedModule`.
  2010. Args:
  2011. mod: the module will be converted to :class:`TracedModule`.
  2012. args: the positional arguments passed to forward method of ``mod``.
  2013. kwargs: the keyword arguments passed to forward method of ``mod``.
  2014. """
  2015. assert active_module_tracer() is None
  2016. assert isinstance(mod, Module)
  2017. try:
  2018. net_name = mod._name if mod._name else mod.__class__.__name__
  2019. use_sym_shape = set_symbolic_shape(True)
  2020. set_module_tracing()
  2021. set_active_module_tracer(module_tracer(_wrapped_function))
  2022. for cls in [Expr, Node]:
  2023. cls._set_next_id(0)
  2024. with active_module_tracer().patcher:
  2025. global_scope = InternalGraph(name="top", qualname=net_name)
  2026. active_module_tracer().push_scope(global_scope)
  2027. builder = TracedModuleBuilder(mod, True)
  2028. NodeMixin.wrap_safe(
  2029. builder, Input.make(name="top", type=ModuleNode, qualname=net_name)
  2030. )
  2031. forward_argspec = (
  2032. mod.argspec
  2033. if hasattr(mod, "argspec")
  2034. else inspect.getfullargspec(mod.forward)
  2035. )
  2036. args, kwargs = _convert_kwargs_to_args(forward_argspec, args, kwargs, True)
  2037. inputs, _ = tree_flatten((args, kwargs))
  2038. for _, i in enumerate(inputs):
  2039. # assert isinstance(i, Tensor), "not support "
  2040. if isinstance(i, RawTensor):
  2041. NodeMixin.wrap_safe(
  2042. i,
  2043. Input.make(
  2044. name="arg_{}".format(_),
  2045. type=NodeMixin.get_wrapped_type(i),
  2046. qualname="{}.[{}]".format(net_name, "arg_{}".format(_)),
  2047. ),
  2048. )
  2049. builder(*args, **kwargs)
  2050. active_module_tracer().pop_scope()
  2051. traced_mod = builder.build()
  2052. traced_mod.argspec = forward_argspec
  2053. traced_mod.graph._reset_ids()
  2054. return traced_mod
  2055. finally:
  2056. set_symbolic_shape(use_sym_shape)
  2057. set_active_module_tracer(None)
  2058. unset_module_tracing()