You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling.cpp 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479
  1. /**
  2. * \file dnn/test/arm_common/pooling.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "test/arm_common/fixture.h"
  12. #include "test/common/pooling.h"
  13. #include "test/common/checker.h"
  14. #include "test/common/benchmarker.h"
  15. #include "test/common/rng.h"
  16. namespace megdnn {
  17. namespace test {
  18. TEST_F(ARM_COMMON, POOLING)
  19. {
  20. using Param = param::Pooling;
  21. // clang-format off
  22. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  23. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  24. for (size_t p: {1, 2})
  25. {
  26. Param param;
  27. param.mode = Param::Mode::MAX;
  28. param.window_h = param.window_w = 3;
  29. param.stride_h = param.stride_w = 2;
  30. param.pad_h = param.pad_w = p;
  31. Checker<Pooling> checker(handle());
  32. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  33. param.mode = Param::Mode::AVERAGE;
  34. param.window_h = param.window_w = 3;
  35. param.stride_h = param.stride_w = 2;
  36. param.pad_h = param.pad_w = p;
  37. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  38. param.mode = Param::Mode::MAX;
  39. param.window_h = param.window_w = 4;
  40. param.stride_h = param.stride_w = 2;
  41. param.pad_h = param.pad_w = p;
  42. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  43. param.mode = Param::Mode::MAX;
  44. param.window_h = param.window_w = 5;
  45. param.stride_h = param.stride_w = 2;
  46. param.pad_h = param.pad_w = p;
  47. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  48. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  49. }
  50. // clang-format on
  51. }
  52. TEST_F(ARM_COMMON, POOLING_INT8_W2x2_S2x2)
  53. {
  54. // clang-format off
  55. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  56. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  57. for (size_t ph: {0, 1})
  58. for (size_t pw: {0, 1})
  59. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  60. {
  61. Checker<Pooling> checker(handle());
  62. checker.set_dtype(0, dtype::Int8());
  63. param::Pooling param;
  64. param.mode = param::Pooling::Mode::MAX;
  65. param.pad_h = ph;
  66. param.pad_w = pw;
  67. param.stride_h = param.stride_w = 2;
  68. param.window_h = param.window_w = 2;
  69. checker.set_param(param).exec(TensorShapeArray{{2, 3, ih, iw}, {}});
  70. }
  71. // clang-format on
  72. }
  73. TEST_F(ARM_COMMON, POOLING_INT8_W3x3_S2x2)
  74. {
  75. // clang-format off
  76. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  77. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  78. for (size_t ph: {0, 1, 2})
  79. for (size_t pw: {0, 1, 2})
  80. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  81. {
  82. Checker<Pooling> checker(handle());
  83. checker.set_dtype(0, dtype::Int8());
  84. param::Pooling param;
  85. param.mode = param::Pooling::Mode::MAX;
  86. param.pad_h = ph;
  87. param.pad_w = pw;
  88. param.stride_h = param.stride_w = 2;
  89. param.window_h = param.window_w = 3;
  90. checker.set_param(param).exec(TensorShapeArray{{2, 3, ih, iw}, {}});
  91. }
  92. // clang-format on
  93. }
  94. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  95. TEST_F(ARM_COMMON, POOLING_FP16) {
  96. Checker<Pooling> checker(handle());
  97. checker.set_dtype(0, dtype::Float16{})
  98. .set_dtype(1, dtype::Float16{})
  99. .set_epsilon(3e-3);
  100. using Param = param::Pooling;
  101. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  102. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  103. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  104. for (size_t window : {2, 3}) {
  105. Param param;
  106. param.mode = mode;
  107. param.window_h = param.window_w = window;
  108. param.stride_h = param.stride_w = 1;
  109. param.pad_h = param.pad_w = window / 2;
  110. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
  111. //! == 3)
  112. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  113. //! test for SH = SW = 2 && FH = FW = 2
  114. param.stride_h = param.stride_w = 2;
  115. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  116. }
  117. }
  118. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  119. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  120. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  121. for (size_t ph : {0, 1, 2})
  122. for (size_t pw : {0, 1, 2})
  123. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  124. param::Pooling param;
  125. param.mode = param::Pooling::Mode::MAX;
  126. param.pad_h = ph;
  127. param.pad_w = pw;
  128. param.stride_h = param.stride_w = 2;
  129. param.window_h = param.window_w = 3;
  130. checker.set_param(param).exec(
  131. TensorShapeArray{{2, 3, ih, iw}, {}});
  132. }
  133. //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
  134. for (size_t ih :
  135. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  136. for (size_t iw :
  137. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  138. for (size_t p : {1, 2}) {
  139. Param param;
  140. param.mode = Param::Mode::MAX;
  141. param.window_h = param.window_w = 4;
  142. param.stride_h = param.stride_w = 2;
  143. param.pad_h = param.pad_w = p;
  144. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  145. }
  146. //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
  147. for (size_t ih :
  148. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  149. for (size_t iw :
  150. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  151. for (size_t p : {1, 2}) {
  152. Param param;
  153. param.mode = Param::Mode::MAX;
  154. param.window_h = param.window_w = 5;
  155. param.stride_h = param.stride_w = 2;
  156. param.pad_h = param.pad_w = p;
  157. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  158. }
  159. }
  160. #endif
  161. TEST_F(ARM_COMMON, POOLING_QUANTIZED) {
  162. Checker<Pooling> checker(handle());
  163. UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
  164. UniformIntRNG rng2{0, UINT8_MAX >> 1};
  165. using Param = param::Pooling;
  166. for (auto type : std::vector<DType>{
  167. dtype::QuantizedS8(1.1f),
  168. dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
  169. if (type.enumv() == DTypeEnum::QuantizedS8) {
  170. checker.set_rng(0, &rng1);
  171. } else {
  172. megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
  173. checker.set_rng(0, &rng2);
  174. }
  175. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  176. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  177. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  178. for (size_t window : {2, 3}) {
  179. Param param;
  180. param.mode = mode;
  181. param.window_h = param.window_w = window;
  182. param.stride_h = param.stride_w = 1;
  183. param.pad_h = param.pad_w = window / 2;
  184. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
  185. //! FH
  186. //! == 3)
  187. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  188. //! test for SH = SW = 2 && FH = FW = 2
  189. param.stride_h = param.stride_w = 2;
  190. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  191. }
  192. }
  193. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  194. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  195. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  196. for (size_t ph : {0, 1, 2})
  197. for (size_t pw : {0, 1, 2})
  198. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  199. param::Pooling param;
  200. param.mode = param::Pooling::Mode::MAX;
  201. param.pad_h = ph;
  202. param.pad_w = pw;
  203. param.window_h = param.window_w = 3;
  204. param.stride_h = param.stride_w = 2;
  205. checker.set_param(param).exec(
  206. TensorShapeArray{{2, 3, ih, iw}, {}});
  207. }
  208. //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
  209. for (size_t ih :
  210. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  211. for (size_t iw :
  212. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  213. for (size_t p : {1, 2}) {
  214. Param param;
  215. param.mode = Param::Mode::MAX;
  216. param.window_h = param.window_w = 4;
  217. param.stride_h = param.stride_w = 2;
  218. param.pad_h = param.pad_w = p;
  219. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  220. }
  221. //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
  222. for (size_t ih :
  223. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  224. for (size_t iw :
  225. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  226. for (size_t p : {1, 2}) {
  227. Param param;
  228. param.mode = Param::Mode::MAX;
  229. param.window_h = param.window_w = 5;
  230. param.stride_h = param.stride_w = 2;
  231. param.pad_h = param.pad_w = p;
  232. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  233. }
  234. }
  235. }
  236. #if MEGDNN_WITH_BENCHMARK
  237. TEST_F(ARM_COMMON, BENCHMARK_POOLING_INT8_W3x3_S2x2)
  238. {
  239. using Param = param::Pooling;
  240. auto run = [&](const TensorShapeArray &shapes,
  241. Param param) {
  242. auto handle_naive = create_cpu_handle(2);
  243. TensorLayoutArray layouts;
  244. layouts.emplace_back(shapes[0], dtype::Int8());
  245. layouts.emplace_back(shapes[1], dtype::Int8());
  246. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  247. Benchmarker<Pooling> benchmarker_float(handle());
  248. Benchmarker<Pooling> benchmarker_int(handle());
  249. size_t RUN = 10;
  250. auto t1 = benchmarker_naive.set_display(false).set_times(RUN).
  251. set_param(param).exec(shapes);
  252. auto t2 = benchmarker_float.set_display(false).set_times(RUN).
  253. set_param(param).exec(shapes);
  254. auto t3 = benchmarker_int.set_display(false).set_times(RUN).
  255. set_param(param).execl(layouts);
  256. printf("naive=%.3fms float=%.3fms, int=%.3fms\n",
  257. t1 / RUN, t2 / RUN, t3 / RUN);
  258. auto speedup = t2/t3;
  259. ASSERT_GE(speedup, 2.0);
  260. };
  261. Param param;
  262. param.window_h = param.window_w = 3;
  263. param.stride_h = param.stride_w = 2;
  264. param.pad_h = param.pad_w = 1;
  265. std::cout << "3x3 with 2x2 stride max pooling:" << std::endl;
  266. run({{1, 3, 640, 480}, {}}, param);
  267. }
  268. TEST_F(ARM_COMMON, BENCHMARK_POOLING_W4x4_S2x2)
  269. {
  270. using Param = param::Pooling;
  271. auto run = [&](const TensorShapeArray &shapes,
  272. Param param) {
  273. std::cout << "N:" << shapes[0][0] << " "
  274. << "IC:" << shapes[0][1] << " "
  275. << "IH:" << shapes[0][2] << " "
  276. << "IW:" << shapes[0][3] << std::endl;
  277. auto handle_naive = create_cpu_handle(2);
  278. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  279. Benchmarker<Pooling> benchmarker_float(handle());
  280. size_t RUN = 10;
  281. auto t1 = benchmarker_naive.set_display(false).set_times(RUN).
  282. set_param(param).exec(shapes);
  283. auto t2 = benchmarker_float.set_display(false).set_times(RUN).
  284. set_param(param).exec(shapes);
  285. TensorLayout dst_layout;
  286. auto opr = handle()->create_operator<Pooling>();
  287. opr->param() = param;
  288. opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
  289. float calc_amount = dst_layout.total_nr_elems() *
  290. param.window_h * param.window_w;
  291. printf("naive={%.3fms, %.3fMflops}, neon={%.3fms, %.3fMflops}\n",
  292. t1 / RUN, calc_amount / (t1 / RUN * 1000),
  293. t2 / RUN, calc_amount / (t2 / RUN * 1000));
  294. };
  295. Param param;
  296. param.window_h = param.window_w = 4;
  297. param.stride_h = param.stride_w = 2;
  298. param.pad_h = param.pad_w = 1;
  299. std::cout << "4x4 with 2x2 stride max pooling:" << std::endl;
  300. run({{1, 24, 160, 128}, {}}, param);
  301. run({{1, 4, 240, 135}, {}}, param);
  302. run({{1, 32, 120, 67}, {}}, param);
  303. run({{1, 64, 60, 33}, {}}, param);
  304. }
  305. TEST_F(ARM_COMMON, BENCHMARK_POOLING_W5x5_S2x2)
  306. {
  307. using Param = param::Pooling;
  308. auto run = [&](const TensorShapeArray &shapes,
  309. Param param) {
  310. std::cout << "N:" << shapes[0][0] << " "
  311. << "IC:" << shapes[0][1] << " "
  312. << "IH:" << shapes[0][2] << " "
  313. << "IW:" << shapes[0][3] << std::endl;
  314. auto handle_naive = create_cpu_handle(2);
  315. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  316. Benchmarker<Pooling> benchmarker_float(handle());
  317. size_t RUN = 10;
  318. auto t1 = benchmarker_naive.set_display(false).set_times(RUN).
  319. set_param(param).exec(shapes);
  320. auto t2 = benchmarker_float.set_display(false).set_times(RUN).
  321. set_param(param).exec(shapes);
  322. TensorLayout dst_layout;
  323. auto opr = handle()->create_operator<Pooling>();
  324. opr->param() = param;
  325. opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
  326. float calc_amount = dst_layout.total_nr_elems() *
  327. param.window_h * param.window_w;
  328. printf("naive={%.3fms, %.3fMflops}, neon={%.3fms, %.3fMflops}\n",
  329. t1 / RUN, calc_amount / (t1 / RUN * 1000),
  330. t2 / RUN, calc_amount / (t2 / RUN * 1000));
  331. };
  332. Param param;
  333. param.window_h = param.window_w = 5;
  334. param.stride_h = param.stride_w = 2;
  335. param.pad_h = param.pad_w = 1;
  336. std::cout << "5x5 with 2x2 stride max pooling:" << std::endl;
  337. run({{1, 24, 160, 128}, {}}, param);
  338. run({{1, 4, 240, 135}, {}}, param);
  339. run({{1, 32, 120, 67}, {}}, param);
  340. run({{1, 64, 60, 33}, {}}, param);
  341. }
  342. TEST_F(ARM_COMMON, BENCHMARK_POOLING_FP16) {
  343. using Param = param::Pooling;
  344. auto run = [&](const TensorShapeArray& shapes, Param param) {
  345. TensorLayoutArray layouts;
  346. layouts.emplace_back(shapes[0], dtype::Float16());
  347. layouts.emplace_back(shapes[1], dtype::Float16());
  348. Benchmarker<Pooling> benchmarker_float(handle());
  349. Benchmarker<Pooling> benchmarker_half(handle());
  350. size_t RUN = 10;
  351. auto tf = benchmarker_float.set_display(false)
  352. .set_times(RUN)
  353. .set_param(param)
  354. .exec(shapes) /
  355. RUN;
  356. auto th = benchmarker_half.set_display(false)
  357. .set_times(RUN)
  358. .set_param(param)
  359. .execl(layouts) /
  360. RUN;
  361. TensorLayout dst_layout;
  362. auto opr = handle()->create_operator<Pooling>();
  363. opr->param() = param;
  364. opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
  365. float computations = dst_layout.total_nr_elems() * param.window_h *
  366. param.window_w / (1024.f * 1024 * 1024);
  367. printf("float=%.3fms %f gflops, float16=%.3fms %f gflops speedup: %f\n",
  368. tf, computations / tf * 1e3, th, computations / th * 1e3,
  369. tf / th);
  370. };
  371. Param param;
  372. param.window_h = param.window_w = 2;
  373. param.stride_h = param.stride_w = 1;
  374. param.pad_h = param.pad_w = 1;
  375. printf("2x2 with 1x1 stride max pooling:\n");
  376. run({{1, 3, 640, 480}, {}}, param);
  377. for (size_t oh : {640, 128})
  378. for (size_t ow : {480, 112}) {
  379. param.window_h = param.window_w = 3;
  380. param.stride_h = param.stride_w = 2;
  381. param.pad_h = param.pad_w = 1;
  382. param.mode = Param::Mode::AVERAGE;
  383. printf("3x3 with 2x2 stride average pooling.\n");
  384. run({{1, 3, oh, ow}, {}}, param);
  385. for (size_t pw : {2, 3, 4, 5}) {
  386. param.window_h = param.window_w = pw;
  387. param.stride_h = param.stride_w = 2;
  388. param.pad_h = param.pad_w = 1;
  389. param.mode = Param::Mode::MAX;
  390. printf("%zux%zu with 2x2 stride max pooling:\n", pw, pw);
  391. run({{1, 3, oh, ow}, {}}, param);
  392. }
  393. }
  394. }
  395. TEST_F(ARM_COMMON, BENCHMARK_POOLING_QUANTIZED) {
  396. using Param = param::Pooling;
  397. auto run = [&](const TensorShapeArray& shapes, Param param) {
  398. auto handle_naive = create_cpu_handle(2);
  399. TensorLayoutArray layouts;
  400. layouts.emplace_back(shapes[0], dtype::QuantizedS8(1.1f));
  401. layouts.emplace_back(shapes[1], dtype::QuantizedS8(1.1f));
  402. Benchmarker<Pooling> benchmarker_int(handle());
  403. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  404. size_t RUN = 10;
  405. auto time_int = benchmarker_int.set_display(false)
  406. .set_times(RUN)
  407. .set_param(param)
  408. .exec(shapes) /
  409. RUN;
  410. auto time_naive = benchmarker_naive.set_display(false)
  411. .set_times(RUN)
  412. .set_param(param)
  413. .execl(layouts) /
  414. RUN;
  415. TensorLayout dst_layout;
  416. auto opr = handle()->create_operator<Pooling>();
  417. opr->param() = param;
  418. opr->deduce_layout({shapes[0], dtype::QuantizedS8(1.1f)}, dst_layout);
  419. float computations = dst_layout.total_nr_elems() * param.window_h *
  420. param.window_w / (1024.f * 1024 * 1024);
  421. printf("naive=%.3fms %f gflops, int8=%.3fms %f gflops speedup: %f\n",
  422. time_naive, computations / time_naive * 1e3, time_int,
  423. computations / time_int * 1e3, time_naive / time_int);
  424. };
  425. Param param;
  426. param.window_h = param.window_w = 2;
  427. param.stride_h = param.stride_w = 1;
  428. param.pad_h = param.pad_w = 1;
  429. printf("2x2 with 1x1 stride max pooling:\n");
  430. run({{1, 3, 640, 480}, {}}, param);
  431. // clang-format off
  432. for (size_t oh : {640, 128})
  433. for (size_t ow : {480, 112})
  434. for (size_t pw : {2, 3, 4, 5}) {
  435. param.window_h = param.window_w = pw;
  436. param.stride_h = param.stride_w = 2;
  437. param.pad_h = param.pad_w = 1;
  438. printf("%zux%zu with 2x2 stride max pooling:\n", pw, pw);
  439. run({{1, 3, oh, ow}, {}}, param);
  440. }
  441. // clang-format on
  442. }
  443. #endif
  444. } // namespace test
  445. } // namespace megdnn
  446. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台