You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

checker.cpp 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. /**
  2. * \file dnn/test/common/checker.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "./checker.h"
  12. #include "megdnn/tensor_iter.h"
  13. #include "megdnn/tensor_format.h"
  14. #include "test/common/tensor.h"
  15. #include "test/common/timer.h"
  16. using namespace megdnn;
  17. using namespace test;
  18. namespace {
  19. template<typename ctype, class Iter>
  20. ::testing::AssertionResult assert_tensor_eq_with_iter(
  21. const char *expr0, const char *expr1,
  22. Iter it0, Iter it1, const TensorLayout &layout,
  23. float maxerr, float maxerr_avg, float maxerr_avg_biased, bool allow_invalid) {
  24. auto nr_elem = layout.total_nr_elems();
  25. double error_sum = 0;
  26. double error_sum_biased = 0;
  27. for (size_t i = 0; i < nr_elem; ++ i) {
  28. ctype iv0 = *it0, iv1 = *it1;
  29. float err = diff(iv0, iv1);
  30. error_sum += std::abs(err);
  31. error_sum_biased += err;
  32. if (!allow_invalid && (!good_float(iv0) || !good_float(iv1) ||
  33. std::abs(err) > maxerr)) {
  34. Index index(layout, i);
  35. return ::testing::AssertionFailure()
  36. << "Unequal value\n"
  37. << "Value of: " << expr1 << "\n"
  38. << " Actual: " << (iv1 + 0) << "\n"
  39. << "Expected: " << expr0 << "\n"
  40. << "Which is: " << (iv0 + 0) << "\n"
  41. << "At index: " << index.to_string() << "/"
  42. << layout.TensorShape::to_string() << "\n"
  43. << " DType: " << layout.dtype.name() << "\n"
  44. << " error: " << std::abs(err) << "/" << maxerr;
  45. }
  46. ++ it0;
  47. ++ it1;
  48. }
  49. float error_avg = error_sum / nr_elem;
  50. if (error_avg > maxerr_avg) {
  51. return ::testing::AssertionFailure()
  52. << "Average error exceeds the upper limit\n"
  53. << "Value of: " << expr1 << "\n"
  54. << "Expected: " << expr0 << "\n"
  55. << "Average error: " << error_avg << "/" << maxerr_avg
  56. << "\n"
  57. << "Num of elements: " << nr_elem;
  58. }
  59. float error_avg_biased = error_sum_biased / nr_elem;
  60. if (std::abs(error_avg_biased) > maxerr_avg_biased) {
  61. return ::testing::AssertionFailure()
  62. << "Average biased error exceeds the upper limit\n"
  63. << "Value of: " << expr1 << "\n"
  64. << "Expected: " << expr0 << "\n"
  65. << "Average biased error: " << error_avg_biased << "/"
  66. << maxerr_avg_biased << "\n"
  67. << "Num of elements: " << nr_elem;
  68. }
  69. return ::testing::AssertionSuccess();
  70. }
  71. template<typename ctype>
  72. ::testing::AssertionResult assert_tensor_eq_with_dtype(
  73. const char *expr0, const char *expr1,
  74. const TensorND &v0, const TensorND &v1,
  75. float maxerr, float maxerr_avg, float maxerr_avg_biased, bool allow_invalid) {
  76. if (!std::is_same<ctype, dt_qint4>::value &&
  77. !std::is_same<ctype, dt_quint4>::value) {
  78. if (v0.layout.is_physical_contiguous() &&
  79. v1.layout.is_physical_contiguous()) {
  80. return assert_tensor_eq_with_iter<ctype>(
  81. expr0, expr1, v0.ptr<ctype>(), v1.ptr<ctype>(),
  82. v0.layout, maxerr, maxerr_avg, maxerr_avg_biased, allow_invalid);
  83. }
  84. }
  85. auto it0 = megdnn::tensor_iter_valonly<ctype>(v0).begin(),
  86. it1 = megdnn::tensor_iter_valonly<ctype>(v1).begin();
  87. return assert_tensor_eq_with_iter<ctype>(expr0, expr1, it0, it1,
  88. v0.layout, maxerr, maxerr_avg,
  89. maxerr_avg_biased, allow_invalid);
  90. }
  91. template<class Impl>
  92. void memcpy_noncontig(
  93. void *dst, const void *src, const TensorLayout &layout,
  94. const Impl& impl) {
  95. auto span = layout.span();
  96. dst = static_cast<dt_byte*>(dst) + span.low_byte;
  97. src = static_cast<const dt_byte*>(src) + span.low_byte;
  98. impl(dst, src, span.dist_byte());
  99. }
  100. template <typename Impl>
  101. void copy_tensors(const CheckerHelper::TensorValueArray& dest,
  102. const CheckerHelper::TensorValueArray& src,
  103. const Impl& copy_impl) {
  104. megdnn_assert(dest.size() == src.size());
  105. for (size_t i = 0; i < src.size(); i++) {
  106. auto&& tensor = src[i];
  107. if (tensor.layout.ndim == 0)
  108. continue;
  109. memcpy_noncontig(dest[i].raw_ptr, tensor.raw_ptr, tensor.layout,
  110. copy_impl);
  111. }
  112. }
  113. void copy_tensors(const CheckerHelper::TensorValueArray& dest,
  114. const CheckerHelper::TensorValueArray& src) {
  115. copy_tensors(dest, src, memcpy);
  116. }
  117. } // anonymous namespace
  118. ::testing::AssertionResult test::__assert_tensor_eq(
  119. const char *expr0, const char *expr1, const char * /*expr_maxerr*/,
  120. const char* /*expr_maxerr_avg*/,
  121. const char* /*expr_maxerr_avg*/,
  122. const TensorND &v0, const TensorND &v1,
  123. float maxerr, float maxerr_avg, float maxerr_avg_biased, bool allow_invalid) {
  124. if (!v0.layout.eq_shape(v1.layout)) {
  125. return ::testing::AssertionFailure()
  126. << "Shape mismatch\n"
  127. << "Value of: " << expr1 << "\n"
  128. << " Actual: " << v1.layout.TensorShape::to_string() << "\n"
  129. << "Expected: " << expr0 << "\n"
  130. << "Which is: " << v0.layout.TensorShape::to_string() << "\n";
  131. }
  132. auto dtype = v0.layout.dtype;
  133. if (dtype != v1.layout.dtype) {
  134. return ::testing::AssertionFailure()
  135. << "Data type mismatch\n"
  136. << "Value of: " << expr1 << "\n"
  137. << " Actual: " << v1.layout.dtype.name() << "\n"
  138. << "Expected: " << expr0 << "\n"
  139. << "Which is: " << v0.layout.dtype.name() << "\n";
  140. }
  141. switch(dtype.enumv()) {
  142. #define cb(_dt) \
  143. case DTypeTrait<_dt>::enumv: \
  144. return assert_tensor_eq_with_dtype<DTypeTrait<_dt>::ctype>( \
  145. expr0, expr1, v0, v1, maxerr, maxerr_avg, maxerr_avg_biased, allow_invalid);
  146. MEGDNN_FOREACH_COMPUTING_DTYPE(cb)
  147. MEGDNN_FOREACH_QUANTIZED_DTYPE(cb)
  148. //! In order to avoid an unnecessary increase in binary size, we just
  149. //! use QuantizedS16 dtype in winograd_filter_preprocess now.
  150. cb(::megdnn::dtype::QuantizedS16)
  151. MEGDNN_FOREACH_QUANTIZED_LOWBIT_DTYPE(cb)
  152. #undef cb
  153. default:
  154. megdnn_trap();
  155. }
  156. }
  157. ::testing::AssertionResult test::__assert_tensor_eq_allow_invalid(
  158. const char* expr0, const char* expr1, const char* expr_maxerr,
  159. const char* expr_maxerr_avg, const char* expr_maxerr_avg_biased,
  160. const TensorND& v0, const TensorND& v1, float maxerr, float maxerr_avg,
  161. float maxerr_avg_biased) {
  162. return __assert_tensor_eq(expr0, expr1, expr_maxerr, expr_maxerr_avg,
  163. expr_maxerr_avg_biased, v0, v1, maxerr,
  164. maxerr_avg, maxerr_avg_biased, true);
  165. };
  166. CheckerHelper::CheckerHelper(Handle *handle, bool check_dispatch):
  167. m_handle_cur(handle),
  168. m_default_rng(new NormalRNG())
  169. {
  170. //! set MGB_NO_NAIVE_CHECK=1 to close megdnn test check with naive
  171. const char* env_p = std::getenv("MGB_NO_NAIVE_CHECK");
  172. if (env_p) {
  173. int no_naive_flag = atoi(env_p);
  174. m_no_naive_and_check = no_naive_flag > 0 ? true : false;
  175. check_dispatch = false;
  176. } else {
  177. m_no_naive_and_check = false;
  178. }
  179. auto tmp_handle = create_cpu_handle(2, check_dispatch);
  180. m_handle_naive = std::move(tmp_handle);
  181. }
  182. CheckerHelper::~CheckerHelper() noexcept = default;
  183. void CheckerHelper::do_exec_with_testcases(const TensorValueArray& testcase_in,
  184. const TensorValueArray& testcase_out,
  185. const OprExec& exec_opr) {
  186. m_prev_succ = false;
  187. // Validate layouts of tensors in testcase_in and testcase_out.
  188. // It must be possible to aggregate the layouts of inputs and outputs.
  189. TensorLayoutArray layouts;
  190. for (size_t i = 0; i < testcase_in.size(); i++) {
  191. // ndim == 0 means does not apply.
  192. ASSERT_TRUE(testcase_in[i].layout.ndim == 0 ||
  193. testcase_out[i].layout.ndim == 0 ||
  194. testcase_in[i].layout.eq_layout(testcase_out[i].layout));
  195. layouts.emplace_back(testcase_in[i].layout.ndim > 0
  196. ? testcase_in[i].layout
  197. : testcase_out[i].layout);
  198. }
  199. auto tensors_cur_storage = alloc_tensors(m_handle_cur, layouts, m_offset);
  200. auto tensors_cur_host_storage =
  201. alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  202. auto &&tensors_cur = *tensors_cur_storage;
  203. auto &&tensors_cur_host = *tensors_cur_host_storage;
  204. copy_tensors_to_device(tensors_cur, testcase_in);
  205. exec_opr(tensors_cur);
  206. if (m_expect_exec_fail) {
  207. m_expect_exec_fail();
  208. m_expect_exec_fail = {};
  209. return;
  210. }
  211. copy_tensors_from_device(tensors_cur_host, tensors_cur);
  212. check_tensors(testcase_out, tensors_cur_host);
  213. m_prev_succ = !::testing::Test::HasFailure();
  214. }
  215. void CheckerHelper::do_exec(const TensorLayoutArray &user_layouts,
  216. const TensorLayoutArray &deduced_layouts,
  217. const OprExec &exec_naive, const OprExec &exec_opr) {
  218. m_prev_succ = false;
  219. // check if user provided layouts are correct
  220. for (size_t i = 0; i < deduced_layouts.size(); ++i) {
  221. if (user_layouts[i].ndim > 0) {
  222. ASSERT_TRUE(deduced_layouts[i].eq_shape(user_layouts[i]))
  223. << "User provided shape is "
  224. << user_layouts[i].TensorShape::to_string()
  225. << "\nExpected shape is "
  226. << deduced_layouts[i].TensorShape::to_string();
  227. }
  228. }
  229. auto layouts = user_layouts;
  230. for (size_t i = 0; i < layouts.size(); ++i) {
  231. if (layouts[i].ndim == 0) {
  232. //! in some opr, such as conv_bias has ndim==0
  233. layouts[i] = deduced_layouts[i];
  234. }
  235. }
  236. // allocate
  237. m_tensors_naive = alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  238. auto tensors_cur_storage = alloc_tensors(m_handle_cur, layouts, m_offset);
  239. auto tensors_cur_host_storage =
  240. alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  241. auto &&tensors_naive = *m_tensors_naive;
  242. auto &&tensors_cur = *tensors_cur_storage;
  243. auto &&tensors_cur_host = *tensors_cur_host_storage;
  244. std::shared_ptr<TensorValueArray> tensors_extra_opr_impl;
  245. if (m_extra_opr_impl) {
  246. tensors_extra_opr_impl =
  247. alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  248. }
  249. init_naive_values();
  250. copy_tensors_to_device(tensors_cur, tensors_naive);
  251. if (m_extra_opr_impl) {
  252. copy_tensors(*tensors_extra_opr_impl, tensors_naive);
  253. }
  254. // execute
  255. exec_opr(tensors_cur);
  256. if (m_expect_exec_fail) {
  257. m_expect_exec_fail();
  258. m_expect_exec_fail = {};
  259. return;
  260. }
  261. if (m_stable_check) {
  262. auto tensors_bak_host_storage =
  263. alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  264. auto&& tensors_bak_host = *tensors_bak_host_storage;
  265. copy_tensors_from_device(tensors_bak_host, tensors_cur);
  266. for (int i = 0; i < 10; i++) {
  267. exec_opr(tensors_cur);
  268. copy_tensors_from_device(tensors_cur_host, tensors_cur);
  269. check_tensors(tensors_bak_host, tensors_cur_host);
  270. }
  271. }
  272. if (m_no_naive_and_check) {
  273. m_prev_succ = !::testing::Test::HasFailure();
  274. return;
  275. }
  276. exec_naive(tensors_naive);
  277. if (m_extra_opr_impl) {
  278. m_extra_opr_impl(*tensors_extra_opr_impl);
  279. }
  280. // see if we need performance regression test
  281. if (m_perf_check) {
  282. ASSERT_GT(m_perf_check_threshold, 0) << "perf_check_threshold should be "
  283. "set ahead of time.";
  284. Timer timer_naive, timer_cur;
  285. megdnn_sync(m_handle_naive.get());
  286. timer_naive.start();
  287. exec_naive(tensors_naive);
  288. megdnn_sync(m_handle_naive.get());
  289. timer_naive.stop();
  290. megdnn_sync(m_handle_cur);
  291. timer_cur.start();
  292. exec_opr(tensors_cur);
  293. megdnn_sync(m_handle_cur);
  294. timer_cur.stop();
  295. size_t time_in_us_naive = timer_naive.get_time_in_us(),
  296. time_in_us_cur = timer_cur.get_time_in_us();
  297. EXPECT_GE(time_in_us_naive, static_cast<size_t>(100))
  298. << "Running time smaller than 100us "
  299. << "might be imprecise. naive_time="
  300. << time_in_us_naive << "us.";
  301. float speedup_ratio = static_cast<float>(time_in_us_naive) /
  302. time_in_us_cur;
  303. EXPECT_GE(speedup_ratio, m_perf_check_threshold) << "speedup_ratio="
  304. << speedup_ratio << " threshold=" << m_perf_check_threshold
  305. << " naive_time=" << time_in_us_naive << "us cur_time="
  306. << time_in_us_cur << "us";
  307. }
  308. copy_tensors_from_device(tensors_cur_host, tensors_cur);
  309. if (m_output_canonizer) {
  310. m_output_canonizer(tensors_cur_host);
  311. m_output_canonizer(tensors_naive);
  312. }
  313. check_tensors(tensors_naive, tensors_cur_host);
  314. if (m_extra_opr_impl) {
  315. check_tensors(tensors_naive, *tensors_extra_opr_impl);
  316. }
  317. m_prev_succ = !::testing::Test::HasFailure();
  318. }
  319. std::shared_ptr<CheckerHelper::TensorValueArray>
  320. CheckerHelper::alloc_tensors(Handle *handle, const TensorLayoutArray &layouts,
  321. const size_t offset) {
  322. auto deleter = [handle, offset](TensorValueArray *ptr) {
  323. for (auto &&i: *ptr) {
  324. auto pdata = static_cast<dt_byte*>(i.raw_ptr) +
  325. i.layout.span().low_byte - offset;
  326. megdnn_free(handle, pdata);
  327. }
  328. delete ptr;
  329. };
  330. std::shared_ptr<TensorValueArray> ret{new TensorValueArray, deleter};
  331. for (size_t i = 0; i < layouts.size(); ++ i) {
  332. auto span = layouts[i].span();
  333. ret->emplace_back(static_cast<dt_byte*>(megdnn_malloc(
  334. handle, span.dist_byte() + offset)) -
  335. span.low_byte + offset,
  336. layouts[i]);
  337. }
  338. return ret;
  339. }
  340. void CheckerHelper::init_naive_values() {
  341. auto &&tensors_naive = *m_tensors_naive;
  342. megdnn_assert(!m_input_tensors_fpath || !m_tensor_constraint);
  343. if (m_input_tensors_fpath) {
  344. auto load = load_tensors(m_input_tensors_fpath);
  345. m_input_tensors_fpath = nullptr;
  346. megdnn_assert(load.size() <= tensors_naive.size());
  347. for (size_t i = 0; i < load.size(); ++ i) {
  348. auto &&src = load[i];
  349. auto &&dst = tensors_naive[i];
  350. megdnn_assert(src->layout.eq_layout(dst.layout));
  351. memcpy_noncontig(dst.raw_ptr, src->raw_ptr, dst.layout, memcpy);
  352. }
  353. return;
  354. }
  355. for (size_t i = 0; i < tensors_naive.size(); ++i) {
  356. auto &&tensor = tensors_naive[i];
  357. auto rng = m_rng[i];
  358. if (!rng)
  359. rng = m_default_rng.get();
  360. rng->gen(tensor);
  361. }
  362. if (m_tensor_constraint) {
  363. m_tensor_constraint(tensors_naive);
  364. }
  365. }
  366. void CheckerHelper::copy_tensors_from_device(const TensorValueArray& dest,
  367. const TensorValueArray& src) {
  368. auto impl_d2h = [this](void* dst, const void* src, size_t sz) {
  369. megdnn_memcpy_D2H(m_handle_cur, dst, src, sz);
  370. };
  371. copy_tensors(dest, src, impl_d2h);
  372. }
  373. void CheckerHelper::check_tensors(const TensorValueArray& expected,
  374. const TensorValueArray& computed) {
  375. for (size_t i = 0; i < expected.size(); ++i) {
  376. if (expected[i].layout.ndim == 0)
  377. continue;
  378. if (m_allow_invalid_check) {
  379. MEGDNN_ASSERT_TENSOR_EQ_EPS_AVG_ALLOW_INVALID(
  380. expected[i], computed[i], m_epsilon, m_max_avg_error,
  381. m_max_avg_biased_error);
  382. } else {
  383. MEGDNN_ASSERT_TENSOR_EQ_EPS_AVG(expected[i], computed[i], m_epsilon,
  384. m_max_avg_error,
  385. m_max_avg_biased_error);
  386. }
  387. }
  388. }
  389. void CheckerHelper::copy_tensors_to_device(const TensorValueArray& dest,
  390. const TensorValueArray& src) {
  391. auto impl_h2d = [this](void* dst, const void* src, size_t sz) {
  392. megdnn_memcpy_H2D(m_handle_cur, dst, src, sz);
  393. };
  394. copy_tensors(dest, src, impl_h2d);
  395. }
  396. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台