You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_normalization.py 1.4 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import numpy as np
  10. import megengine.module.normalization as norm
  11. from megengine import tensor
  12. def shape_to_tuple(shape):
  13. if isinstance(shape, tensor):
  14. shape = tuple(shape.tolist())
  15. return shape
  16. def test_group_norm():
  17. input_shape = (2, 100, 128, 128)
  18. channels = input_shape[1]
  19. groups = [2, 5, 10, 50]
  20. x = tensor(np.random.rand(*input_shape))
  21. for group in groups:
  22. gn = norm.GroupNorm(group, channels)
  23. out = gn(x)
  24. assert shape_to_tuple(out.shape) == input_shape
  25. def test_layer_norm():
  26. input_shape_list = [(2, 3, 10, 10), (2, 2, 3, 10, 10)]
  27. ln = norm.LayerNorm((10, 10))
  28. for input_shape in input_shape_list:
  29. x = tensor(np.random.rand(*input_shape))
  30. out = ln(x)
  31. assert shape_to_tuple(out.shape) == input_shape
  32. def test_instance_norm():
  33. input_shape = (2, 100, 128, 128)
  34. channels = input_shape[1]
  35. x = tensor(np.random.rand(*input_shape))
  36. inst_norm = norm.InstanceNorm(channels)
  37. out = inst_norm(x)
  38. assert shape_to_tuple(out.shape) == input_shape

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台