|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561 |
- /**
- * \file dnn/src/arm_common/conv_bias/f16/algos.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
-
- #include "src/arm_common/conv_bias/f16/algos.h"
- #include "src/arm_common/conv_bias/direct/multi_thread_common.h"
- #include "src/arm_common/conv_bias/f16/direct.h"
- #include "src/arm_common/conv_bias/f16/do_conv_stride1.h"
- #include "src/arm_common/conv_bias/f16/strategy.h"
- #include "src/arm_common/conv_bias/img2col_helper.h"
- #include "src/arm_common/conv_bias/postprocess_helper.h"
- #include "src/common/opr_delegate.h"
- #include "src/fallback/conv_bias/common.h"
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- #include "midout.h"
- MIDOUT_DECL(megdnn_arm_common_winograd_fp16)
- using namespace megdnn;
- using namespace arm_common;
-
- /* ======================= AlgoFP16WinogradF23 ======================== */
-
- bool ConvBiasImpl::AlgoFP16WinogradF23::usable(
- fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
- AlgoSelectionStrategy /*algo_selection_strategy*/) const {
- MEGDNN_MARK_USED_VAR(param);
- MEGDNN_MARK_USED_VAR(opr);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 0, 0) {
- using Strategy = winograd::winograd_2x3_4x4_f16;
- Strategy strategy(param.src_type, param.filter_type, param.dst_type);
- auto&& matmul_param =
- megdnn::winograd::ConvBias<Strategy>(
- strategy, m_tile_size, param.nr_threads, param.osz[0],
- param.osz[1], param.filter_meta.ocpg)
- .get_matmul_kern_param(param);
- return m_matmul_algo->usable(matmul_param) &&
- (opr->param().format == param::ConvBias::Format::NCHW ||
- (opr->param().format ==
- param::ConvBias::Format::NCHW_WINOGRAD &&
- opr->param().output_block_size == 2 &&
- param.winograd_matmul_format ==
- param::MatrixMul::Format::DEFAULT)) &&
- opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
- (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
- param.filter_meta.spatial[0] == 3) &&
- (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
- param.filter_meta.stride[0] == 1) &&
- (param.filter_meta.dilation[0] ==
- param.filter_meta.dilation[1] &&
- param.filter_meta.dilation[0] == 1) &&
- param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
- param.src_type.enumv() == DTypeEnum::Float16 &&
- param.filter_meta.icpg % 4 == 0 &&
- param.filter_meta.ocpg % 4 == 0;
- }
- MIDOUT_END();
- return false;
- }
-
- size_t ConvBiasImpl::AlgoFP16WinogradF23::get_workspace(
- fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
- MEGDNN_MARK_USED_VAR(param);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 0, 1) {
- winograd::winograd_2x3_4x4_f16 strategy(
- param.src_type, param.filter_type, param.dst_type);
- return megdnn::winograd::ConvBias<winograd::winograd_2x3_4x4_f16>(
- strategy, m_tile_size, param.nr_threads, param.osz[0],
- param.osz[1], param.filter_meta.ocpg)
- .get_workspace_size(param, m_matmul_algo);
- }
- MIDOUT_END();
- return 0;
- }
-
- SmallVector<ConvBiasImpl::NCBKern>
- ConvBiasImpl::AlgoFP16WinogradF23::dispatch_kerns(
- fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
- MEGDNN_MARK_USED_VAR(param);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 0, 2) {
- winograd::winograd_2x3_4x4_f16 strategy(
- param.src_type, param.filter_type, param.dst_type);
-
- auto winograd_impl =
- megdnn::winograd::ConvBias<winograd::winograd_2x3_4x4_f16>(
- strategy, m_tile_size, param.nr_threads, param.osz[0],
- param.osz[1], param.filter_meta.ocpg);
- return winograd_impl.get_kerns(param, m_matmul_algo);
- }
- MIDOUT_END();
- return {};
- }
-
- /* ======================= AlgoFP16WinogradF45 ======================== */
-
- bool ConvBiasImpl::AlgoFP16WinogradF45::usable(
- fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
- AlgoSelectionStrategy /*algo_selection_strategy*/) const {
- MEGDNN_MARK_USED_VAR(param);
- MEGDNN_MARK_USED_VAR(opr);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 1, 0) {
- using Strategy = winograd::winograd_4x5_1x1_f16;
- Strategy strategy(param.src_type, param.filter_type, param.dst_type);
- auto&& matmul_param =
- megdnn::winograd::ConvBias<Strategy>(
- strategy, m_tile_size, param.nr_threads, param.osz[0],
- param.osz[1], param.filter_meta.ocpg)
- .get_matmul_kern_param(param);
- return m_matmul_algo->usable(matmul_param) &&
- (opr->param().format == param::ConvBias::Format::NCHW ||
- (opr->param().format ==
- param::ConvBias::Format::NCHW_WINOGRAD &&
- opr->param().output_block_size == 4 &&
- param.winograd_matmul_format ==
- param::MatrixMul::Format::DEFAULT)) &&
- opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
- (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
- param.filter_meta.spatial[0] == 5) &&
- (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
- param.filter_meta.stride[0] == 1) &&
- (param.filter_meta.dilation[0] ==
- param.filter_meta.dilation[1] &&
- param.filter_meta.dilation[0] == 1) &&
- param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
- param.src_type.enumv() == DTypeEnum::Float16;
- }
- MIDOUT_END();
- return false;
- }
-
- size_t ConvBiasImpl::AlgoFP16WinogradF45::get_workspace(
- fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
- MEGDNN_MARK_USED_VAR(param);
- winograd::winograd_4x5_1x1_f16 strategy(param.src_type, param.filter_type,
- param.dst_type);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 1, 1) {
- return megdnn::winograd::ConvBias<winograd::winograd_4x5_1x1_f16>(
- strategy, m_tile_size, param.nr_threads, param.osz[0],
- param.osz[1], param.filter_meta.ocpg)
- .get_workspace_size(param, m_matmul_algo);
- }
- MIDOUT_END();
- return 0;
- }
-
- SmallVector<ConvBiasImpl::NCBKern>
- ConvBiasImpl::AlgoFP16WinogradF45::dispatch_kerns(
- fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
- MEGDNN_MARK_USED_VAR(param);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 1, 2) {
- winograd::winograd_4x5_1x1_f16 strategy(
- param.src_type, param.filter_type, param.dst_type);
- auto winograd_impl =
- megdnn::winograd::ConvBias<winograd::winograd_4x5_1x1_f16>(
- strategy, m_tile_size, param.nr_threads, param.osz[0],
- param.osz[1], param.filter_meta.ocpg);
- return winograd_impl.get_kerns(param, m_matmul_algo);
- }
- MIDOUT_END();
- return {};
- }
- /* ======================= AlgoFP16WinogradF63 ======================== */
-
- bool ConvBiasImpl::AlgoFP16WinogradF63::usable(
- fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
- AlgoSelectionStrategy /*algo_selection_strategy*/) const {
- MEGDNN_MARK_USED_VAR(param);
- MEGDNN_MARK_USED_VAR(opr);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 2, 0) {
- using Strategy = winograd::winograd_6x3_1x1_f16;
- Strategy strategy(param.src_type, param.filter_type, param.dst_type);
- auto&& matmul_param =
- megdnn::winograd::ConvBias<Strategy>(
- strategy, m_tile_size, param.nr_threads, param.osz[0],
- param.osz[1], param.filter_meta.ocpg)
- .get_matmul_kern_param(param);
- return m_matmul_algo->usable(matmul_param) &&
- (opr->param().format == param::ConvBias::Format::NCHW ||
- (opr->param().format ==
- param::ConvBias::Format::NCHW_WINOGRAD &&
- opr->param().output_block_size == 6 &&
- param.winograd_matmul_format ==
- param::MatrixMul::Format::DEFAULT)) &&
- opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
- (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
- param.filter_meta.spatial[0] == 3) &&
- (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
- param.filter_meta.stride[0] == 1) &&
- (param.filter_meta.dilation[0] ==
- param.filter_meta.dilation[1] &&
- param.filter_meta.dilation[0] == 1) &&
- param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
- param.src_type.enumv() == DTypeEnum::Float16;
- }
- MIDOUT_END();
- return false;
- }
-
- size_t ConvBiasImpl::AlgoFP16WinogradF63::get_workspace(
- fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
- MEGDNN_MARK_USED_VAR(param);
- winograd::winograd_6x3_1x1_f16 strategy(param.src_type, param.filter_type,
- param.dst_type);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 2, 1) {
- return megdnn::winograd::ConvBias<winograd::winograd_6x3_1x1_f16>(
- strategy, m_tile_size, param.nr_threads, param.osz[0],
- param.osz[1], param.filter_meta.ocpg)
- .get_workspace_size(param, m_matmul_algo);
- }
- MIDOUT_END();
- return 0;
- }
-
- SmallVector<ConvBiasImpl::NCBKern>
- ConvBiasImpl::AlgoFP16WinogradF63::dispatch_kerns(
- fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
- MEGDNN_MARK_USED_VAR(param);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 2, 2) {
- winograd::winograd_6x3_1x1_f16 strategy(
- param.src_type, param.filter_type, param.dst_type);
- auto winograd_impl =
- megdnn::winograd::ConvBias<winograd::winograd_6x3_1x1_f16>(
- strategy, m_tile_size, param.nr_threads, param.osz[0],
- param.osz[1], param.filter_meta.ocpg);
- return winograd_impl.get_kerns(param, m_matmul_algo);
- }
- MIDOUT_END();
- return {};
- }
-
- /* ======================= AlgoFP16WinogradF23_8x8 ======================== */
-
- bool ConvBiasImpl::AlgoFP16WinogradF23_8x8::usable(
- fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param,
- AlgoSelectionStrategy /*algo_selection_strategy*/) const {
- MEGDNN_MARK_USED_VAR(param);
- MEGDNN_MARK_USED_VAR(opr);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 3, 0) {
- if (param.filter_meta.icpg % 8 != 0 || param.filter_meta.ocpg % 8 != 0)
- return false;
- using Strategy = winograd::winograd_2x3_8x8_f16;
- Strategy strategy(param.src_type, param.filter_type, param.dst_type);
- auto&& matmul_param =
- megdnn::winograd::ConvBias<Strategy,
- param::MatrixMul::Format::MK8>(
- strategy, m_tile_size, param.nr_threads, param.osz[0],
- param.osz[1], param.filter_meta.ocpg)
- .get_matmul_kern_param(param);
- return m_matmul_algo->usable(matmul_param) &&
- (opr->param().format == param::ConvBias::Format::NCHW ||
- (opr->param().format ==
- param::ConvBias::Format::NCHW_WINOGRAD &&
- opr->param().output_block_size == 2 &&
- param.winograd_matmul_format ==
- param::MatrixMul::Format::MK8)) &&
- opr->param().mode == param::ConvBias::Mode::CROSS_CORRELATION &&
- (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
- param.filter_meta.spatial[0] == 3) &&
- (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
- param.filter_meta.stride[0] == 1) &&
- (param.filter_meta.dilation[0] ==
- param.filter_meta.dilation[1] &&
- param.filter_meta.dilation[0] == 1) &&
- param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
- param.src_type.enumv() == DTypeEnum::Float16;
- }
- MIDOUT_END();
- return false;
- }
-
- size_t ConvBiasImpl::AlgoFP16WinogradF23_8x8::get_workspace(
- fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
- MEGDNN_MARK_USED_VAR(param);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 3, 1) {
- winograd::winograd_2x3_8x8_f16 strategy(
- param.src_type, param.filter_type, param.dst_type);
- return megdnn::winograd::ConvBias<winograd::winograd_2x3_8x8_f16,
- param::MatrixMul::Format::MK8>(
- strategy, m_tile_size, param.nr_threads, param.osz[0],
- param.osz[1], param.filter_meta.ocpg)
- .get_workspace_size(param, m_matmul_algo);
- }
- MIDOUT_END();
- return 0;
- }
-
- SmallVector<ConvBiasImpl::NCBKern>
- ConvBiasImpl::AlgoFP16WinogradF23_8x8::dispatch_kerns(
- fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
- MEGDNN_MARK_USED_VAR(param);
- MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 3, 2) {
- winograd::winograd_2x3_8x8_f16 strategy(
- param.src_type, param.filter_type, param.dst_type);
- auto winograd_impl =
- megdnn::winograd::ConvBias<winograd::winograd_2x3_8x8_f16,
- param::MatrixMul::Format::MK8>(
- strategy, m_tile_size, param.nr_threads, param.osz[0],
- param.osz[1], param.filter_meta.ocpg);
- return winograd_impl.get_kerns(param, m_matmul_algo);
- }
- MIDOUT_END();
- return {};
- }
-
- /*========================from Convolution=============================*/
-
- MIDOUT_DECL(megdnn_arm_common_conv_bias_fp16_kimpl)
-
- bool ConvBiasImpl::AlgoF16Direct::usable(
- fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
- AlgoSelectionStrategy algo_selection_strategy) const {
- MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 0, 0) {
- auto&& fm = param.filter_meta;
- auto FH = fm.spatial[0];
- auto SH = fm.stride[0], SW = fm.stride[1];
- // the condition ``param.isz[0]*param.isz[1] >= 8'' and
- // ``param.osz[0]*param.osz[1] >= 8'' comes from the fact that the
- // kernel may have access to up to 8 fp16 after the end of the memory
- // chunk.
- bool aviliable = fm.format == param::ConvBias::Format::NCHW &&
- param.src_type.enumv() == DTypeEnum::Float16 &&
- param.filter_type.enumv() == DTypeEnum::Float16 &&
- param.dst_type.enumv() == DTypeEnum::Float16 &&
- fm.spatial_ndim == 2 && fm.dilation[0] == 1 &&
- fm.dilation[1] == 1 &&
- param.isz[0] * param.isz[1] >= 8 &&
- param.osz[0] * param.osz[1] >= 8 && FH <= 7 &&
- SH == 1 && SW == 1;
- if (algo_selection_strategy == AlgoSelectionStrategy::HEURISTIC) {
- bool large_group = param.filter_meta.group >= param.nr_threads;
- aviliable &= (large_group == m_large_group);
- }
- return aviliable;
- }
- MIDOUT_END();
- return false;
- }
-
- size_t ConvBiasImpl::AlgoF16Direct::get_workspace(
- fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
- MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 0, 1) {
- auto wbundle =
- MultithreadDirectConvCommon<dt_float16, __fp16>::get_bundle(
- param, m_large_group);
- return wbundle.total_size_in_bytes();
- }
- MIDOUT_END();
- return 0;
- }
-
- SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF16Direct::get_kimpls(
- const NCBKernSizeParam& param) const {
- auto fm = param.filter_meta;
- size_t N = param.n;
- size_t IC = param.filter_meta.icpg;
- size_t OC = param.filter_meta.ocpg;
- size_t group = fm.group;
- WorkspaceBundle wbundle =
- MultithreadDirectConvCommon<dt_float16, __fp16>::get_bundle(
- param, m_large_group);
- SmallVector<NCBKern> ret_kerns;
- //! When group >= nr_threads, treat it as large_group, each thread process
- //! one group for better performance
- if (m_large_group) {
- //! Channel wise conv and big groups
- auto exec_one_group = [wbundle](const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) {
- auto fm = kern_param.filter_meta;
- size_t IC = fm.icpg;
- size_t OC = fm.ocpg;
- WorkspaceBundle bundle = wbundle;
- if (fm.should_flip) {
- for (size_t oc = 0; oc < OC; oc++) {
- MultithreadDirectConvCommon<dt_float16, __fp16>::
- weight_flip_kern(bundle, kern_param, ncb_index,
- {ncb_index.thread_id, 0, oc});
- }
- }
- for (size_t ic = 0; ic < IC; ic++) {
- MultithreadDirectConvCommon<dt_float16, __fp16>::
- copy_padding_kern(bundle, kern_param, ncb_index,
- {ncb_index.thread_id, 0, ic});
- }
- for (size_t oc = 0; oc < OC; oc++) {
- MultithreadDirectConvCommon<dt_float16, __fp16>::do_conv_kern(
- bundle, kern_param, ncb_index,
- fp16::conv_bias::kern_direct_f16,
- {ncb_index.thread_id, 0, oc});
- }
- };
- ret_kerns.push_back({exec_one_group, {group, N, 1_z}});
- } else {
- WorkspaceBundle bundle = wbundle;
- if (fm.should_flip) {
- auto weight_flip = [bundle](const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) {
- MultithreadDirectConvCommon<dt_float16, __fp16>::
- weight_flip_kern(bundle, kern_param, ncb_index,
- ncb_index.ndrange_id);
- };
- ret_kerns.push_back({weight_flip, {group, 1_z, OC}});
- }
- auto copy_padding = [bundle](const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) {
- MultithreadDirectConvCommon<dt_float16, __fp16>::copy_padding_kern(
- bundle, kern_param, ncb_index, ncb_index.ndrange_id);
- };
- ret_kerns.push_back({copy_padding, {group, N, IC}});
- auto do_conv = [bundle](const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) {
- MultithreadDirectConvCommon<dt_float16, __fp16>::do_conv_kern(
- bundle, kern_param, ncb_index,
- fp16::conv_bias::kern_direct_f16, ncb_index.ndrange_id);
- };
- ret_kerns.push_back({do_conv, {group, N, OC}});
- }
- return ret_kerns;
- }
-
- SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF16Direct::dispatch_kerns(
- fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
- MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 0, 1) {
- return get_kimpls(param);
- }
- MIDOUT_END();
- return {};
- }
-
- /* ===================== stride-1 algo ===================== */
-
- bool ConvBiasImpl::AlgoF16DirectStride1::usable(
- fallback::ConvBiasImpl*, const NCBKernSizeParam& param,
- AlgoSelectionStrategy algo_selection_strategy) const {
- MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 1, 0) {
- auto&& fm = param.filter_meta;
- auto FH = fm.spatial[0];
- bool aviliable =
- param.filter_meta.format == param::ConvBias::Format::NCHW &&
- param.src_type.enumv() == DTypeEnum::Float16 &&
- param.filter_type.enumv() == DTypeEnum::Float16 &&
- param.dst_type.enumv() == DTypeEnum::Float16 &&
- !fm.should_flip && fm.spatial_ndim == 2 &&
- fm.dilation[0] == 1 && fm.dilation[1] == 1 &&
- fm.stride[0] == 1 && fm.stride[1] == 1 && FH == fm.spatial[1] &&
- (FH == 2 || FH == 3 || FH == 5);
- if (algo_selection_strategy ==
- ConvBiasImpl::AlgoSelectionStrategy::HEURISTIC) {
- bool large_group = param.filter_meta.group >= param.nr_threads;
- aviliable &= (large_group == m_large_group);
- }
- return aviliable;
- }
- MIDOUT_END();
- return false;
- }
-
- SmallVector<ConvBiasImpl::NCBKern>
- ConvBiasImpl::AlgoF16DirectStride1::get_kimpls(
- const NCBKernSizeParam& param) const {
- auto fm = param.filter_meta;
- auto FH = fm.spatial[0];
- size_t N = param.n;
- size_t IC = param.filter_meta.icpg;
- size_t OC = param.filter_meta.ocpg;
- size_t group = fm.group;
- using Func = std::function<void(const __fp16*, const __fp16*, __fp16*,
- size_t, size_t, size_t, size_t, size_t)>;
- Func conv_kern_function = nullptr;
-
- #define SWITCH_KERN() \
- switch (FH) { \
- case 2: \
- conv_kern_function = fp16::conv_stride1::do_conv_2x2_stride1; \
- break; \
- case 3: \
- conv_kern_function = fp16::conv_stride1::do_conv_3x3_stride1; \
- break; \
- case 5: \
- conv_kern_function = fp16::conv_stride1::do_conv_5x5_stride1; \
- break; \
- }
- SWITCH_KERN();
-
- WorkspaceBundle wbundle =
- MultithreadDirectConvCommon<dt_float16, __fp16>::get_bundle_stride(
- param, m_large_group);
- SmallVector<NCBKern> ret_kerns;
- //! When group >= nr_threads, treat it as large_group, each thread process
- //! one group for better performance
- if (m_large_group) {
- //! Channel wise conv and big groups
- auto exec_one_group = [wbundle, conv_kern_function](
- const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) {
- auto fm = kern_param.filter_meta;
- size_t IC = fm.icpg;
- size_t OC = fm.ocpg;
- WorkspaceBundle bundle = wbundle;
- for (size_t ic = 0; ic < IC; ic++) {
- MultithreadDirectConvCommon<dt_float16, __fp16>::
- copy_padding_kern_stride(bundle, kern_param, ncb_index,
- {ncb_index.thread_id, 0, ic});
- }
- for (size_t oc = 0; oc < OC; oc++) {
- MultithreadDirectConvCommon<dt_float16, __fp16>::
- do_conv_kern_stride(bundle, kern_param, ncb_index,
- conv_kern_function,
- {ncb_index.thread_id, 0, oc});
- }
- };
- ret_kerns.push_back({exec_one_group, {group, N, 1_z}});
- } else {
- WorkspaceBundle bundle = wbundle;
- auto copy_padding = [bundle](const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) {
- MultithreadDirectConvCommon<dt_float16, __fp16>::
- copy_padding_kern_stride(bundle, kern_param, ncb_index,
- ncb_index.ndrange_id);
- };
- ret_kerns.push_back({copy_padding, {group, N, IC}});
- auto do_conv = [bundle, conv_kern_function](
- const NCBKernParam& kern_param,
- const NCBKernIndex& ncb_index) {
- MultithreadDirectConvCommon<dt_float16, __fp16>::
- do_conv_kern_stride(bundle, kern_param, ncb_index,
- conv_kern_function,
- ncb_index.ndrange_id);
- };
- ret_kerns.push_back({do_conv, {group, N, OC}});
- }
- return ret_kerns;
- }
-
- size_t ConvBiasImpl::AlgoF16DirectStride1::get_workspace(
- fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
- MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 1, 1) {
- auto bundle = MultithreadDirectConvCommon<
- dt_float16, __fp16>::get_bundle_stride(param, m_large_group);
- return bundle.total_size_in_bytes();
- }
- MIDOUT_END();
- return 0;
- }
-
- SmallVector<ConvBiasImpl::NCBKern>
- ConvBiasImpl::AlgoF16DirectStride1::dispatch_kerns(
- fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {
- MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 1, 2) {
- return get_kimpls(param);
- }
- MIDOUT_END();
- return {};
- }
-
- #endif
- // vim: syntax=cpp.doxygen
|