You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

avx_helper.h 3.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. /**
  2. * \file dnn/src/x86/avx_helper.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #pragma once
  12. #include "megdnn/arch.h"
  13. #include <immintrin.h>
  14. #include <avxintrin.h>
  15. #include <avx2intrin.h>
  16. #include <fmaintrin.h>
  17. #if !defined (__clang__)
  18. #pragma GCC target ("avx")
  19. #endif
  20. namespace megdnn {
  21. namespace x86 {
  22. MEGDNN_ATTRIBUTE_TARGET("avx")
  23. static inline __m256 _mm256_loadu2_m128_emulate(
  24. const float *hiaddr, const float *loaddr) {
  25. return _mm256_insertf128_ps(_mm256_castps128_ps256(_mm_loadu_ps(loaddr)),
  26. _mm_loadu_ps(hiaddr), 1);
  27. }
  28. template <typename ctype, size_t len>
  29. struct Vector;
  30. template <>
  31. struct Vector<float, 8> {
  32. __m256 value;
  33. Vector() {}
  34. Vector(const float v) MEGDNN_ATTRIBUTE_TARGET("avx") {
  35. value = _mm256_set1_ps(v);
  36. }
  37. Vector(const Vector& lr) MEGDNN_ATTRIBUTE_TARGET("avx") {
  38. value = lr.value;
  39. }
  40. Vector(const Vector&& lr) MEGDNN_ATTRIBUTE_TARGET("avx") {
  41. value = std::move(lr.value);
  42. }
  43. Vector(const __m256& v) MEGDNN_ATTRIBUTE_TARGET("avx") { value = v; }
  44. static Vector load(const float* addr) MEGDNN_ATTRIBUTE_TARGET("avx") {
  45. Vector v;
  46. v.value = _mm256_loadu_ps(addr);
  47. return v;
  48. }
  49. static void save(float* addr, const Vector& v)
  50. MEGDNN_ATTRIBUTE_TARGET("avx") {
  51. _mm256_storeu_ps(addr, v.value);
  52. }
  53. void save(float* addr) MEGDNN_ATTRIBUTE_TARGET("avx") {
  54. save(addr, *this);
  55. }
  56. Vector operator+(const Vector& lr) MEGDNN_ATTRIBUTE_TARGET("avx") {
  57. Vector dst;
  58. dst.value = _mm256_add_ps(value, lr.value);
  59. return dst;
  60. }
  61. Vector& operator+=(const Vector& lr) MEGDNN_ATTRIBUTE_TARGET("avx") {
  62. value = _mm256_add_ps(value, lr.value);
  63. return *this;
  64. }
  65. Vector operator-(const Vector& lr) MEGDNN_ATTRIBUTE_TARGET("avx") {
  66. Vector dst;
  67. dst.value = _mm256_sub_ps(value, lr.value);
  68. return dst;
  69. }
  70. Vector& operator-=(const Vector& lr) MEGDNN_ATTRIBUTE_TARGET("avx") {
  71. value = _mm256_sub_ps(value, lr.value);
  72. return *this;
  73. }
  74. Vector operator*(float lr)MEGDNN_ATTRIBUTE_TARGET("avx") {
  75. Vector dst;
  76. dst.value = _mm256_mul_ps(value, _mm256_set1_ps(lr));
  77. return dst;
  78. }
  79. Vector operator*(const Vector& lr)MEGDNN_ATTRIBUTE_TARGET("avx") {
  80. Vector dst;
  81. dst.value = _mm256_mul_ps(value, lr.value);
  82. return dst;
  83. }
  84. Vector& operator*=(const Vector& lr) MEGDNN_ATTRIBUTE_TARGET("avx") {
  85. value = _mm256_mul_ps(value, lr.value);
  86. return *this;
  87. }
  88. Vector& operator=(const Vector& lr) MEGDNN_ATTRIBUTE_TARGET("avx") {
  89. value = lr.value;
  90. return *this;
  91. }
  92. Vector& operator=(const Vector&& lr) MEGDNN_ATTRIBUTE_TARGET("avx") {
  93. value = std::move(lr.value);
  94. return *this;
  95. }
  96. Vector operator-() MEGDNN_ATTRIBUTE_TARGET("avx") {
  97. Vector dst;
  98. dst.value = -value;
  99. return dst;
  100. }
  101. };
  102. #if !defined (__clang__)
  103. #pragma GCC reset_options
  104. #endif
  105. } // namespace x86
  106. } // namespace megdnn
  107. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台