You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

algos.h 7.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. /**
  2. * \file dnn/src/x86/matrix_mul/algos.h
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #pragma once
  13. #include "src/fallback/matrix_mul/gemm_common.h"
  14. #include "src/x86/matrix_mul/opr_impl.h"
  15. namespace megdnn {
  16. namespace x86 {
  17. class MatrixMulImpl::AlgoF32Blas : public AlgoBase {
  18. public:
  19. const char* name() const override { return "X86_F32_BLAS"; }
  20. bool usable(const KernSizeParam&) const override;
  21. size_t get_workspace(const KernSizeParam&) const override { return 0; }
  22. kern_t get_kern(const KernSizeParam&) const override;
  23. AlgoAttribute attribute() const override {
  24. return AlgoAttribute::REPRODUCIBLE |
  25. AlgoAttribute::ACCURACY_DEPEND_ON_BATCH;
  26. }
  27. PackMode packmode() const override { return PackMode::NO_PACK; }
  28. MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 4, AlgoDataType::FLOAT32, DEFAULT)
  29. MEGDNN_DECL_ALGO_TYPE(X86_F32_BLAS)
  30. };
  31. #if MEGDNN_X86_WITH_MKL && SUPPORT_MKL_PACKED_GEMM
  32. class MatrixMulImpl::AlgoF32MKLPackA : public AlgoBase {
  33. public:
  34. AlgoAttribute attribute() const override {
  35. return AlgoAttribute::REPRODUCIBLE |
  36. AlgoAttribute::ACCURACY_DEPEND_ON_BATCH;
  37. }
  38. const char* name() const override { return "X86_F32_MKL_PACKA"; }
  39. bool usable(const KernSizeParam&) const override;
  40. size_t get_workspace(const KernSizeParam&) const override { return 0; }
  41. kern_t get_kern(const KernSizeParam&) const override;
  42. PackMode packmode() const override { return PackMode::ONLY_PACKA; }
  43. kern_naked_t get_kern_naked(const KernSizeParam&) const override;
  44. void pack_A(const KernParam& kern_param, void* out, size_t index,
  45. size_t stride) const override;
  46. void pack_B(const KernParam&, void*, size_t, size_t) const override {
  47. megdnn_assert(0);
  48. };
  49. WorkspaceBundle get_bundle(const KernSizeParam& param) const override;
  50. InnerBlockSize get_inner_block_size() const override{ return {8, 16, 1}; };
  51. MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 4, AlgoDataType::FLOAT32, DEFAULT)
  52. MEGDNN_DECL_ALGO_TYPE(X86_F32_MKL_PACKA)
  53. };
  54. #endif
  55. class MatrixMulImpl::AlgoInt8x8x32AVX2M2N4K16 : public AlgoBase {
  56. public:
  57. AlgoAttribute attribute() const override {
  58. return AlgoAttribute::REPRODUCIBLE;
  59. }
  60. const char* name() const override { return "X86_INT8X8X32_AVX2_2X4X16"; }
  61. bool usable(const KernSizeParam&) const override;
  62. size_t get_workspace(const KernSizeParam&) const override;
  63. kern_t get_kern(const KernSizeParam&) const override;
  64. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  65. MEGDNN_DECL_ALGO_TYPE(X86_INT8X8X32_AVX2_2X4X16)
  66. };
  67. class MatrixMulImpl::AlgoInt8x8x32AVX2M4N16K2 : public AlgoBase {
  68. public:
  69. AlgoAttribute attribute() const override {
  70. return AlgoAttribute::REPRODUCIBLE;
  71. }
  72. const char* name() const override { return "X86_INT8X8X32_AVX2_4X16X2"; }
  73. bool usable(const KernSizeParam&) const override;
  74. size_t get_workspace(const KernSizeParam&) const override;
  75. kern_t get_kern(const KernSizeParam&) const override;
  76. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  77. MEGDNN_DECL_ALGO_TYPE(X86_INT8X8X32_AVX2_4X16X2)
  78. };
  79. class MatrixMulImpl::AlgoInt8x8x16AVX2 : public AlgoBase {
  80. private:
  81. static void gemm_s8s8s16_avx2_4x16x2(
  82. const MatrixMulImpl::KernParam& kern_param);
  83. public:
  84. AlgoAttribute attribute() const override {
  85. return AlgoAttribute::REPRODUCIBLE;
  86. }
  87. const char* name() const override { return "X86_INT8X8X16_AVX2"; }
  88. bool usable(const KernSizeParam&) const override;
  89. size_t get_workspace(const KernSizeParam&) const override;
  90. kern_t get_kern(const KernSizeParam&) const override;
  91. bool preferred(const KernSizeParam&) const override;
  92. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  93. MEGDNN_DECL_ALGO_TYPE(X86_INT8X8X16_AVX2)
  94. };
  95. class MatrixMulImpl::AlgoInt8x8x16SSE : public AlgoBase {
  96. private:
  97. static void gemm_s8s8s16_sse_4x8x2(
  98. const MatrixMulImpl::KernParam& kern_param);
  99. public:
  100. AlgoAttribute attribute() const override {
  101. return AlgoAttribute::REPRODUCIBLE;
  102. }
  103. const char* name() const override { return "X86_INT8X8X16_SSE"; }
  104. bool usable(const KernSizeParam&) const override;
  105. size_t get_workspace(const KernSizeParam&) const override;
  106. kern_t get_kern(const KernSizeParam&) const override;
  107. bool preferred(const KernSizeParam&) const override;
  108. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  109. MEGDNN_DECL_ALGO_TYPE(X86_INT8X8X16_SSE)
  110. };
  111. class MatrixMulImpl::AlgoInt8x8x32SSEM4N8K2 : public AlgoBase {
  112. public:
  113. AlgoAttribute attribute() const override {
  114. return AlgoAttribute::REPRODUCIBLE;
  115. }
  116. const char* name() const override { return "X86_INT8X8X32_SSE_4X8X2"; }
  117. bool usable(const KernSizeParam&) const override;
  118. size_t get_workspace(const KernSizeParam&) const override;
  119. kern_t get_kern(const KernSizeParam&) const override;
  120. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  121. MEGDNN_DECL_ALGO_TYPE(X86_INT8X8X32_SSE_4X8X2)
  122. };
  123. class MatrixMulImpl::AlgoF32MK8_8x8 : public AlgoBase {
  124. public:
  125. AlgoAttribute attribute() const override {
  126. return AlgoAttribute::REPRODUCIBLE |
  127. AlgoAttribute::USABLE_DEPEND_ON_SHAPE;
  128. }
  129. const char* name() const override { return "X86_F32MK8_8X8"; }
  130. bool usable(const KernSizeParam&) const override;
  131. size_t get_workspace(const KernSizeParam&) const override;
  132. kern_t get_kern(const KernSizeParam&) const override;
  133. PackMode packmode() const override { return PackMode::NO_PACK; }
  134. MEGDNN_OVERRIDE_MATMUL_DESC(8, 8, 8, 4, AlgoDataType::FLOAT32, MK8)
  135. MEGDNN_DECL_ALGO_TYPE(X86_F32_MK8_8X8)
  136. };
  137. #if MEGDNN_X86_WITH_VNNI
  138. class MatrixMulImpl::AlgoInt8x8x32Vnni : public AlgoBase {
  139. public:
  140. AlgoAttribute attribute() const override {
  141. return AlgoAttribute::REPRODUCIBLE;
  142. }
  143. const char* name() const override { return "X86_INT8X8X32_VNNI"; }
  144. bool usable(const KernSizeParam&) const override;
  145. size_t get_workspace(const KernSizeParam&) const override;
  146. kern_t get_kern(const KernSizeParam&) const override;
  147. MEGDNN_REG_GEMM_FUNC_FOR_IM2COL();
  148. MEGDNN_DECL_ALGO_TYPE(X86_INT8X8X32_VNNI)
  149. };
  150. #endif
  151. #if MEGDNN_X86_WITH_MKL_DNN
  152. class MatrixMulImpl::AlgoInt8x8x32Mkldnn : public AlgoBase {
  153. public:
  154. AlgoAttribute attribute() const override {
  155. return AlgoAttribute::REPRODUCIBLE;
  156. }
  157. const char* name() const override { return "X86_INT8X8X32_MKLDNN"; }
  158. bool usable(const KernSizeParam&) const override;
  159. size_t get_workspace(const KernSizeParam&) const override { return 0; }
  160. kern_t get_kern(const KernSizeParam&) const override;
  161. PackMode packmode() const override { return PackMode::NO_PACK; }
  162. MEGDNN_OVERRIDE_MATMUL_DESC(8, 16, 1, 2, AlgoDataType::QINT8X8X32, DEFAULT)
  163. MEGDNN_DECL_ALGO_TYPE(X86_INT8X8X32_MKLDNN)
  164. };
  165. #endif
  166. } // namespace x86
  167. } // namespace megdnn
  168. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台