You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

checker.cpp 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. /**
  2. * \file dnn/test/common/checker.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "./checker.h"
  12. #include "megdnn/tensor_iter.h"
  13. #include "megdnn/tensor_format.h"
  14. #include "test/common/tensor.h"
  15. #include "test/common/timer.h"
  16. using namespace megdnn;
  17. using namespace test;
  18. namespace {
  19. template<typename ctype, class Iter>
  20. ::testing::AssertionResult assert_tensor_eq_with_iter(
  21. const char *expr0, const char *expr1,
  22. Iter it0, Iter it1, const TensorLayout &layout,
  23. float maxerr, float maxerr_avg, float maxerr_avg_biased) {
  24. auto nr_elem = layout.total_nr_elems();
  25. double error_sum = 0;
  26. double error_sum_biased = 0;
  27. for (size_t i = 0; i < nr_elem; ++ i) {
  28. ctype iv0 = *it0, iv1 = *it1;
  29. float err = diff(iv0, iv1);
  30. error_sum += std::abs(err);
  31. error_sum_biased += err;
  32. if (!good_float(iv0) || !good_float(iv1) ||
  33. std::abs(err) > maxerr) {
  34. Index index(layout, i);
  35. return ::testing::AssertionFailure()
  36. << "Unequal value\n"
  37. << "Value of: " << expr1 << "\n"
  38. << " Actual: " << (iv1 + 0) << "\n"
  39. << "Expected: " << expr0 << "\n"
  40. << "Which is: " << (iv0 + 0) << "\n"
  41. << "At index: " << index.to_string() << "/"
  42. << layout.TensorShape::to_string() << "\n"
  43. << " DType: " << layout.dtype.name() << "\n"
  44. << " error: " << std::abs(err) << "/" << maxerr;
  45. }
  46. ++ it0;
  47. ++ it1;
  48. }
  49. float error_avg = error_sum / nr_elem;
  50. if (error_avg > maxerr_avg) {
  51. return ::testing::AssertionFailure()
  52. << "Average error exceeds the upper limit\n"
  53. << "Value of: " << expr1 << "\n"
  54. << "Expected: " << expr0 << "\n"
  55. << "Average error: " << error_avg << "/" << maxerr_avg
  56. << "\n"
  57. << "Num of elements: " << nr_elem;
  58. }
  59. float error_avg_biased = error_sum_biased / nr_elem;
  60. if (std::abs(error_avg_biased) > maxerr_avg_biased) {
  61. return ::testing::AssertionFailure()
  62. << "Average biased error exceeds the upper limit\n"
  63. << "Value of: " << expr1 << "\n"
  64. << "Expected: " << expr0 << "\n"
  65. << "Average biased error: " << error_avg_biased << "/"
  66. << maxerr_avg_biased << "\n"
  67. << "Num of elements: " << nr_elem;
  68. }
  69. return ::testing::AssertionSuccess();
  70. }
  71. template<typename ctype>
  72. ::testing::AssertionResult assert_tensor_eq_with_dtype(
  73. const char *expr0, const char *expr1,
  74. const TensorND &v0, const TensorND &v1,
  75. float maxerr, float maxerr_avg, float maxerr_avg_biased) {
  76. if (v0.layout.is_physical_contiguous() &&
  77. v1.layout.is_physical_contiguous()) {
  78. return assert_tensor_eq_with_iter<ctype>(
  79. expr0, expr1, v0.ptr<ctype>(), v1.ptr<ctype>(), v0.layout,
  80. maxerr, maxerr_avg, maxerr_avg_biased);
  81. }
  82. auto it0 = megdnn::tensor_iter_valonly<ctype>(v0).begin(),
  83. it1 = megdnn::tensor_iter_valonly<ctype>(v1).begin();
  84. return assert_tensor_eq_with_iter<ctype>(expr0, expr1, it0, it1,
  85. v0.layout, maxerr, maxerr_avg,
  86. maxerr_avg_biased);
  87. }
  88. template <typename ITYPE>
  89. ::testing::AssertionResult assert_tensor_eq_with_lowbit4(
  90. const char* expr0, const char* expr1,
  91. const TensorND& v0, const TensorND& v1,
  92. float maxerr, float maxerr_avg) {
  93. if (!v0.layout.eq_layout(v1.layout)) {
  94. return ::testing::AssertionFailure()
  95. << "Layout mismatch for testing equality of lowbit4\n"
  96. << "Value of: " << expr1 << "\n"
  97. << " Actual: " << v1.layout.TensorShape::to_string() << "\n"
  98. << "Expected: " << expr0 << "\n"
  99. << "Which is: " << v0.layout.TensorShape::to_string() << "\n";
  100. }
  101. auto v0_ptr = static_cast<ITYPE*>(v0.raw_ptr) - v0.layout.span().low_byte;
  102. auto v1_ptr = static_cast<ITYPE*>(v1.raw_ptr) - v1.layout.span().low_byte;
  103. double error_sum = 0;
  104. for (size_t i = 0; i < v0.layout.span().dist_elem(); ++i) {
  105. ITYPE iv0 = (v0_ptr[i / 2] << (i ^ 1) * 4);
  106. iv0 = iv0 >> 4;
  107. ITYPE iv1 = (v1_ptr[i / 2] << (i ^ 1) * 4);
  108. iv1 = iv1 >> 4;
  109. float err = std::abs(diff(iv0, iv1));
  110. error_sum += err;
  111. if (!good_float(iv0) || !good_float(iv1) || err >= maxerr) {
  112. Index index(v0.layout, i);
  113. return ::testing::AssertionFailure()
  114. << "Unequal value\n"
  115. << "Value of: " << expr1 << "\n"
  116. << " Actual: " << (iv1+0) << "\n"
  117. << "Expected: " << expr0 << "\n"
  118. << "Which is: " << (iv0+0) << "\n"
  119. << "At index: " <<
  120. index.to_string() << "/" << v0.layout.TensorShape::to_string() << "\n"
  121. << " Dtype: " << v0.layout.dtype.name() << "\n"
  122. << " error: " << err << "/" << maxerr;
  123. }
  124. }
  125. float error_avg = error_sum / v0.layout.total_nr_elems();
  126. if (error_avg > maxerr_avg) {
  127. return ::testing::AssertionFailure()
  128. << "Average error too high\n"
  129. << "Value of: " << expr1 << "\n"
  130. << "Expected: " << expr0 << "\n"
  131. << "Average error: " << error_avg << "/" << maxerr_avg;
  132. }
  133. return ::testing::AssertionSuccess();
  134. }
  135. template<class Impl>
  136. void memcpy_noncontig(
  137. void *dst, const void *src, const TensorLayout &layout,
  138. const Impl& impl) {
  139. auto span = layout.span();
  140. dst = static_cast<dt_byte*>(dst) + span.low_byte;
  141. src = static_cast<const dt_byte*>(src) + span.low_byte;
  142. impl(dst, src, span.dist_byte());
  143. }
  144. template <typename Impl>
  145. void copy_tensors(const CheckerHelper::TensorValueArray& dest,
  146. const CheckerHelper::TensorValueArray& src,
  147. const Impl& copy_impl) {
  148. megdnn_assert(dest.size() == src.size());
  149. for (size_t i = 0; i < src.size(); i++) {
  150. auto&& tensor = src[i];
  151. if (tensor.layout.ndim == 0)
  152. continue;
  153. memcpy_noncontig(dest[i].raw_ptr, tensor.raw_ptr, tensor.layout,
  154. copy_impl);
  155. }
  156. }
  157. void copy_tensors(const CheckerHelper::TensorValueArray& dest,
  158. const CheckerHelper::TensorValueArray& src) {
  159. copy_tensors(dest, src, memcpy);
  160. }
  161. } // anonymous namespace
  162. ::testing::AssertionResult test::__assert_tensor_eq(
  163. const char *expr0, const char *expr1, const char * /*expr_maxerr*/,
  164. const char* /*expr_maxerr_avg*/,
  165. const char* /*expr_maxerr_avg*/,
  166. const TensorND &v0, const TensorND &v1,
  167. float maxerr, float maxerr_avg, float maxerr_avg_biased) {
  168. if (!v0.layout.eq_shape(v1.layout)) {
  169. return ::testing::AssertionFailure()
  170. << "Shape mismatch\n"
  171. << "Value of: " << expr1 << "\n"
  172. << " Actual: " << v1.layout.TensorShape::to_string() << "\n"
  173. << "Expected: " << expr0 << "\n"
  174. << "Which is: " << v0.layout.TensorShape::to_string() << "\n";
  175. }
  176. auto dtype = v0.layout.dtype;
  177. if (dtype != v1.layout.dtype) {
  178. return ::testing::AssertionFailure()
  179. << "Data type mismatch\n"
  180. << "Value of: " << expr1 << "\n"
  181. << " Actual: " << v1.layout.dtype.name() << "\n"
  182. << "Expected: " << expr0 << "\n"
  183. << "Which is: " << v0.layout.dtype.name() << "\n";
  184. }
  185. switch(dtype.enumv()) {
  186. #define cb(_dt) \
  187. case DTypeTrait<_dt>::enumv: \
  188. return assert_tensor_eq_with_dtype<DTypeTrait<_dt>::ctype>( \
  189. expr0, expr1, v0, v1, maxerr, maxerr_avg, maxerr_avg_biased);
  190. MEGDNN_FOREACH_COMPUTING_DTYPE(cb)
  191. MEGDNN_FOREACH_QUANTIZED_DTYPE(cb)
  192. //! In order to avoid an unnecessary increase in binary size, we just
  193. //! use QuantizedS16 dtype in winograd_filter_preprocess now.
  194. cb(::megdnn::dtype::QuantizedS16)
  195. case DTypeTrait<dtype::Quantized4Asymm>::enumv:
  196. return assert_tensor_eq_with_lowbit4<uint8_t>(expr0, expr1, v0, v1,
  197. maxerr, maxerr_avg);
  198. case DTypeTrait<dtype::QuantizedS4>::enumv:
  199. return assert_tensor_eq_with_lowbit4<int8_t>(expr0, expr1, v0, v1,
  200. maxerr, maxerr_avg);
  201. #undef cb
  202. default:
  203. megdnn_trap();
  204. }
  205. }
  206. CheckerHelper::CheckerHelper(Handle *handle, bool check_dispatch):
  207. m_handle_cur(handle),
  208. m_default_rng(new NormalRNG())
  209. {
  210. //! set MGB_NO_NAIVE_CHECK=1 to close megdnn test check with naive
  211. const char* env_p = std::getenv("MGB_NO_NAIVE_CHECK");
  212. if (env_p) {
  213. int no_naive_flag = atoi(env_p);
  214. no_naive_and_check = no_naive_flag > 0 ? true : false;
  215. check_dispatch = false;
  216. } else {
  217. no_naive_and_check = false;
  218. }
  219. auto tmp_handle = create_cpu_handle(2, check_dispatch);
  220. m_handle_naive = std::move(tmp_handle);
  221. }
  222. CheckerHelper::~CheckerHelper() noexcept = default;
  223. void CheckerHelper::do_exec_with_testcases(const TensorValueArray& testcase_in,
  224. const TensorValueArray& testcase_out,
  225. const OprExec& exec_opr) {
  226. m_prev_succ = false;
  227. // Validate layouts of tensors in testcase_in and testcase_out.
  228. // It must be possible to aggregate the layouts of inputs and outputs.
  229. TensorLayoutArray layouts;
  230. for (size_t i = 0; i < testcase_in.size(); i++) {
  231. // ndim == 0 means does not apply.
  232. ASSERT_TRUE(testcase_in[i].layout.ndim == 0 ||
  233. testcase_out[i].layout.ndim == 0 ||
  234. testcase_in[i].layout.eq_layout(testcase_out[i].layout));
  235. layouts.emplace_back(testcase_in[i].layout.ndim > 0
  236. ? testcase_in[i].layout
  237. : testcase_out[i].layout);
  238. }
  239. auto tensors_cur_storage = alloc_tensors(m_handle_cur, layouts, m_offset);
  240. auto tensors_cur_host_storage =
  241. alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  242. auto &&tensors_cur = *tensors_cur_storage;
  243. auto &&tensors_cur_host = *tensors_cur_host_storage;
  244. copy_tensors_to_device(tensors_cur, testcase_in);
  245. exec_opr(tensors_cur);
  246. if (m_expect_exec_fail) {
  247. m_expect_exec_fail();
  248. m_expect_exec_fail = {};
  249. return;
  250. }
  251. copy_tensors_from_device(tensors_cur_host, tensors_cur);
  252. check_tensors(testcase_out, tensors_cur_host);
  253. m_prev_succ = !::testing::Test::HasFailure();
  254. }
  255. void CheckerHelper::do_exec(const TensorLayoutArray &user_layouts,
  256. const TensorLayoutArray &deduced_layouts,
  257. const OprExec &exec_naive, const OprExec &exec_opr) {
  258. m_prev_succ = false;
  259. // check if user provided layouts are correct
  260. for (size_t i = 0; i < deduced_layouts.size(); ++i) {
  261. if (user_layouts[i].ndim > 0) {
  262. ASSERT_TRUE(deduced_layouts[i].eq_shape(user_layouts[i]))
  263. << "User provided shape is "
  264. << user_layouts[i].TensorShape::to_string()
  265. << "\nExpected shape is "
  266. << deduced_layouts[i].TensorShape::to_string();
  267. }
  268. }
  269. auto layouts = user_layouts;
  270. for (size_t i = 0; i < layouts.size(); ++i) {
  271. if (layouts[i].ndim == 0) {
  272. //! in some opr, such as conv_bias has ndim==0
  273. layouts[i] = deduced_layouts[i];
  274. }
  275. }
  276. // allocate
  277. m_tensors_naive = alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  278. auto tensors_cur_storage = alloc_tensors(m_handle_cur, layouts, m_offset);
  279. auto tensors_cur_host_storage =
  280. alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  281. auto &&tensors_naive = *m_tensors_naive;
  282. auto &&tensors_cur = *tensors_cur_storage;
  283. auto &&tensors_cur_host = *tensors_cur_host_storage;
  284. std::shared_ptr<TensorValueArray> tensors_extra_opr_impl;
  285. if (m_extra_opr_impl) {
  286. tensors_extra_opr_impl =
  287. alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  288. }
  289. init_naive_values();
  290. copy_tensors_to_device(tensors_cur, tensors_naive);
  291. if (m_extra_opr_impl) {
  292. copy_tensors(*tensors_extra_opr_impl, tensors_naive);
  293. }
  294. // execute
  295. exec_opr(tensors_cur);
  296. if (m_expect_exec_fail) {
  297. m_expect_exec_fail();
  298. m_expect_exec_fail = {};
  299. return;
  300. }
  301. if (no_naive_and_check){
  302. m_prev_succ = !::testing::Test::HasFailure();
  303. return;
  304. }
  305. exec_naive(tensors_naive);
  306. if (m_extra_opr_impl) {
  307. m_extra_opr_impl(*tensors_extra_opr_impl);
  308. }
  309. // see if we need performance regression test
  310. if (m_perf_check) {
  311. ASSERT_GT(m_perf_check_threshold, 0) << "perf_check_threshold should be "
  312. "set ahead of time.";
  313. Timer timer_naive, timer_cur;
  314. megdnn_sync(m_handle_naive.get());
  315. timer_naive.start();
  316. exec_naive(tensors_naive);
  317. megdnn_sync(m_handle_naive.get());
  318. timer_naive.stop();
  319. megdnn_sync(m_handle_cur);
  320. timer_cur.start();
  321. exec_opr(tensors_cur);
  322. megdnn_sync(m_handle_cur);
  323. timer_cur.stop();
  324. size_t time_in_us_naive = timer_naive.get_time_in_us(),
  325. time_in_us_cur = timer_cur.get_time_in_us();
  326. EXPECT_GE(time_in_us_naive, static_cast<size_t>(100))
  327. << "Running time smaller than 100us "
  328. << "might be imprecise. naive_time="
  329. << time_in_us_naive << "us.";
  330. float speedup_ratio = static_cast<float>(time_in_us_naive) /
  331. time_in_us_cur;
  332. EXPECT_GE(speedup_ratio, m_perf_check_threshold) << "speedup_ratio="
  333. << speedup_ratio << " threshold=" << m_perf_check_threshold
  334. << " naive_time=" << time_in_us_naive << "us cur_time="
  335. << time_in_us_cur << "us";
  336. }
  337. copy_tensors_from_device(tensors_cur_host, tensors_cur);
  338. if (m_output_canonizer) {
  339. m_output_canonizer(tensors_cur_host);
  340. m_output_canonizer(tensors_naive);
  341. }
  342. check_tensors(tensors_naive, tensors_cur_host);
  343. if (m_extra_opr_impl) {
  344. check_tensors(tensors_naive, *tensors_extra_opr_impl);
  345. }
  346. m_prev_succ = !::testing::Test::HasFailure();
  347. }
  348. std::shared_ptr<CheckerHelper::TensorValueArray>
  349. CheckerHelper::alloc_tensors(Handle *handle, const TensorLayoutArray &layouts,
  350. const size_t offset) {
  351. auto deleter = [handle, offset](TensorValueArray *ptr) {
  352. for (auto &&i: *ptr) {
  353. auto pdata = static_cast<dt_byte*>(i.raw_ptr) +
  354. i.layout.span().low_byte - offset;
  355. megdnn_free(handle, pdata);
  356. }
  357. delete ptr;
  358. };
  359. std::shared_ptr<TensorValueArray> ret{new TensorValueArray, deleter};
  360. for (size_t i = 0; i < layouts.size(); ++ i) {
  361. auto span = layouts[i].span();
  362. ret->emplace_back(static_cast<dt_byte*>(megdnn_malloc(
  363. handle, span.dist_byte() + offset)) -
  364. span.low_byte + offset,
  365. layouts[i]);
  366. }
  367. return ret;
  368. }
  369. void CheckerHelper::init_naive_values() {
  370. auto &&tensors_naive = *m_tensors_naive;
  371. megdnn_assert(!m_input_tensors_fpath || !m_tensor_constraint);
  372. if (m_input_tensors_fpath) {
  373. auto load = load_tensors(m_input_tensors_fpath);
  374. m_input_tensors_fpath = nullptr;
  375. megdnn_assert(load.size() <= tensors_naive.size());
  376. for (size_t i = 0; i < load.size(); ++ i) {
  377. auto &&src = load[i];
  378. auto &&dst = tensors_naive[i];
  379. megdnn_assert(src->layout.eq_layout(dst.layout));
  380. memcpy_noncontig(dst.raw_ptr, src->raw_ptr, dst.layout, memcpy);
  381. }
  382. return;
  383. }
  384. for (size_t i = 0; i < tensors_naive.size(); ++i) {
  385. auto &&tensor = tensors_naive[i];
  386. auto rng = m_rng[i];
  387. if (!rng)
  388. rng = m_default_rng.get();
  389. rng->gen(tensor);
  390. }
  391. if (m_tensor_constraint) {
  392. m_tensor_constraint(tensors_naive);
  393. }
  394. }
  395. void CheckerHelper::copy_tensors_from_device(const TensorValueArray& dest,
  396. const TensorValueArray& src) {
  397. auto impl_d2h = [this](void* dst, const void* src, size_t sz) {
  398. megdnn_memcpy_D2H(m_handle_cur, dst, src, sz);
  399. };
  400. copy_tensors(dest, src, impl_d2h);
  401. }
  402. void CheckerHelper::check_tensors(const TensorValueArray& expected,
  403. const TensorValueArray& computed) {
  404. for (size_t i = 0; i < expected.size(); ++i) {
  405. if (expected[i].layout.ndim == 0)
  406. continue;
  407. MEGDNN_ASSERT_TENSOR_EQ_EPS_AVG(expected[i], computed[i], m_epsilon,
  408. m_max_avg_error,
  409. m_max_avg_biased_error);
  410. }
  411. }
  412. void CheckerHelper::copy_tensors_to_device(const TensorValueArray& dest,
  413. const TensorValueArray& src) {
  414. auto impl_h2d = [this](void* dst, const void* src, size_t sz) {
  415. megdnn_memcpy_H2D(m_handle_cur, dst, src, sz);
  416. };
  417. copy_tensors(dest, src, impl_h2d);
  418. }
  419. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台