You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

convolution.cpp 37 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
  1. /**
  2. * \file dnn/test/cuda/convolution.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #include "megdnn/dtype.h"
  13. #include "megdnn/oprs.h"
  14. #include "megdnn/opr_param_defs.h"
  15. #include "test/cuda/fixture.h"
  16. #include "test/common/tensor.h"
  17. #include "test/common/workspace_wrapper.h"
  18. #include "test/common/checker.h"
  19. #include "test/common/convolution.h"
  20. #include "test/common/rng.h"
  21. #include "test/cuda/benchmark.h"
  22. #include "src/cuda/utils.h"
  23. #include "test/common/accuracy_shake_checker.h"
  24. #define V1(x) #x
  25. #define V(x) V1(x)
  26. #define CUDNN_VERSION_STRING \
  27. "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL)
  28. namespace megdnn {
  29. namespace test {
  30. TEST_F(CUDA, CONVOLUTION_8X8X32) {
  31. if (!cuda::is_compute_capability_required(6, 1)) {
  32. printf("Skip CUDA.CONVOLUTION_8X8X32 test as current device"
  33. "doesn't support\n");
  34. return;
  35. }
  36. using namespace convolution;
  37. std::vector<TestArg> args;
  38. {
  39. auto v = get_args();
  40. for (auto&& a : v) {
  41. args.push_back(std::move(a));
  42. }
  43. }
  44. {
  45. auto v = get_dilated_args();
  46. for (auto&& a : v) {
  47. args.push_back(std::move(a));
  48. }
  49. }
  50. {
  51. auto v = get_chanwise_args();
  52. for (auto&& a : v) {
  53. args.push_back(std::move(a));
  54. }
  55. }
  56. Checker<ConvolutionForward> checker(handle_cuda());
  57. UniformIntRNG rng(-4, 4);
  58. for (auto arg : args) {
  59. arg.param.format = param::Convolution::Format::NHWC;
  60. arg.src = cvt_src_or_dst_nchw2nhwc(arg.src);
  61. arg.filter = cvt_filter_nchw2nhwc(arg.filter);
  62. checker.set_dtype(0, dtype::Int8())
  63. .set_dtype(1, dtype::Int8())
  64. .set_dtype(2, dtype::Int32())
  65. .set_param(arg.param)
  66. .set_rng(0, &rng)
  67. .set_rng(1, &rng)
  68. .execs({arg.src, arg.filter, {}});
  69. }
  70. }
  71. TEST_F(CUDA, CONVOLUTION_FORWARD) {
  72. using namespace convolution;
  73. std::vector<TestArg> args = get_args();
  74. Checker<ConvolutionForward> checker(handle_cuda());
  75. NormalRNG default_rng;
  76. for (auto&& arg : args) {
  77. float scale =
  78. 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
  79. UniformFloatRNG rng(scale, 2 * scale);
  80. checker.set_dtype(0, dtype::Float32())
  81. .set_dtype(1, dtype::Float32())
  82. .set_dtype(2, dtype::Float32())
  83. .set_rng(0, &default_rng)
  84. .set_rng(1, &default_rng)
  85. .set_epsilon(1e-3)
  86. .set_param(arg.param)
  87. .execs({arg.src, arg.filter, {}});
  88. checker.set_dtype(0, dtype::Float16())
  89. .set_dtype(1, dtype::Float16())
  90. .set_dtype(2, dtype::Float16())
  91. .set_rng(0, &rng)
  92. .set_rng(1, &rng)
  93. .set_epsilon(1e-1)
  94. .set_param(arg.param)
  95. .execs({arg.src, arg.filter, {}});
  96. arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  97. checker.set_dtype(0, dtype::Float16())
  98. .set_dtype(1, dtype::Float16())
  99. .set_dtype(2, dtype::Float16())
  100. .set_rng(0, &rng)
  101. .set_rng(1, &rng)
  102. .set_epsilon(1e-1)
  103. .set_param(arg.param)
  104. .execs({arg.src, arg.filter, {}});
  105. checker.set_dtype(0, dtype::BFloat16())
  106. .set_dtype(1, dtype::BFloat16())
  107. .set_dtype(2, dtype::BFloat16())
  108. .set_epsilon(1e-1)
  109. .set_param(arg.param)
  110. .execs({arg.src, arg.filter, {}});
  111. }
  112. }
  113. TEST_F(CUDA, CONV_FORWARD_MATMUL_NCHW4) {
  114. if (!cuda::is_compute_capability_required(6, 1))
  115. return;
  116. using namespace convolution;
  117. Checker<Convolution> checker(handle_cuda());
  118. UniformIntRNG int_rng{-127, 127};
  119. Convolution::Param param;
  120. param.format = Convolution::Param::Format::NCHW4;
  121. checker.set_dtype(0, dtype::QuantizedS8(0.132f))
  122. .set_dtype(1, dtype::QuantizedS8(0.0239f))
  123. .set_dtype(2, dtype::QuantizedS32(0.132f * 0.0239f))
  124. .set_rng(0, &int_rng)
  125. .set_rng(1, &int_rng)
  126. .set_param(param);
  127. checker.set_before_exec_callback(
  128. AlgoChecker<ConvolutionForward>(ExecutionPolicyAlgoName{
  129. "DEFAULT",
  130. {{ConvBiasForward::algo_name<ConvBiasForward::MatmulParam>(
  131. "MATMUL8X8X32", {})
  132. .c_str(),
  133. {}}}}));
  134. param.sparse = Convolution::Param::Sparse::DENSE;
  135. param.pad_h = param.pad_w = 1;
  136. param.stride_h = param.stride_w = 1;
  137. checker.set_param(param);
  138. checker.exec({{8, 4, 10, 10, 4}, {16, 4, 3, 3, 4}, {}});
  139. checker.exec({{1, 4, 2, 2, 4}, {16, 4, 3, 3, 4}, {}});
  140. checker.exec({{8, 64, 12, 12, 4}, {256, 64, 3, 3, 4}, {}});
  141. }
  142. TEST_F(CUDA, CONVOLUTION_1X1_FORWARD) {
  143. using namespace convolution;
  144. std::vector<TestArg> args = get_1x1_args();
  145. Checker<ConvolutionForward> checker(handle_cuda());
  146. NormalRNG default_rng;
  147. for (auto&& arg : args) {
  148. float scale =
  149. 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
  150. UniformFloatRNG rng(scale, 2 * scale);
  151. checker.set_dtype(0, dtype::Float32())
  152. .set_dtype(1, dtype::Float32())
  153. .set_rng(0, &default_rng)
  154. .set_rng(1, &default_rng)
  155. .set_epsilon(1e-3)
  156. .set_param(arg.param)
  157. .execs({arg.src, arg.filter, {}});
  158. }
  159. }
  160. TEST_F(CUDA, BENCHMARK_CONVOLUTION_1X1_FORWARD) {
  161. using namespace convolution;
  162. std::vector<TestArg> args = get_1x1_args();
  163. Benchmarker<ConvolutionForward> marker(handle_cuda());
  164. NormalRNG default_rng;
  165. for (auto&& arg : args) {
  166. float scale =
  167. 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
  168. UniformFloatRNG rng(scale, 2 * scale);
  169. marker.set_dtype(0, dtype::Float32())
  170. .set_dtype(1, dtype::Float32())
  171. .set_rng(0, &default_rng)
  172. .set_rng(1, &default_rng)
  173. .set_param(arg.param)
  174. .execs({arg.src, arg.filter, {}});
  175. }
  176. }
  177. TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA) {
  178. using namespace convolution;
  179. std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
  180. Checker<ConvolutionBackwardData> checker(handle_cuda());
  181. NormalRNG default_rng;
  182. for (auto&& arg : args) {
  183. float scale =
  184. 64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
  185. UniformFloatRNG rng(scale, 2 * scale);
  186. auto src = TensorLayout(arg.src, dtype::Float32());
  187. auto filter = TensorLayout(arg.filter, dtype::Float32());
  188. TensorLayout dst;
  189. {
  190. auto opr = handle_cuda()->create_operator<Convolution>();
  191. opr->param() = arg.param;
  192. opr->deduce_layout(src, filter, dst);
  193. }
  194. src.dtype = dst.dtype = filter.dtype = dtype::Float32();
  195. checker.set_rng(0, &default_rng)
  196. .set_rng(1, &default_rng)
  197. .set_epsilon(1e-3)
  198. .set_param(arg.param)
  199. .exec(TensorLayoutArray{filter, dst, src});
  200. if (!cuda::is_compute_capability_required(6, 0)) {
  201. src.dtype = dst.dtype = filter.dtype = dtype::Float16();
  202. checker.set_rng(0, &rng)
  203. .set_rng(1, &rng)
  204. .set_epsilon(1e-1)
  205. .set_param(arg.param)
  206. .exec(TensorLayoutArray{filter, dst, src});
  207. arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  208. checker.set_rng(0, &rng)
  209. .set_rng(1, &rng)
  210. .set_epsilon(1e-1)
  211. .set_param(arg.param)
  212. .exec(TensorLayoutArray{filter, dst, src});
  213. }
  214. checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
  215. ExecutionPolicyAlgoName{"CONVOLUTION_BACKWARD_DATD_BFLOAT16",
  216. {{"MATMUL", {{"CUBLAS", {}}}}}}));
  217. src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
  218. arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  219. checker.set_rng(0, &rng)
  220. .set_rng(1, &rng)
  221. .set_epsilon(1e-1)
  222. .set_param(arg.param)
  223. .exec(TensorLayoutArray{filter, dst, src});
  224. checker.reset_before_exec_callback();
  225. checker.opr()->execution_policy() = {};
  226. }
  227. }
  228. TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_MATMUL) {
  229. using namespace convolution;
  230. std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
  231. Checker<ConvolutionBackwardData> checker(handle_cuda());
  232. checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
  233. ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
  234. NormalRNG default_rng;
  235. for (auto&& arg : args) {
  236. float scale =
  237. 64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
  238. UniformFloatRNG rng(scale, 2 * scale);
  239. auto src = TensorLayout(arg.src, dtype::Float32());
  240. auto filter = TensorLayout(arg.filter, dtype::Float32());
  241. TensorLayout dst;
  242. {
  243. auto opr = handle_cuda()->create_operator<Convolution>();
  244. opr->param() = arg.param;
  245. opr->deduce_layout(src, filter, dst);
  246. }
  247. src.dtype = dst.dtype = filter.dtype = dtype::Float32();
  248. checker.set_rng(0, &default_rng)
  249. .set_rng(1, &default_rng)
  250. .set_epsilon(1e-3)
  251. .set_param(arg.param)
  252. .exec(TensorLayoutArray{filter, dst, src});
  253. }
  254. }
  255. TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A) {
  256. if (!cuda::is_compute_capability_required(6, 1)) {
  257. printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A test as "
  258. "current device doesn't support\n");
  259. return;
  260. }
  261. using namespace convolution;
  262. std::vector<TestArg> args = get_args_int8_nchw4_conv_bwd_data();
  263. struct AlgoParam {
  264. int threadblock_m;
  265. int threadblock_n;
  266. int threadblock_k;
  267. int warp_m;
  268. int warp_n;
  269. int warp_k;
  270. int stage;
  271. std::string to_string() {
  272. return ssprintf("_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m,
  273. threadblock_n, threadblock_k, warp_m, warp_n,
  274. warp_k, stage);
  275. }
  276. };
  277. std::vector<AlgoParam> all_params;
  278. all_params.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8, 2});
  279. all_params.emplace_back(AlgoParam{16, 128, 16, 16, 64, 16, 2});
  280. all_params.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1});
  281. all_params.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2});
  282. all_params.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32, 2});
  283. for (auto algo_param : all_params) {
  284. Checker<ConvolutionBackwardData> checker(handle_cuda());
  285. std::string algo_name(ssprintf("INT8_NCHW4_DOTPROD_IMPLICIT_GEMM%s",
  286. algo_param.to_string().c_str()));
  287. checker.set_before_exec_callback(
  288. AlgoChecker<ConvolutionBackwardData>(algo_name.c_str()));
  289. checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);
  290. for (auto&& arg : args) {
  291. UniformIntRNG rng(-3, 3);
  292. auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
  293. auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
  294. TensorLayout dst;
  295. dst.dtype = dtype::QuantizedS8{1.2f};
  296. {
  297. auto opr = handle_cuda()->create_operator<Convolution>();
  298. opr->param() = arg.param;
  299. opr->deduce_layout(src, filter, dst);
  300. }
  301. checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
  302. TensorLayoutArray{filter, dst, src});
  303. }
  304. }
  305. }
  306. TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A) {
  307. if (!cuda::is_compute_capability_required(6, 1)) {
  308. printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A test as "
  309. "current device doesn't support\n");
  310. return;
  311. }
  312. using namespace convolution;
  313. std::vector<TestArg> args = get_args_int8_nchw_conv_bwd_data();
  314. Checker<ConvolutionBackwardData> checker(handle_cuda());
  315. checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
  316. "INT8_NCHW_DOTPROD_IMPLICIT_GEMM"));
  317. checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);
  318. for (auto&& arg : args) {
  319. UniformIntRNG rng(-3, 3);
  320. auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
  321. auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
  322. TensorLayout dst;
  323. dst.dtype = dtype::QuantizedS8{1.2f};
  324. {
  325. auto opr = handle_cuda()->create_operator<Convolution>();
  326. opr->param() = arg.param;
  327. opr->deduce_layout(src, filter, dst);
  328. }
  329. checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
  330. TensorLayoutArray{filter, dst, src});
  331. }
  332. }
  333. TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_FAILED_CUDNN7_5) {
  334. // BRAIN-481 failed on architectures 7.0, remove the following if statement,
  335. // when cudnn fixed the problem.
  336. if (cuda::is_compute_capability_required(7, 0))
  337. return;
  338. using namespace convolution;
  339. std::vector<TestArg> args = get_args_cudnn_7_5_failures();
  340. Checker<ConvolutionBackwardData> checker(handle_cuda());
  341. NormalRNG default_rng;
  342. for (auto&& arg : args) {
  343. float scale =
  344. 128.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
  345. scale = std::max(scale, 1.f);
  346. UniformFloatRNG rng(scale, 2 * scale);
  347. auto src = TensorLayout(arg.src, dtype::Float32());
  348. auto filter = TensorLayout(arg.filter, dtype::Float32());
  349. TensorLayout dst;
  350. {
  351. auto opr = handle_cuda()->create_operator<Convolution>();
  352. opr->param() = arg.param;
  353. opr->deduce_layout(src, filter, dst);
  354. }
  355. src.dtype = dst.dtype = filter.dtype = dtype::Float32();
  356. checker.set_rng(0, &default_rng)
  357. .set_rng(1, &default_rng)
  358. .set_epsilon(1e-3)
  359. .set_param(arg.param)
  360. .exec(TensorLayoutArray{filter, dst, src});
  361. src.dtype = dst.dtype = filter.dtype = dtype::Float16();
  362. checker.set_rng(0, &rng)
  363. .set_rng(1, &rng)
  364. .set_epsilon(1e-1)
  365. .set_param(arg.param)
  366. .exec(TensorLayoutArray{filter, dst, src});
  367. arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  368. checker.set_rng(0, &rng)
  369. .set_rng(1, &rng)
  370. .set_epsilon(1e-1)
  371. .set_param(arg.param)
  372. .exec(TensorLayoutArray{filter, dst, src});
  373. }
  374. }
  375. TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER) {
  376. using namespace convolution;
  377. std::vector<TestArg> args = get_args();
  378. Checker<ConvolutionBackwardFilter> checker(handle_cuda());
  379. bool f16_checked = false;
  380. for (auto&& arg : args) {
  381. auto src = TensorLayout(arg.src, dtype::Float32());
  382. auto filter = TensorLayout(arg.filter, dtype::Float32());
  383. TensorLayout dst;
  384. {
  385. auto opr = handle_cuda()->create_operator<Convolution>();
  386. opr->param() = arg.param;
  387. opr->deduce_layout(src, filter, dst);
  388. }
  389. float scale = 1.0f / sqrt(dst[2] * dst[3]);
  390. UniformFloatRNG rng(scale, 2 * scale);
  391. src.dtype = dst.dtype = filter.dtype = dtype::Float32();
  392. checker.set_rng(0, &rng)
  393. .set_rng(1, &rng)
  394. .set_epsilon(1e-3)
  395. .set_param(arg.param)
  396. .exec(TensorLayoutArray{src, dst, filter});
  397. // reduce on large f16 array may introduce significant error
  398. if (dst.total_nr_elems() >= 1000 && f16_checked)
  399. continue;
  400. f16_checked = true;
  401. src.dtype = dst.dtype = filter.dtype = dtype::Float16();
  402. checker.set_rng(0, &rng)
  403. .set_rng(1, &rng)
  404. .set_epsilon(1e-1)
  405. .set_param(arg.param)
  406. .exec(TensorLayoutArray{src, dst, filter});
  407. arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  408. checker.set_rng(0, &rng)
  409. .set_rng(1, &rng)
  410. .set_epsilon(1e-1)
  411. .set_param(arg.param)
  412. .exec(TensorLayoutArray{src, dst, filter});
  413. checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
  414. ExecutionPolicyAlgoName{"CONVOLUTION_BACKWARD_FILTER_BFLOAT16",
  415. {{"MATMUL", {{"CUBLAS", {}}}}}}));
  416. src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
  417. checker.set_rng(0, &rng)
  418. .set_rng(1, &rng)
  419. .set_epsilon(1e-1)
  420. .set_param(arg.param)
  421. .exec(TensorLayoutArray{src, dst, filter});
  422. checker.reset_before_exec_callback();
  423. checker.opr()->execution_policy() = {};
  424. }
  425. }
  426. TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER_MATMUL) {
  427. using namespace convolution;
  428. std::vector<TestArg> args = get_args();
  429. Checker<ConvolutionBackwardFilter> checker(handle_cuda());
  430. checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
  431. ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
  432. for (auto&& arg : args) {
  433. auto src = TensorLayout(arg.src, dtype::Float32());
  434. auto filter = TensorLayout(arg.filter, dtype::Float32());
  435. TensorLayout dst;
  436. {
  437. auto opr = handle_cuda()->create_operator<Convolution>();
  438. opr->param() = arg.param;
  439. opr->deduce_layout(src, filter, dst);
  440. }
  441. float scale = 1.0f / sqrt(dst[2] * dst[3]);
  442. UniformFloatRNG rng(scale, 2 * scale);
  443. src.dtype = dst.dtype = filter.dtype = dtype::Float32();
  444. checker.set_rng(0, &rng)
  445. .set_rng(1, &rng)
  446. .set_epsilon(1e-3)
  447. .set_param(arg.param)
  448. .exec(TensorLayoutArray{src, dst, filter});
  449. }
  450. }
  451. TEST_F(CUDA, CONV_CONFIG_COMBINATIONS) {
  452. auto eps_getter = [](bool f16, int stage, const char* name) -> float {
  453. if (f16) {
  454. return stage == 2 ? 0.5 : 0.2;
  455. }
  456. if (strstr(name, "WINOGRAD_NONFUSED"))
  457. return 0.3;
  458. return 1e-3;
  459. };
  460. convolution::test_conv_config_combinations(2, handle_cuda(), false, true,
  461. true, eps_getter, true);
  462. convolution::test_conv_config_combinations(3, handle_cuda(), false, true,
  463. true, eps_getter, true);
  464. convolution::test_conv_config_combinations(5, handle_cuda(), false, true,
  465. true, eps_getter, true);
  466. }
  467. TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_1) {
  468. if (cuda::is_compute_capability_required(7, 0))
  469. return;
  470. using namespace convolution;
  471. Checker<ConvolutionBackwardData> checker(handle_cuda());
  472. checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
  473. "CUDNN_CONVOLUTION_BWD_DATA_ALGO_1" CUDNN_VERSION_STRING));
  474. NormalRNG default_rng;
  475. TensorShape s_filter = TensorShape{8, 8, 2, 2},
  476. s_src = TensorShape{2, 8, 18, 18};
  477. float scale = 1.0f / sqrt(s_filter[0] * s_filter[2] * s_filter[3]);
  478. UniformFloatRNG rng(scale, 2 * scale);
  479. auto src = TensorLayout(s_src, dtype::Float16());
  480. auto filter = TensorLayout(s_filter, dtype::Float16());
  481. TensorLayout dst;
  482. param::Convolution param;
  483. param.pad_h = param.pad_w = 2;
  484. param.stride_h = param.stride_w = 2;
  485. {
  486. auto opr = handle_cuda()->create_operator<Convolution>();
  487. opr->param() = param;
  488. opr->deduce_layout(src, filter, dst);
  489. }
  490. src.dtype = dst.dtype = filter.dtype = dtype::Float16();
  491. param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  492. checker.set_rng(0, &rng)
  493. .set_rng(1, &rng)
  494. .set_epsilon(0.2)
  495. .set_param(param)
  496. .exec(TensorLayoutArray{filter, dst, src});
  497. }
  498. #if MEGDNN_WITH_BENCHMARK
  499. TEST_F(CUDA, CONV_FWD_BENCHMARK) {
  500. auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
  501. size_t SH = 1, size_t SW = 1, size_t FH = 1, size_t FW = 1,
  502. size_t PH = 0, size_t PW = 0, bool fp16io_c32 = false) {
  503. auto benchmarker = Benchmarker<ConvolutionForward>(handle_cuda());
  504. benchmarker.set_dtype(0, dtype::Float16())
  505. .set_dtype(1, dtype::Float16())
  506. .set_dtype(2, dtype::Float16());
  507. ConvolutionForward::Param param;
  508. param.stride_h = SH;
  509. param.stride_w = SW;
  510. param.pad_h = PH;
  511. param.pad_w = PW;
  512. if (fp16io_c32) {
  513. param.compute_mode =
  514. ConvolutionForward::Param::ComputeMode::FLOAT32;
  515. }
  516. benchmarker.set_param(param);
  517. std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
  518. new OprProxy<ConvolutionForward>{true}};
  519. benchmarker.set_proxy(proxy);
  520. size_t OH = (IH - FH + 2 * PH) / SH + 1;
  521. size_t OW = (IW - FW + 2 * PW) / SW + 1;
  522. auto time = benchmarker.execs(
  523. {{N, IC, IH, IW}, {OC, IC, FH, FW}, {N, OC, OH, OW}});
  524. time /= 1000.0 * 10.0;
  525. auto flo = (double)N * OC * IC * OH * OW * FH * FW * 2;
  526. auto flops = flo / time / 1e12;
  527. printf("comp_type %s: ", fp16io_c32 ? "32" : "16");
  528. printf("%.3fG FLO, flops %.3fTFLOPS\n", flo / 1e9, flops);
  529. };
  530. run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, false);
  531. run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, true);
  532. }
  533. TEST_F(CUDA, CONVOLUTION_FWD_BENCHMARK) {
  534. CUBenchmarker<ConvolutionForward> bench{handle_cuda()};
  535. std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
  536. new OprProxy<ConvolutionForward>{true}};
  537. size_t RUNS = 10;
  538. bench.set_proxy(proxy).set_times(RUNS);
  539. auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
  540. size_t FH, size_t SH, size_t PH) {
  541. bench.set_dtype(0, dtype::Float32())
  542. .set_dtype(1, dtype::Float32())
  543. .set_dtype(2, dtype::Float32());
  544. param::Convolution param;
  545. param.stride_h = param.stride_w = SH;
  546. param.pad_h = param.pad_w = PH;
  547. param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
  548. bench.set_param(param);
  549. bench.proxy()->target_execution_policy.algo.reset();
  550. TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
  551. filter{{OC, IC, FH, FH}, dtype::Float32()};
  552. TensorLayout dst;
  553. {
  554. auto&& opr = handle_cuda()->create_operator<Convolution>();
  555. opr->param() = param;
  556. opr->deduce_layout(src, filter, dst);
  557. }
  558. auto time_ms_fp32 = bench.execl({src, filter, dst}) / RUNS;
  559. src.dtype = filter.dtype = dst.dtype = dtype::Float16();
  560. bench.proxy()->target_execution_policy.algo.reset();
  561. bench.set_dtype(0, dtype::Float16())
  562. .set_dtype(1, dtype::Float16())
  563. .set_dtype(2, dtype::Float16());
  564. auto time_ms_true_fp16 = bench.execl({src, filter, dst}) / RUNS;
  565. param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  566. bench.proxy()->target_execution_policy.algo.reset();
  567. bench.set_param(param);
  568. auto time_ms_pseudo_fp16 = bench.execl({src, filter, dst}) / RUNS;
  569. float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
  570. printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
  571. filter.to_string().c_str(), dst.to_string().c_str());
  572. printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
  573. "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
  574. time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
  575. (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
  576. (flo / (time_ms_pseudo_fp16 * 1e9)));
  577. printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
  578. time_ms_fp32 / time_ms_true_fp16,
  579. time_ms_pseudo_fp16 / time_ms_true_fp16);
  580. };
  581. run(32, 64, 3, 224, 224, 7, 2, 3);
  582. run(32, 128, 128, 28, 28, 3, 1, 1);
  583. run(32, 256, 256, 14, 14, 3, 1, 1);
  584. run(32, 512, 512, 7, 7, 3, 1, 1);
  585. run(32, 64, 64, 56, 56, 3, 1, 1);
  586. run(32, 512, 256, 56, 56, 1, 2, 0);
  587. run(32, 1024, 512, 28, 28, 1, 2, 0);
  588. run(32, 2048, 1024, 14, 14, 1, 2, 0);
  589. run(32, 512, 128, 28, 28, 1, 1, 0);
  590. run(32, 128, 512, 28, 28, 1, 1, 0);
  591. run(32, 1024, 256, 14, 14, 1, 1, 0);
  592. run(32, 256, 1024, 14, 14, 1, 1, 0);
  593. run(32, 2048, 512, 7, 7, 1, 1, 0);
  594. run(32, 512, 2048, 7, 7, 1, 1, 0);
  595. run(32, 256, 64, 56, 56, 1, 1, 0);
  596. run(32, 64, 256, 56, 56, 1, 1, 0);
  597. run(32, 128, 256, 56, 56, 1, 2, 0);
  598. run(32, 256, 512, 28, 28, 1, 2, 0);
  599. run(32, 512, 1024, 14, 14, 1, 2, 0);
  600. run(32, 64, 64, 56, 56, 1, 1, 0);
  601. }
  602. TEST_F(CUDA, CONVOLUTION_BWD_DATA_BENCHMARK) {
  603. CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
  604. std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
  605. new OprProxy<ConvolutionBackwardData>{true}};
  606. size_t RUNS = 10;
  607. bench.set_proxy(proxy).set_times(RUNS);
  608. auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
  609. size_t FH, size_t SH, size_t PH) {
  610. bench.set_dtype(0, dtype::Float32())
  611. .set_dtype(1, dtype::Float32())
  612. .set_dtype(2, dtype::Float32());
  613. param::Convolution param;
  614. param.stride_h = param.stride_w = SH;
  615. param.pad_h = param.pad_w = PH;
  616. param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
  617. bench.set_param(param);
  618. bench.proxy()->target_execution_policy.algo.reset();
  619. TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
  620. filter{{OC, IC, FH, FH}, dtype::Float32()};
  621. TensorLayout dst;
  622. {
  623. auto&& opr = handle_cuda()->create_operator<Convolution>();
  624. opr->param() = param;
  625. opr->deduce_layout(src, filter, dst);
  626. }
  627. auto time_ms_fp32 = bench.execl({filter, dst, src}) / RUNS;
  628. src.dtype = filter.dtype = dst.dtype = dtype::Float16();
  629. bench.proxy()->target_execution_policy.algo.reset();
  630. bench.set_dtype(0, dtype::Float16())
  631. .set_dtype(1, dtype::Float16())
  632. .set_dtype(2, dtype::Float16());
  633. auto time_ms_true_fp16 = bench.execl({filter, dst, src}) / RUNS;
  634. param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  635. bench.proxy()->target_execution_policy.algo.reset();
  636. bench.set_param(param);
  637. auto time_ms_pseudo_fp16 = bench.execl({filter, dst, src}) / RUNS;
  638. float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
  639. printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
  640. filter.to_string().c_str(), dst.to_string().c_str());
  641. printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
  642. "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
  643. time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
  644. (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
  645. (flo / (time_ms_pseudo_fp16 * 1e9)));
  646. printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
  647. time_ms_fp32 / time_ms_true_fp16,
  648. time_ms_pseudo_fp16 / time_ms_true_fp16);
  649. };
  650. run(32, 64, 3, 224, 224, 7, 2, 3);
  651. run(32, 128, 128, 28, 28, 3, 1, 1);
  652. run(32, 256, 256, 14, 14, 3, 1, 1);
  653. run(32, 512, 512, 7, 7, 3, 1, 1);
  654. run(32, 64, 64, 56, 56, 3, 1, 1);
  655. run(32, 512, 256, 56, 56, 1, 2, 0);
  656. run(32, 1024, 512, 28, 28, 1, 2, 0);
  657. run(32, 2048, 1024, 14, 14, 1, 2, 0);
  658. run(32, 512, 128, 28, 28, 1, 1, 0);
  659. run(32, 128, 512, 28, 28, 1, 1, 0);
  660. run(32, 1024, 256, 14, 14, 1, 1, 0);
  661. run(32, 256, 1024, 14, 14, 1, 1, 0);
  662. run(32, 2048, 512, 7, 7, 1, 1, 0);
  663. run(32, 512, 2048, 7, 7, 1, 1, 0);
  664. run(32, 256, 64, 56, 56, 1, 1, 0);
  665. run(32, 64, 256, 56, 56, 1, 1, 0);
  666. run(32, 128, 256, 56, 56, 1, 2, 0);
  667. run(32, 256, 512, 28, 28, 1, 2, 0);
  668. run(32, 512, 1024, 14, 14, 1, 2, 0);
  669. run(32, 64, 64, 56, 56, 1, 1, 0);
  670. }
  671. TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_BF16) {
  672. CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
  673. std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
  674. new OprProxy<ConvolutionBackwardData>{true}};
  675. size_t RUNS = 10;
  676. bench.set_proxy(proxy).set_times(RUNS);
  677. auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
  678. size_t FH, size_t SH, size_t PH) {
  679. bench.set_dtype(0, dtype::BFloat16())
  680. .set_dtype(1, dtype::BFloat16())
  681. .set_dtype(2, dtype::BFloat16());
  682. param::Convolution param;
  683. param.stride_h = param.stride_w = SH;
  684. param.pad_h = param.pad_w = PH;
  685. param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
  686. bench.set_param(param);
  687. bench.proxy()->target_execution_policy = {};
  688. TensorLayout src{{N, IC, IH, IW}, dtype::BFloat16()},
  689. filter{{OC, IC, FH, FH}, dtype::BFloat16()};
  690. TensorLayout dst;
  691. {
  692. auto&& opr = handle_cuda()->create_operator<Convolution>();
  693. opr->param() = param;
  694. opr->deduce_layout(src, filter, dst);
  695. }
  696. auto used = bench.execl({filter, dst, src}) / RUNS;
  697. float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
  698. printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
  699. filter.to_string().c_str(), dst.to_string().c_str());
  700. printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used,
  701. (flo / (used * 1e9)));
  702. };
  703. run(32, 64, 3, 224, 224, 7, 2, 3);
  704. run(32, 128, 128, 28, 28, 3, 1, 1);
  705. run(32, 256, 256, 14, 14, 3, 1, 1);
  706. run(32, 512, 512, 7, 7, 3, 1, 1);
  707. run(32, 64, 64, 56, 56, 3, 1, 1);
  708. run(32, 512, 256, 56, 56, 1, 2, 0);
  709. run(32, 1024, 512, 28, 28, 1, 2, 0);
  710. run(32, 2048, 1024, 14, 14, 1, 2, 0);
  711. run(32, 512, 128, 28, 28, 1, 1, 0);
  712. run(32, 128, 512, 28, 28, 1, 1, 0);
  713. run(32, 1024, 256, 14, 14, 1, 1, 0);
  714. run(32, 256, 1024, 14, 14, 1, 1, 0);
  715. run(32, 2048, 512, 7, 7, 1, 1, 0);
  716. run(32, 512, 2048, 7, 7, 1, 1, 0);
  717. run(32, 256, 64, 56, 56, 1, 1, 0);
  718. run(32, 64, 256, 56, 56, 1, 1, 0);
  719. run(32, 128, 256, 56, 56, 1, 2, 0);
  720. run(32, 256, 512, 28, 28, 1, 2, 0);
  721. run(32, 512, 1024, 14, 14, 1, 2, 0);
  722. run(32, 64, 64, 56, 56, 1, 1, 0);
  723. }
  724. TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_INT8_DP4A) {
  725. CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
  726. std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
  727. new OprProxy<ConvolutionBackwardData>{true}};
  728. size_t RUNS = 10;
  729. bench.set_proxy(proxy).set_times(RUNS);
  730. auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
  731. size_t FH, size_t SH, size_t PH) {
  732. bench.set_dtype(0, dtype::QuantizedS8{1.0f})
  733. .set_dtype(1, dtype::QuantizedS8{1.0f})
  734. .set_dtype(2, dtype::QuantizedS8{1.0f});
  735. param::Convolution param;
  736. param.format = param::Convolution::Format::NCHW4;
  737. param.stride_h = param.stride_w = SH;
  738. param.pad_h = param.pad_w = PH;
  739. param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
  740. bench.set_param(param);
  741. bench.proxy()->target_execution_policy = {};
  742. TensorLayout src{{N, IC / 4, IH, IW, 4}, dtype::QuantizedS8{1.0f}},
  743. filter{{OC, IC / 4, FH, FH, 4}, dtype::QuantizedS8{1.0f}};
  744. TensorLayout dst;
  745. dst.dtype = dtype::QuantizedS8{1.0f};
  746. {
  747. auto&& opr = handle_cuda()->create_operator<Convolution>();
  748. opr->param() = param;
  749. opr->deduce_layout(src, filter, dst);
  750. }
  751. auto used = bench.execl({filter, dst, src}) / RUNS;
  752. float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
  753. printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
  754. filter.to_string().c_str(), dst.to_string().c_str());
  755. printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used,
  756. (flo / (used * 1e9)));
  757. };
  758. run(64, 32, 32, 92, 180, 4, 2, 2);
  759. run(64, 32, 32, 46, 80, 4, 2, 2);
  760. run(16, 16, 16, 92, 180, 4, 2, 2);
  761. run(16, 16, 16, 46, 80, 4, 2, 2);
  762. }
  763. TEST_F(CUDA, CONVOLUTION_BWD_FILTER_BENCHMARK) {
  764. CUBenchmarker<ConvolutionBackwardFilter> bench{handle_cuda()};
  765. std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{
  766. new OprProxy<ConvolutionBackwardFilter>{true}};
  767. size_t RUNS = 10;
  768. bench.set_proxy(proxy).set_times(RUNS);
  769. auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
  770. size_t FH, size_t SH, size_t PH) {
  771. bench.set_dtype(0, dtype::Float32())
  772. .set_dtype(1, dtype::Float32())
  773. .set_dtype(2, dtype::Float32());
  774. param::Convolution param;
  775. param.stride_h = param.stride_w = SH;
  776. param.pad_h = param.pad_w = PH;
  777. param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
  778. bench.set_param(param);
  779. bench.proxy()->target_execution_policy.algo.reset();
  780. TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
  781. filter{{OC, IC, FH, FH}, dtype::Float32()};
  782. TensorLayout dst;
  783. {
  784. auto&& opr = handle_cuda()->create_operator<Convolution>();
  785. opr->param() = param;
  786. opr->deduce_layout(src, filter, dst);
  787. }
  788. auto time_ms_fp32 = bench.execl({src, dst, filter}) / RUNS;
  789. src.dtype = filter.dtype = dst.dtype = dtype::Float16();
  790. bench.proxy()->target_execution_policy.algo.reset();
  791. bench.set_dtype(0, dtype::Float16())
  792. .set_dtype(1, dtype::Float16())
  793. .set_dtype(2, dtype::Float16());
  794. auto time_ms_true_fp16 = bench.execl({src, dst, filter}) / RUNS;
  795. param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
  796. bench.proxy()->target_execution_policy.algo.reset();
  797. bench.set_param(param);
  798. auto time_ms_pseudo_fp16 = bench.execl({src, dst, filter}) / RUNS;
  799. float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
  800. printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
  801. filter.to_string().c_str(), dst.to_string().c_str());
  802. printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
  803. "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
  804. time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
  805. (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
  806. (flo / (time_ms_pseudo_fp16 * 1e9)));
  807. printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
  808. time_ms_fp32 / time_ms_true_fp16,
  809. time_ms_pseudo_fp16 / time_ms_true_fp16);
  810. };
  811. run(32, 64, 3, 224, 224, 7, 2, 3);
  812. run(32, 128, 128, 28, 28, 3, 1, 1);
  813. run(32, 256, 256, 14, 14, 3, 1, 1);
  814. run(32, 512, 512, 7, 7, 3, 1, 1);
  815. run(32, 64, 64, 56, 56, 3, 1, 1);
  816. run(32, 512, 256, 56, 56, 1, 2, 0);
  817. run(32, 1024, 512, 28, 28, 1, 2, 0);
  818. run(32, 2048, 1024, 14, 14, 1, 2, 0);
  819. run(32, 512, 128, 28, 28, 1, 1, 0);
  820. run(32, 128, 512, 28, 28, 1, 1, 0);
  821. run(32, 1024, 256, 14, 14, 1, 1, 0);
  822. run(32, 256, 1024, 14, 14, 1, 1, 0);
  823. run(32, 2048, 512, 7, 7, 1, 1, 0);
  824. run(32, 512, 2048, 7, 7, 1, 1, 0);
  825. run(32, 256, 64, 56, 56, 1, 1, 0);
  826. run(32, 64, 256, 56, 56, 1, 1, 0);
  827. run(32, 128, 256, 56, 56, 1, 2, 0);
  828. run(32, 256, 512, 28, 28, 1, 2, 0);
  829. run(32, 512, 1024, 14, 14, 1, 2, 0);
  830. run(32, 64, 64, 56, 56, 1, 1, 0);
  831. }
  832. #endif
  833. #undef CUDNN_VERSION_STRING
  834. #undef V
  835. #undef V1
  836. } // namespace test
  837. } // namespace megdnn
  838. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台