You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

traced_module.py 88 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. import builtins
  9. import collections
  10. import copy
  11. import fnmatch
  12. import functools
  13. import inspect
  14. import keyword
  15. import re
  16. import weakref
  17. from importlib import import_module
  18. from inspect import getcallargs, getmembers, isclass, ismethod
  19. from itertools import chain
  20. from types import FunctionType
  21. from typing import (
  22. Any,
  23. Callable,
  24. Dict,
  25. Iterable,
  26. List,
  27. Optional,
  28. Sequence,
  29. Tuple,
  30. Type,
  31. Union,
  32. )
  33. from .. import functional as F
  34. from .. import get_logger
  35. from .. import module as M
  36. from ..core._imperative_rt.core2 import Tensor as RawTensor
  37. from ..core._imperative_rt.core2 import (
  38. is_tracing_module,
  39. set_module_tracing,
  40. unset_module_tracing,
  41. )
  42. from ..core._trace_option import set_symbolic_shape
  43. from ..module import Module
  44. from ..module import external as MExternal
  45. from ..module.qat import QATModule
  46. from ..quantization.fake_quant import LSQ, TQT, FakeQuantize, _FakeQuantize
  47. from ..quantization.observer import (
  48. ExponentialMovingAverageObserver,
  49. HistogramObserver,
  50. MinMaxObserver,
  51. Observer,
  52. PassiveObserver,
  53. SyncExponentialMovingAverageObserver,
  54. SyncMinMaxObserver,
  55. )
  56. from ..tensor import Tensor
  57. from ..version import __version__
  58. from .expr import (
  59. Apply,
  60. CallFunction,
  61. CallMethod,
  62. Constant,
  63. Expr,
  64. GetAttr,
  65. Input,
  66. get_suffix_name,
  67. is_apply_def,
  68. is_call_function,
  69. is_call_module,
  70. is_call_tensor_method,
  71. is_constant,
  72. is_getattr,
  73. is_input,
  74. )
  75. from .fake_quant import FakeQuantize as TM_FakeQuant
  76. from .module_tracer import (
  77. PatchedFn,
  78. Patcher,
  79. active_module_tracer,
  80. get_tensor_wrapable_method,
  81. module_tracer,
  82. set_active_module_tracer,
  83. )
  84. from .node import ModuleNode, Node, NodeMixin, TensorNode
  85. from .pytree import (
  86. USER_REGISTERED_CONTAINER_TYPE,
  87. USER_REGISTERED_LEAF_TYPE,
  88. ArgsIndex,
  89. TreeDef,
  90. _register_supported_type,
  91. tree_flatten,
  92. )
  93. from .serialization import (
  94. _ModuleState,
  95. load_apply_expr,
  96. load_call_module_expr,
  97. load_call_tensor_method_expr,
  98. load_functional,
  99. )
  100. from .utils import (
  101. _check_builtin_module_attr,
  102. _check_obj_attr,
  103. _convert_kwargs_to_args,
  104. replace_container_with_module_container,
  105. )
  106. logger = get_logger(__name__)
  107. def _is_builtin_name(name: str) -> bool:
  108. return (
  109. name in builtins.__dict__
  110. or name in keyword.kwlist
  111. or name in {"inf", "nan", "NoneType"}
  112. )
  113. def _is_leaf(node):
  114. assert isinstance(node, RawTensor), "doesn't support {} in return values".format(
  115. type(node)
  116. )
  117. return isinstance(node, RawTensor)
  118. _enable_graph_surgery_mode = False
  119. def _graph_surgery_mode():
  120. return _enable_graph_surgery_mode
  121. def _set_graph_surgery_mode(mode: bool):
  122. global _enable_graph_surgery_mode
  123. pre_mode = _enable_graph_surgery_mode
  124. _enable_graph_surgery_mode = mode
  125. return pre_mode
  126. def _node_to_tensor(*args, **kwargs):
  127. tensors = []
  128. nodes, tree_def = tree_flatten((args, kwargs))
  129. for n in nodes:
  130. if isinstance(n, TensorNode):
  131. if n.top_graph is not None:
  132. active_module_tracer().current_scope()._add_input(n)
  133. value = n.value
  134. if value is None:
  135. flag = _set_graph_surgery_mode(False)
  136. unset_module_tracing()
  137. value = F.zeros(shape=n._shape, dtype=n._dtype)
  138. set_module_tracing()
  139. _set_graph_surgery_mode(flag)
  140. orig_n = NodeMixin.get(value, None)
  141. if orig_n is None or "setitem" not in orig_n._name:
  142. NodeMixin.wrap_safe(value, n)
  143. tensors.append(value)
  144. else:
  145. tensors.append(n)
  146. tensors = tree_def.unflatten(tensors)
  147. return tensors
  148. def _tensor_to_node(tensors):
  149. if tensors is None:
  150. return None
  151. nodes = []
  152. tensors, out_def = tree_flatten(tensors)
  153. for t in tensors:
  154. if isinstance(t, Tensor):
  155. n = NodeMixin.get(t, None)
  156. if isinstance(n, TensorNode):
  157. n.value = t
  158. nodes.append(n)
  159. else:
  160. nodes.append(t)
  161. else:
  162. nodes.append(t)
  163. nodes = out_def.unflatten(nodes)
  164. return nodes
  165. def _name_setter(node: Node, new_name: str):
  166. surgery_mode = _set_graph_surgery_mode(False)
  167. graph = active_module_tracer().current_scope()
  168. if node.top_graph is not None:
  169. top_graph = active_module_tracer().top_scope()
  170. if node is top_graph._namespace.used_names.get(node._name, None):
  171. graph = top_graph
  172. else:
  173. graph = node.top_graph
  174. assert (
  175. graph._namespace.used_names.get(new_name, None) is None
  176. ), "The name(%s) is already in use. Please try a different one again." % (new_name)
  177. graph._namespace.unassociate_name_with_obj(node)
  178. node._name = graph._namespace.create_unique_name(new_name, node)
  179. _set_graph_surgery_mode(surgery_mode)
  180. def _wrap_method_to_tensor_node():
  181. def _any_method(name, func):
  182. def _any(*args, **kwargs):
  183. if is_tracing_module() and _graph_surgery_mode():
  184. args, kwargs = _node_to_tensor(*args, **kwargs)
  185. attr = getattr(args[0], name)
  186. outs = attr
  187. if callable(attr):
  188. outs = attr(*(args[1:]), **kwargs)
  189. if name == "__setitem__":
  190. _node_to_tensor(outs)
  191. return None
  192. outs = _tensor_to_node(outs)
  193. return outs
  194. else:
  195. outs = func
  196. if callable(func):
  197. outs = func(*args, **kwargs)
  198. if isinstance(func, property):
  199. outs = func.__get__(*args, **kwargs)
  200. return outs
  201. return _any
  202. tensor_method_patch = []
  203. for method in get_tensor_wrapable_method():
  204. patch = PatchedFn(TensorNode, method)
  205. if type(getattr(Tensor, method)) == property:
  206. # Only support property.getter
  207. patch.set_func(property(_any_method(method, patch.origin_fn)))
  208. else:
  209. patch.set_func(_any_method(method, patch.origin_fn))
  210. tensor_method_patch.append(patch)
  211. patch = PatchedFn(Node, "name")
  212. patch.set_func(property(patch.origin_fn.fget, _name_setter))
  213. tensor_method_patch.append(patch)
  214. return tensor_method_patch
  215. def _convert_node_and_tensor(orig_func):
  216. @functools.wraps(orig_func)
  217. def _convert(*args, **kwargs):
  218. if is_tracing_module() and _graph_surgery_mode():
  219. args, kwargs = _node_to_tensor(*args, **kwargs)
  220. rst = orig_func(*args, **kwargs, method_func=_convert)
  221. rst = _tensor_to_node(rst)
  222. return rst
  223. else:
  224. rst = orig_func(*args, **kwargs)
  225. return rst
  226. return _convert
  227. def _wrap_mnode_getattr(orig_getattr):
  228. @functools.wraps(orig_getattr)
  229. def wraped_fn(self, name):
  230. if is_tracing_module() and _graph_surgery_mode():
  231. obj = self.owner
  232. current_graph = active_module_tracer().current_scope()
  233. if self.top_graph is not None:
  234. current_graph._add_input(self)
  235. attr = getattr(obj, name)
  236. node = attr
  237. if not isinstance(attr, TracedModuleBuilder):
  238. if isinstance(attr, Module):
  239. attr = TracedModuleBuilder(attr)
  240. setattr(obj, name, attr)
  241. if isinstance(attr, (NodeMixin, RawTensor)):
  242. NodeMixin.wrap(
  243. attr,
  244. lambda: GetAttr.make(
  245. self,
  246. type=NodeMixin.get_wrapped_type(attr),
  247. attr_name=name,
  248. name="",
  249. ),
  250. )
  251. if isinstance(attr, (NodeMixin, RawTensor)):
  252. node = NodeMixin.get(attr)
  253. if isinstance(node, ModuleNode) and isinstance(attr, (NodeMixin, Module)):
  254. node._owner = weakref.ref(attr)
  255. return node
  256. else:
  257. node = object.__getattribute__(self, name)
  258. return node
  259. return wraped_fn
  260. def _wrap_mnode_call(orig_call):
  261. @functools.wraps(orig_call)
  262. def wraped_fn(self, *args, **kwargs):
  263. if is_tracing_module() and _graph_surgery_mode():
  264. obj = self.owner
  265. if self.top_graph is not None:
  266. active_module_tracer().current_scope()._add_input(self)
  267. rst = obj(*args, **kwargs)
  268. else:
  269. raise TypeError("'ModuleNode' object is not callable")
  270. return rst
  271. return wraped_fn
  272. class _InsertExprs:
  273. def __init__(self, graph, expr: Optional[Expr] = None):
  274. self.graph = graph
  275. while graph.top_graph is not None:
  276. graph = graph.top_graph
  277. assert graph.inputs[0].owner._is_top
  278. self.root_graph = graph
  279. self.global_scope = InternalGraph(self.graph._name, self.graph._qualname)
  280. self.global_scope._namespace.merge(self.graph._namespace)
  281. self.expr = expr
  282. self._tensor_method_patch = None
  283. def __enter__(self):
  284. self.use_sym_shape = set_symbolic_shape(True)
  285. node_id, expr_id = self.root_graph._total_ids
  286. Node._set_next_id(node_id)
  287. Expr._set_next_id(expr_id)
  288. set_module_tracing()
  289. _set_graph_surgery_mode(True)
  290. assert active_module_tracer() is None
  291. set_active_module_tracer(
  292. module_tracer(lambda x: _convert_node_and_tensor(_wrapped_function(x)))
  293. )
  294. active_module_tracer().patcher.__enter__()
  295. for cls, name, func in [
  296. [ModuleNode, "__getattr__", _wrap_mnode_getattr],
  297. [ModuleNode, "__call__", _wrap_mnode_call],
  298. [TracedModuleBuilder, "__call__", _convert_node_and_tensor],
  299. ]:
  300. active_module_tracer().patcher.patch_function(cls, name, func)
  301. self._tensor_method_patch = _wrap_method_to_tensor_node()
  302. active_module_tracer().push_scope(self.global_scope)
  303. def __exit__(self, ty, va, tr):
  304. if va is not None:
  305. return False
  306. active_module_tracer().patcher.__exit__(ty, va, tr)
  307. while self._tensor_method_patch:
  308. pf = self._tensor_method_patch.pop()
  309. pf.set_func(pf.origin_fn)
  310. # delete ModuleNode.__call__ to avoid entering the
  311. # ModuleNode.__init__ method when call a ModuleNode object.
  312. delattr(ModuleNode, "__call__")
  313. module = self.graph.inputs[0].owner
  314. def build_traced_module(
  315. module: TracedModuleBuilder, target_module: TracedModule
  316. ):
  317. for k, v in module.__dict__.items():
  318. if isinstance(v, TracedModuleBuilder):
  319. traced_v = v.build()
  320. build_traced_module(v, traced_v)
  321. setattr(target_module, k, traced_v)
  322. build_traced_module(module, module)
  323. set_symbolic_shape(self.use_sym_shape)
  324. _set_graph_surgery_mode(False)
  325. set_active_module_tracer(None)
  326. unset_module_tracing()
  327. extra_inp_nodes = set(self.global_scope.inputs)
  328. max_inp_expr_idx = -1
  329. for node in extra_inp_nodes:
  330. assert (
  331. node.top_graph == self.graph
  332. ), "The input node ({}) is not in the graph ({})".format(node, self.graph)
  333. if node.expr in self.graph._exprs:
  334. max_inp_expr_idx = max(
  335. max_inp_expr_idx, self.graph._exprs.index(node.expr)
  336. )
  337. max_inp_expr_idx += 1
  338. insert_index = -1
  339. if self.expr in self.graph._exprs:
  340. insert_index = self.graph._exprs.index(self.expr)
  341. insert_index += 1
  342. if insert_index < max_inp_expr_idx:
  343. insert_index = max_inp_expr_idx
  344. for expr in self.global_scope._exprs:
  345. self.graph._exprs.insert(insert_index, expr)
  346. insert_index += 1
  347. self.graph._namespace.merge(self.global_scope._namespace)
  348. self.root_graph._total_ids = (Node._get_next_id(), Expr._get_next_id())
  349. self.root_graph.inputs[0].owner._update_ref()
  350. for node in self.root_graph.nodes():
  351. if isinstance(node, TensorNode):
  352. node.value = None
  353. return True
  354. class NameSpace:
  355. def __init__(self, name, qualname):
  356. self.name = name
  357. self.qualname = qualname
  358. self._used_names = {}
  359. def create_unique_name(self, name: str, node: Any = None) -> str:
  360. assert isinstance(name, str), "The name must be a string"
  361. if name in self._used_names and (self._used_names[name] is node):
  362. return name
  363. name = re.sub("[^0-9a-zA-Z_]+", "_", name)
  364. if name[0].isdigit():
  365. name = "_{}".format(name)
  366. while (
  367. name in self._used_names and self._used_names[name] is not None
  368. ) or _is_builtin_name(name):
  369. match = re.match(r"(.*)_(\d+)$", name)
  370. if match is None:
  371. name = name + "_1"
  372. else:
  373. base, num = match.group(1, 2)
  374. name = "{}_{}".format(base, int(num) + 1)
  375. self._used_names.setdefault(name)
  376. if node is not None:
  377. self.associate_name_with_obj(name, node)
  378. return name
  379. def auto_naming_for_outputs(self, expr: Expr):
  380. _add_suffix = lambda x: x + "_out"
  381. if is_call_module(expr):
  382. call_node = expr.inputs[0]
  383. qualname = "%s.[out]" % (call_node.qualname)
  384. name = call_node.name
  385. elif is_call_tensor_method(expr):
  386. name = expr.method.strip("_")
  387. qualname = "{}.[{}]".format(
  388. self.qualname, self.create_unique_name("method_%s" % (name)),
  389. )
  390. elif is_call_function(expr):
  391. name = expr.func.__name__
  392. qualname = "{}.[{}]".format(
  393. self.qualname, self.create_unique_name("func_%s" % name),
  394. )
  395. elif is_apply_def(expr):
  396. name = str(expr.opdef).lower()
  397. qualname = "{}.[{}]".format(
  398. self.qualname, self.create_unique_name("def_%s" % name),
  399. )
  400. elif is_getattr(expr):
  401. qualname = "{}.{}".format(expr.inputs[0].qualname, expr.name)
  402. name = get_suffix_name(self.qualname, qualname)
  403. _add_suffix = lambda x: x
  404. elif is_constant(expr) or is_input(expr):
  405. name = (
  406. expr.name if expr.name else "const_" + type(expr.value).__name__.lower()
  407. )
  408. qualname = "{}.[{}]".format(self.qualname, name)
  409. _add_suffix = lambda x: x
  410. for node in expr.outputs:
  411. cur_name = node._name if node._name else _add_suffix(name)
  412. node._name = self.create_unique_name(cur_name, node)
  413. if node._qualname == "":
  414. node._qualname = qualname
  415. assert get_suffix_name(self.qualname, qualname) is not None
  416. def merge(self, other: "NameSpace"):
  417. self._used_names.update(other.used_names)
  418. def associate_name_with_obj(self, name: str, node: Node):
  419. assert name in self.used_names
  420. assert self.used_names[name] is None, "The name(%s) is already in use" % (name)
  421. self._used_names[name] = node
  422. def unassociate_name_with_obj(self, node: Node):
  423. assert node.name in self.used_names
  424. # assert self.used_names[node.name] is node
  425. self._used_names[node.name] = None
  426. @property
  427. def used_names(self):
  428. return self._used_names
  429. class InternalGraph:
  430. r"""``InternalGraph`` is the main data structure used in the TracedModule.
  431. It is used to represent the execution procedure of Module's forward method.
  432. For example, the following code
  433. .. code-block::
  434. import megengine.random as rand
  435. import megengine.functional as F
  436. import megengine.module as M
  437. import megengine.traced_module as tm
  438. class MyModule(M.Module):
  439. def __init__(self):
  440. super().__init__()
  441. self.param = rand.normal(size=(3, 4))
  442. self.linear = M.Linear(4, 5)
  443. def forward(self, x):
  444. return F.relu(self.linear(x + self.param))
  445. net = MyModule()
  446. inp = F.zeros(shape = (3, 4))
  447. traced_module = tm.trace_module(net, inp)
  448. Will produce the following ``InternalGraph``::
  449. print(traced_module.graph)
  450. .. code-block:: text
  451. MyModule.Graph (self, x) {
  452. %2: linear = getattr(self, "linear") -> (Linear)
  453. %3: param = getattr(self, "param") -> (Tensor)
  454. %4: add_out = x.__add__(param, )
  455. %5: linear_out = linear(add_out, )
  456. %6: relu_out = nn.relu(linear_out, )
  457. return relu_out
  458. }
  459. """
  460. _exprs = None # type: List[Expr]
  461. _inputs = None # type: List[Node]
  462. _outputs = None # type: List[Node]
  463. _top_graph = None # type: InternalGraph
  464. _total_ids = None # type: List[int]
  465. def __init__(self, name: str, qualname: str):
  466. self._exprs = []
  467. self._inputs = []
  468. self._outputs = []
  469. self._watch_point = []
  470. self._end_point = []
  471. self._namespace = NameSpace(name, qualname)
  472. self._rst = collections.defaultdict(list)
  473. self._name = name
  474. self._qualname = qualname
  475. def _insert(self, expr):
  476. self._exprs.append(expr)
  477. @property
  478. def name(self) -> str:
  479. r"""Get the name of this graph."""
  480. return self._name
  481. @name.setter
  482. def name(self, new_name: str):
  483. r"""Set a new name to this graph."""
  484. mod = self.inputs[0].owner
  485. graph = self.top_graph
  486. assert graph is not None or mod._is_top, "The parent graph cannot be None."
  487. if graph is not None:
  488. assert graph._namespace.used_names.get(new_name, None) is None, (
  489. "The name(%s) is already in use. Please try a different one again."
  490. % (new_name)
  491. )
  492. new_name = graph._namespace.create_unique_name(new_name, self)
  493. self._name = new_name
  494. @property
  495. def qualname(self) -> str:
  496. r"""Get the `qualname` of this graph. The `qualname` can be used to get the
  497. submodule from the traced Module or Module.
  498. Example:
  499. .. code-block::
  500. import megengine.module as M
  501. import megengine.traced_module as tm
  502. import megengine as mge
  503. class block(M.Module):
  504. def __init__(self):
  505. super().__init__()
  506. self.relu = M.ReLU()
  507. def forward(self, x):
  508. return self.relu(x)
  509. class module(M.Module):
  510. def __init__(self):
  511. super().__init__()
  512. self.block = block()
  513. def forward(self, x):
  514. x = self.block(x)
  515. return x
  516. net = module()
  517. traced_net = tm.trace_module(net, mge.Tensor([0.]))
  518. qualname = traced_net.block.graph.qualname # qualname = "module.block"
  519. qualname = qualname.split(".", 1)[-1] # qualname = "block"
  520. assert qualname in list(map(lambda x: x[0], net.named_modules()))
  521. assert qualname in list(map(lambda x: x[0], traced_net.named_modules()))
  522. """
  523. return self._qualname
  524. @property
  525. def inputs(self) -> List[Node]:
  526. r"""Get the list of input Nodes of this graph.
  527. Returns:
  528. A list of ``Node``.
  529. """
  530. return self._inputs
  531. @property
  532. def outputs(self) -> List[Node]:
  533. r"""Get the list of output Nodes of this graph.
  534. Returns:
  535. A list of ``Node``.
  536. """
  537. return self._outputs
  538. @property
  539. def top_graph(self):
  540. r"""Get the parent graph of this graph.
  541. Returns:
  542. An ``InternalGraph``.
  543. """
  544. if self._top_graph:
  545. return self._top_graph()
  546. return None
  547. def exprs(self, recursive=True):
  548. r"""Get the Exprs that constitute this graph.
  549. Args:
  550. recursive: whether to get the Exprs in the subgraph.
  551. Default: True
  552. Returns:
  553. A ``ExprFilter`` containing all Exprs of this graph.
  554. """
  555. return ExprFilter(_expr_iter(self, recursive))
  556. def nodes(self, recursive=True):
  557. r"""Get the Nodes that constitute this graph.
  558. Args:
  559. recursive: whether to get the Nodes in the subgraph.
  560. Default: True
  561. Returns:
  562. A ``NodeFilter`` containing all Nodes of this graph.
  563. """
  564. return NodeFilter(_node_iter(self, recursive))
  565. def get_function_by_type(self, func: Callable = None, recursive=True):
  566. r"""Filter Exprs by the type of ``CallFunction``.
  567. Args:
  568. func: a built-in function, such as ``F.relu``.
  569. recursive: whether to get the Exprs in the subgraph.
  570. Default: True
  571. Returns:
  572. A :class:`~.TracedModule.ExprFilterCallFunction`.
  573. """
  574. return self.exprs(recursive).call_function(func)
  575. def get_method_by_type(self, method: str = None, recursive=True):
  576. r"""Filter Exprs by the type of ``CallMethod``.
  577. Args:
  578. method: a method string, such as "__add__".
  579. recursive: whether to get the Exprs in the subgraph.
  580. Default: True
  581. Returns:
  582. A :class:`~.TracedModule.ExprFilterCallMethod`.
  583. """
  584. return self.exprs(recursive).call_method(method)
  585. def get_expr_by_id(self, expr_id: List[int] = None, recursive=True):
  586. r"""Filter Exprs by their ``id``.
  587. Args:
  588. expr_id: a list of :class:`int`.
  589. recursive: whether to get the Exprs in the subgraph.
  590. Default: True
  591. Returns:
  592. A :class:`~.TracedModule.ExprFilterExprId`.
  593. """
  594. return self.exprs(recursive).expr_id(expr_id)
  595. def get_module_by_type(self, module_cls: Module, recursive=True):
  596. r"""Filter Nodes by the ``module_type`` of ``ModuleNode``.
  597. Args:
  598. module_cls: a subclass of :class:`~.Module`.
  599. recursive: whether to get the Nodes in the subgraph.
  600. Default: True
  601. Returns:
  602. A :class:`~.TracedModule.NodeFilterType`.
  603. """
  604. return self.nodes(recursive).type(module_cls)
  605. def get_node_by_id(self, node_id: List[int] = None, recursive=True):
  606. r"""Filter Nodes by their ``id``.
  607. The ``id`` of the ``Node`` can be obtained by the following code
  608. .. code-block::
  609. # node : Node
  610. print("{:i}".format(node))
  611. print(node.__format__("i"))
  612. # graph : InternalGraph
  613. print("{:i}".format(graph))
  614. print(graph.__format__("i"))
  615. Args:
  616. node_id: a list of :class:`int`.
  617. recursive: whether to get the Nodes in the subgraph.
  618. Default: True
  619. Returns:
  620. A :class:`~.TracedModule.NodeFilterNodeId`.
  621. """
  622. return self.nodes(recursive).node_id(node_id)
  623. def get_node_by_name(
  624. self, name: str = None, ignorecase: bool = True, recursive=True
  625. ):
  626. r"""Filter Nodes by their full name.
  627. The full name of the ``Node`` can be obtained by the following code
  628. .. code-block::
  629. # node : Node
  630. print("{:p}".format(node))
  631. print(node.__format__("p"))
  632. # graph : InternalGraph
  633. print("{:p}".format(graph))
  634. print(graph.__format__("p"))
  635. Args:
  636. name: a string in glob syntax that can contain ``?`` and
  637. ``*`` to match a single or arbitrary characters.
  638. ignorecase: whether to ignroe case.
  639. Default: True
  640. recursive: whether to get the Nodes in the subgraph.
  641. Default: True
  642. Returns:
  643. A :class:`~.TracedModule.NodeFilterName`.
  644. """
  645. return self.nodes(recursive).name(name, ignorecase)
  646. def _add_input(self, i):
  647. self._inputs.append(i)
  648. def _add_output(self, o):
  649. self._outputs.append(o)
  650. def get_dep_exprs(self, nodes: Sequence[Node]) -> List[Expr]:
  651. r"""Get the dependent Exprs of the ``nodes``.
  652. Args:
  653. nodes: a list of :class:`Node`.
  654. Returns:
  655. A list of dependent :class:`Expr`.
  656. """
  657. if not isinstance(nodes, Sequence):
  658. nodes = (nodes,)
  659. ret = list()
  660. queue = list(nodes)
  661. visited_queue = list()
  662. while queue:
  663. node = queue.pop()
  664. visited_queue.append(node)
  665. expr = node.expr
  666. if expr not in ret:
  667. ret.append(expr)
  668. for i in expr.inputs:
  669. if i not in queue and i not in visited_queue:
  670. queue.append(i)
  671. return ret
  672. def reset_inputs(self, *args, **kwargs):
  673. forma_mnode = self.inputs[0]
  674. moudle = forma_mnode.owner
  675. assert moudle._is_top, "reset_inputs only supports top graph"
  676. inputs, tree_def = tree_flatten(((moudle, *args), kwargs))
  677. def create_node(val: Tensor):
  678. name = self._namespace.create_unique_name("args")
  679. node = Input(
  680. type=TensorNode, name=name, qualname="%s.[%s]" % (self._qualname, name)
  681. ).outputs[0]
  682. self._namespace.associate_name_with_obj(node.name, node)
  683. node.shape = val.shape
  684. node.dtype = val.dtype
  685. return node
  686. formal_node_inputs = [
  687. forma_mnode,
  688. ]
  689. org_argdef = list(moudle.argdef_graph_map.keys())[0]
  690. for v in inputs[1:]:
  691. assert isinstance(v, RawTensor)
  692. formal_node_inputs.append(create_node(v))
  693. self._inputs[:] = formal_node_inputs
  694. moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
  695. moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
  696. return formal_node_inputs[1:]
  697. def add_input_node(
  698. self, shape: Tuple[int], dtype: str = "float32", name: str = "args"
  699. ):
  700. r"""Add an input node to the graph.
  701. The new Node will be the last of the positional arguments.
  702. Args:
  703. shape: the shape of the new input Node.
  704. dtype: the dtype of the new input Node.
  705. Default: float32
  706. name: the name of the new input Node. When the name is used in the graph,
  707. a suffix will be added to it.
  708. """
  709. forma_mnode = self.inputs[0]
  710. moudle = forma_mnode.owner
  711. assert moudle._is_top, "add_input_node only supports top graph"
  712. def create_node(name=None):
  713. name = self._namespace.create_unique_name(name)
  714. node = Input(
  715. type=TensorNode, name=name, qualname="%s.[%s]" % (self._qualname, name)
  716. ).outputs[0]
  717. self._namespace.associate_name_with_obj(node.name, node)
  718. node.shape = shape
  719. node.dtype = dtype
  720. return node
  721. org_argdef = list(moudle.argdef_graph_map.keys())[0]
  722. args, kwargs = org_argdef.unflatten(self._inputs)
  723. formal_inp_node = create_node(name)
  724. inputs, tree_def = tree_flatten(
  725. ((*args, formal_inp_node), kwargs),
  726. is_const_leaf=lambda x: not isinstance(x, (TensorNode, ModuleNode)),
  727. )
  728. self._inputs[:] = inputs[:]
  729. moudle.argdef_graph_map[tree_def] = moudle.argdef_graph_map.pop(org_argdef)
  730. moudle.argdef_outdef_map[tree_def] = moudle.argdef_outdef_map.pop(org_argdef)
  731. return formal_inp_node
  732. def reset_outputs(self, outputs):
  733. r"""Reset the output Nodes of the graph.
  734. .. note::
  735. This method only supports resetting the output of graphs
  736. that do not have a parent graph.
  737. Args:
  738. outputs: an object which inner element is Node. Support tuple, list
  739. dict, etc.
  740. For example, the following code
  741. .. code-block::
  742. import megengine.functional as F
  743. import megengine.module as M
  744. import megengine.traced_module as tm
  745. class MyModule(M.Module):
  746. def forward(self, x):
  747. x = x + 1
  748. return x
  749. net = MyModule()
  750. inp = F.zeros(shape = (1, ))
  751. traced_module = tm.trace_module(net, inp)
  752. graph = traced_module.graph
  753. inp_node = graph.inputs[1]
  754. out_node = graph.outputs[0]
  755. graph.reset_outputs((out_node, {"input": inp_node}))
  756. out = traced_module(inp)
  757. Will produce the following ``InternalGraph`` and ``out``::
  758. print(graph)
  759. print(out)
  760. .. code-block:: text
  761. MyModule.Graph (self, x) {
  762. %2: add_out = x.__add__(1, )
  763. return add_out, x
  764. }
  765. (Tensor([1.], device=xpux:0), {'input': Tensor([0.], device=xpux:0)})
  766. """
  767. outputs, out_def = tree_flatten(
  768. outputs, is_leaf=lambda x: isinstance(x, TensorNode),
  769. )
  770. forma_mnode = self.inputs[0]
  771. moudle = forma_mnode.owner
  772. assert moudle._is_top, "reset_outputs only supports top graph"
  773. tree_def = list(moudle.argdef_graph_map.keys())[0]
  774. self._outputs[:] = outputs
  775. moudle.argdef_outdef_map[tree_def] = out_def
  776. def add_output_node(self, node: TensorNode):
  777. r"""Add an output node to the Graph.
  778. The Graph output will become a ``tuple`` after calling ``add_output_node``.
  779. The first element of the ``tuple`` is the original output, and the second
  780. is the ``node``.
  781. For example, the following code
  782. .. code-block::
  783. import megengine.functional as F
  784. import megengine.module as M
  785. import megengine.traced_module as tm
  786. class MyModule(M.Module):
  787. def forward(self, x):
  788. x = x + 1
  789. return x
  790. net = MyModule()
  791. inp = F.zeros(shape = (1, ))
  792. traced_module = tm.trace_module(net, inp)
  793. graph = traced_module.graph
  794. inp_node = graph.inputs[1]
  795. out_node = graph.outputs[0]
  796. graph.add_output_node(inp_node)
  797. graph.add_output_node(out_node)
  798. out = traced_module(inp)
  799. Will produce the following ``InternalGraph`` and ``out``::
  800. print(graph)
  801. print(out)
  802. .. code-block:: text
  803. MyModule.Graph (self, x) {
  804. %2: add_out = x.__add__(1, )
  805. return add_out, x, add_out
  806. }
  807. ((Tensor([1.], device=xpux:0), Tensor([0.], device=xpux:0)), Tensor([1.], device=xpux:0))
  808. """
  809. forma_mnode = self.inputs[0]
  810. moudle = forma_mnode.owner
  811. assert moudle._is_top, "add_output_node only supports top graph"
  812. tree_def = list(moudle.argdef_graph_map.keys())[0]
  813. org_out_def = moudle.argdef_outdef_map[tree_def]
  814. org_outs = org_out_def.unflatten(self._outputs)
  815. outputs, out_def = tree_flatten(
  816. (org_outs, node), is_leaf=lambda x: isinstance(x, TensorNode),
  817. )
  818. self._outputs[:] = outputs
  819. moudle.argdef_outdef_map[tree_def] = out_def
  820. def insert_exprs(self, expr: Optional[Expr] = None):
  821. r"""Initialize the trace mode and insertion position.
  822. When used within a 'with' statement, this will temporary set the trace mode and
  823. then restore normal mode when the with statement exits::
  824. with graph.insert_exprs(e): # set the trace mode
  825. ... # trace function or module
  826. ... # inert exprs into graph and resotre normal mode
  827. Args:
  828. expr: the ``expr`` after which to insert. If None, the insertion position will be
  829. automatically set based on the input node.
  830. Returns:
  831. A resource manager that will initialize trace mode on ``__enter__`` and
  832. restore normal mode on ``__exit__``.
  833. """
  834. if expr is not None:
  835. assert expr.top_graph == self, "Expr to insert after is not in graph."
  836. return _InsertExprs(self, expr)
  837. def replace_node(self, repl_dict: Dict[Node, Node]):
  838. r"""Replace the Nodes in the graph.
  839. Args:
  840. repl_dict: the map {old_Node: new_Node} that specifies how to replace the Nodes.
  841. """
  842. while repl_dict:
  843. node, repl_node = repl_dict.popitem()
  844. assert type(node) == type(
  845. repl_node
  846. ), "The type of {}({}) and {}({}) are not the same".format(
  847. node, type(node).__name__, repl_node, type(repl_node).__name__
  848. )
  849. # check graph inputs and outputs
  850. for i, n in enumerate(self.outputs):
  851. if n is node:
  852. self.outputs[i] = repl_node
  853. # update users of node and repl_node
  854. # update inputs of expr in node.users
  855. graph = repl_node.top_graph
  856. assert graph is not None
  857. assert graph is self
  858. index = -1
  859. if not isinstance(repl_node.expr, Input):
  860. index = graph._exprs.index(repl_node.expr)
  861. dep_exprs = self.get_dep_exprs(repl_node)
  862. i = 0
  863. while i < len(node.users):
  864. n = node.users[i]
  865. if n in graph._exprs and index >= graph._exprs.index(n):
  866. i += 1
  867. continue
  868. if n in dep_exprs:
  869. logger.info("Find a loop: ignore this replacement once")
  870. logger.info("node: %s" % node.__repr__())
  871. logger.info("expr: %s" % n.__repr__())
  872. i += 1
  873. continue
  874. repl_node.users.append(n)
  875. node.users.pop(i)
  876. idx = n.inputs.index(node)
  877. n.inputs[idx] = repl_node
  878. def _merge_getattr_expr(self):
  879. getattr_nodes_map = dict() # Dcit[(Node, str), Node]
  880. node_to_attrname = dict() # Dict[Node, (Node, Str)]
  881. for expr in filter(lambda x: isinstance(x, GetAttr), self._exprs):
  882. base_node, attr_name = expr.inputs[0], expr.name
  883. if expr.inputs[0] in node_to_attrname:
  884. base_node, base_name = node_to_attrname[expr.inputs[0]]
  885. attr_name = "{}.{}".format(base_name, expr.name)
  886. if get_suffix_name(self.qualname, expr.outputs[0].qualname) != attr_name:
  887. expected_qualname = base_node.qualname + "." + attr_name
  888. logger.warning(
  889. "{}.qualname expects {}, got {} actually. You can re-trace this "
  890. "TracedModel to make the name correct.".format(
  891. expr.outputs[0], expected_qualname, expr.outputs[0].qualname
  892. )
  893. )
  894. expr.outputs[0]._qualname = expected_qualname
  895. key = (base_node, attr_name)
  896. node_to_attrname[expr.outputs[0]] = key
  897. if key in getattr_nodes_map:
  898. existed_node = getattr_nodes_map[key]
  899. repl_node = expr.outputs[0]
  900. for expr in repl_node.users:
  901. existed_node.users.append(expr)
  902. idx = expr.inputs.index(repl_node)
  903. expr.inputs[idx] = existed_node
  904. repl_node.users = []
  905. else:
  906. if attr_name != expr.name:
  907. expr.name = attr_name
  908. expr.inputs[0].users.remove(expr)
  909. self.inputs[0].users.append(expr)
  910. expr.inputs[0] = self.inputs[0]
  911. getattr_nodes_map[key] = expr.outputs[0]
  912. def compile(self):
  913. r"""Delete unused expr."""
  914. self._merge_getattr_expr()
  915. dep_exprs = self.get_dep_exprs(self.outputs)
  916. i = 0
  917. while i < len(self._exprs):
  918. expr = self._exprs[i]
  919. if expr in dep_exprs or expr._disable_remove:
  920. i += 1
  921. continue
  922. for n in expr.inputs:
  923. n.users.remove(expr)
  924. self._exprs.remove(expr)
  925. for n in expr.outputs:
  926. self._namespace.unassociate_name_with_obj(n)
  927. def _reset_ids(self):
  928. for total_expr_id, expr in enumerate(self.exprs()):
  929. expr._id = total_expr_id
  930. for total_node_id, node in enumerate(self.nodes()):
  931. node._id = total_node_id
  932. self._total_ids = (total_node_id + 1, total_expr_id + 1)
  933. def _re_associate_name(self):
  934. self._namespace.used_names.clear()
  935. for node in self.nodes(False):
  936. node._name = self._namespace.create_unique_name(node.name, node)
  937. def interpret(self, *inputs):
  938. node2value = {}
  939. end_nodes_set = set(self._end_point)
  940. endnode2value = {}
  941. def get_all_endnode_val(n, v):
  942. if n in end_nodes_set:
  943. endnode2value[n] = v
  944. end_nodes_set.remove(n)
  945. return not end_nodes_set
  946. return False
  947. ref_count = lambda n: len(n.users) + (1 if n in self._outputs else 0)
  948. for n, v in zip(self._inputs, inputs):
  949. if ref_count(n) > 0:
  950. node2value[n] = [v, ref_count(n)]
  951. if n in self._watch_point:
  952. self._rst[n].append(v)
  953. if n in self._end_point and get_all_endnode_val(n, v):
  954. return list(endnode2value[i] for i in self._end_point)
  955. for expr in self._exprs:
  956. values = expr.interpret(*list(node2value[i][0] for i in expr.inputs))
  957. for n in expr.inputs:
  958. node2value[n][1] -= 1
  959. if node2value[n][1] == 0:
  960. node2value.pop(n)
  961. if values is not None:
  962. assert len(values) == len(expr.outputs)
  963. for n, v in zip(expr.outputs, values):
  964. if ref_count(n) > 0:
  965. node2value[n] = [v, ref_count(n)]
  966. if n in self._watch_point:
  967. self._rst[n] = v
  968. if self._end_point and get_all_endnode_val(n, v):
  969. return list(endnode2value[i] for i in self._end_point)
  970. return list(node2value[i][0] for i in self._outputs)
  971. def eval(self, *inputs: Tuple[Tensor]):
  972. r"""Call this method to execute the graph.
  973. Args:
  974. inputs: the tensors corresponding to the ``graph.inputs[1:]``.
  975. """
  976. assert len(inputs) == len(self._inputs) - 1
  977. inp = [self._inputs[0].owner] + list(inputs)
  978. return self.interpret(*inp)
  979. def __repr__(self):
  980. return self.__format__()
  981. def __format__(self, format_spec: str = "") -> str:
  982. saved_format_spec = Node._set_format_spec(format_spec)
  983. name = ""
  984. if self._name:
  985. name = "%s.Graph" % self._name
  986. res = "{} ({}) {{\n\t{}\n\treturn {}\n}}".format(
  987. name,
  988. ", ".join(str(i) for i in self._inputs),
  989. "\n\t".join("{}".format(str(i)) for i in self._exprs),
  990. ", ".join(str(i) for i in self._outputs),
  991. )
  992. Node._set_format_spec(saved_format_spec)
  993. return res
  994. def __getstate__(self):
  995. state = {
  996. "_exprs": self._exprs,
  997. "_inputs": self._inputs,
  998. "_outputs": self._outputs,
  999. "_watch_point": [],
  1000. "_end_point": [],
  1001. "_namespace": self._namespace,
  1002. "_rst": collections.defaultdict(list),
  1003. "_name": self._name,
  1004. "_qualname": self._qualname,
  1005. }
  1006. if self._total_ids:
  1007. state["_total_ids"] = self._total_ids
  1008. _check_obj_attr(state)
  1009. return state
  1010. def __setstate__(self, state):
  1011. old_version = False
  1012. if "_module_name" in state:
  1013. old_version = True
  1014. state["_qualname"] = state.pop("_module_name")
  1015. prefix_name = state.pop("_prefix_name")
  1016. if prefix_name:
  1017. state["_name"] = "{}_{}".format(prefix_name, state["_name"])
  1018. self.__dict__.update(state)
  1019. if old_version:
  1020. self.inputs[0]._qualname = self._qualname
  1021. for e in self.exprs(False):
  1022. if isinstance(e, GetAttr):
  1023. e.outputs[0]._qualname = "{}.{}".format(
  1024. e.inputs[0]._qualname, e.name
  1025. )
  1026. for n in self.nodes(False):
  1027. if isinstance(n.expr, CallMethod) and isinstance(
  1028. n.expr.inputs[0], ModuleNode
  1029. ):
  1030. n._qualname = n.expr.inputs[0]._qualname + ".[out]"
  1031. continue
  1032. if (
  1033. not isinstance(n.expr, GetAttr)
  1034. and isinstance(n, TensorNode)
  1035. and n._qualname
  1036. ):
  1037. n._qualname = "{}.{}".format(self._qualname, n._qualname)
  1038. self._namespace = NameSpace(self._name, self._qualname)
  1039. self._re_associate_name()
  1040. def __copy__(self):
  1041. cls = self.__class__
  1042. result = cls.__new__(cls)
  1043. result.__dict__.update(self.__dict__)
  1044. return result
  1045. def __deepcopy__(self, memo):
  1046. if id(self) in memo:
  1047. return memo[id(self)]
  1048. cls = self.__class__
  1049. result = cls.__new__(cls)
  1050. state = {}
  1051. memo[id(self)] = result
  1052. for k, v in self.__dict__.items():
  1053. if not isinstance(v, weakref.ReferenceType):
  1054. state[k] = copy.deepcopy(v, memo)
  1055. result.__dict__.update(state)
  1056. return result
  1057. def _get_meth_name(obj, func):
  1058. tp = obj if isinstance(obj, type) else type(obj)
  1059. for cls in tp.mro():
  1060. for k, v in cls.__dict__.items():
  1061. if v == func:
  1062. return k
  1063. return None
  1064. def _wrapped_function(orig_func):
  1065. @functools.wraps(orig_func)
  1066. def wrapped_fn(*args, **kwargs):
  1067. method_func = kwargs.pop("method_func", wrapped_fn)
  1068. if is_tracing_module():
  1069. unset_module_tracing()
  1070. inputs, tree_def = tree_flatten((args, kwargs))
  1071. for i in inputs:
  1072. if not NodeMixin.get(i, None):
  1073. if isinstance(i, (RawTensor, NodeMixin)):
  1074. NodeMixin.wrap_safe(i, Constant.make(i))
  1075. args, kwargs = _convert_kwargs_to_args(orig_func, args, kwargs)
  1076. meth_name = _get_meth_name(args[0], method_func)
  1077. arg_type = args[0] if isinstance(args[0], type) else type(args[0])
  1078. if meth_name and arg_type and issubclass(arg_type, RawTensor):
  1079. inputs, tree_def = tree_flatten((args, kwargs))
  1080. self = inputs[0]
  1081. if meth_name == "__new__":
  1082. if all([not isinstance(i, RawTensor) for i in inputs]):
  1083. # only trace Tensor.__new__() when there are tensors in args
  1084. set_module_tracing()
  1085. return orig_func(*args, **kwargs)
  1086. if isinstance(args[1], RawTensor):
  1087. node = NodeMixin.get(inputs[1])
  1088. inputs[1] = copy.copy(inputs[1])
  1089. # copy inputs[1] to avoid tensor and Tensor(tensor) share same m_tensor,
  1090. # which will cause they have same _NodeMixin__node in tracing.
  1091. NodeMixin.wrap_safe(inputs[1], node)
  1092. args, kwargs = tree_def.unflatten(inputs)
  1093. call_node = CallMethod.make(self, meth_name)
  1094. else:
  1095. call_node = CallMethod.make(NodeMixin.get(self), meth_name)
  1096. call_node.add_inputs(inputs[1:])
  1097. else:
  1098. inputs, tree_def = tree_flatten((args, kwargs))
  1099. call_node = CallFunction.make(orig_func)
  1100. call_node.add_inputs(inputs)
  1101. call_node.arg_def = tree_def
  1102. rst = orig_func(*args, **kwargs)
  1103. if meth_name == "__setitem__":
  1104. rst = self
  1105. if rst is not None:
  1106. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  1107. call_node.out_def = out_def
  1108. else:
  1109. outputs = None
  1110. call_node.add_outputs(outputs)
  1111. set_module_tracing()
  1112. return rst
  1113. return orig_func(*args, **kwargs)
  1114. return wrapped_fn
  1115. class TracedModuleBuilder(NodeMixin):
  1116. _mod = None # type: Module
  1117. _body = None # type: InternalGraph
  1118. _is_builtin = None # type: bool
  1119. _argdef_graph_map = None # type: Dict[Treedef, "InternalGraph"]
  1120. _argdef_outdef_map = None # type: Dict[Treedef, Treedef]
  1121. nodes = None
  1122. __builder_attributes__ = [
  1123. "_mod",
  1124. "_body",
  1125. "_NodeMixin__node",
  1126. "_is_builtin",
  1127. "build",
  1128. "_record_wrapped_nodes",
  1129. "_argdef_graph_map",
  1130. "_argdef_outdef_map",
  1131. "_check_qat_module",
  1132. "nodes",
  1133. "__class__",
  1134. "__dict__",
  1135. "_is_top",
  1136. ]
  1137. def __init__(self, mod, is_top_module=False):
  1138. super(TracedModuleBuilder, self).__init__()
  1139. assert isinstance(mod, Module)
  1140. self._mod = mod
  1141. self._body = None
  1142. self._is_top = is_top_module
  1143. self._is_builtin = (
  1144. True
  1145. if isinstance(mod, (Observer, _FakeQuantize))
  1146. else module_tracer.is_builtin(mod)
  1147. )
  1148. if isinstance(self._mod, QATModule):
  1149. unset_module_tracing()
  1150. self._check_qat_module(self._mod)
  1151. set_module_tracing()
  1152. self._argdef_graph_map = {}
  1153. self._argdef_outdef_map = {}
  1154. self.nodes = set()
  1155. # The builder will be passed to self._mod.forward as 'self' argument. If the 'forward' uses super().xxx to call method of its base classes, the trace procedure will throw exceprion, because the builder doesn't inherit from self._mod.__bases__.
  1156. # modify self.__class__ and let the builder inherit from TracedModuleBuilder and mod.__class__.
  1157. self.__class__ = type(
  1158. "TracedModuleBuilder",
  1159. (TracedModuleBuilder, mod.__class__),
  1160. dict(TracedModuleBuilder.__dict__),
  1161. )
  1162. def _check_qat_module(self, qat_module):
  1163. def isbuiltin(m):
  1164. return m is None or module_tracer.is_builtin(m)
  1165. if qat_module.with_act:
  1166. act_observer = qat_module.act_observer
  1167. act_fakequant = qat_module.act_fake_quant
  1168. if not isbuiltin(act_observer) or not isbuiltin(act_fakequant):
  1169. qparams = (
  1170. act_observer.get_qparams()
  1171. if hasattr(act_observer, "get_qparams")
  1172. else act_fakequant.get_qparams()
  1173. )
  1174. dtype = (
  1175. act_observer.dtype
  1176. if hasattr(act_observer, "dtype")
  1177. else act_fakequant.dtype
  1178. )
  1179. qat_module.act_observer = None
  1180. qat_module.act_fake_quant = TM_FakeQuant(dtype)
  1181. qat_module.act_fake_quant.set_qparams(qparams)
  1182. if qat_module.with_weight:
  1183. weight_observer = qat_module.weight_observer
  1184. weight_fakequant = qat_module.weight_fake_quant
  1185. if not isbuiltin(weight_observer) or not isbuiltin(weight_fakequant):
  1186. qparams = (
  1187. weight_observer.get_qparams()
  1188. if hasattr(weight_observer, "get_qparams")
  1189. else weight_fakequant.get_qparams()
  1190. )
  1191. dtype = (
  1192. weight_observer.dtype
  1193. if hasattr(weight_observer, "dtype")
  1194. else weight_fakequant.dtype
  1195. )
  1196. qat_module.weight_observer = None
  1197. qat_module.weight_fake_quant = TM_FakeQuant(dtype)
  1198. qat_module.weight_fake_quant.set_qparams(qparams)
  1199. def build(self):
  1200. if self._is_builtin:
  1201. assert module_tracer.is_builtin(self._mod)
  1202. mod_type = type(self._mod)
  1203. for node in self.nodes:
  1204. node.module_type = mod_type
  1205. return self._mod
  1206. elif isinstance(self._mod, TracedModule) and _graph_surgery_mode():
  1207. return self._mod
  1208. else:
  1209. is_qat = isinstance(self._mod, QATModule) or (
  1210. isinstance(self._mod, TracedModule) and self._mod.is_qat
  1211. )
  1212. traced_module = TracedModule(
  1213. self._is_top, self._argdef_graph_map, self._argdef_outdef_map, is_qat
  1214. )
  1215. for _, g in self._argdef_graph_map.items():
  1216. g.compile()
  1217. if self._is_top:
  1218. g._total_ids = (Node._get_next_id(), Expr._get_next_id())
  1219. for k, v in self.__dict__.items():
  1220. if k not in TracedModuleBuilder.__builder_attributes__:
  1221. if isinstance(v, TracedModuleBuilder):
  1222. v = v.build()
  1223. setattr(traced_module, k, v)
  1224. elif isinstance(v, RawTensor):
  1225. setattr(traced_module, k, v)
  1226. if isinstance(self._mod, QATModule):
  1227. unset_module_tracing()
  1228. traced_module.with_act = self._mod.with_act
  1229. traced_module.with_weight = self._mod.with_weight
  1230. if not hasattr(traced_module, "act_fake_quant"):
  1231. traced_module.act_fake_quant = None
  1232. if not hasattr(traced_module, "act_observer"):
  1233. traced_module.act_observer = None
  1234. if not hasattr(traced_module, "weight_fake_quant"):
  1235. traced_module.weight_fake_quant = None
  1236. if not hasattr(traced_module, "weight_observer"):
  1237. traced_module.weight_observer = None
  1238. set_module_tracing()
  1239. if self._is_top:
  1240. traced_module._update_ref()
  1241. return traced_module
  1242. def _record_wrapped_nodes(self, node):
  1243. self.nodes.add(node)
  1244. def __call__(self, *args, **kwargs):
  1245. assert isinstance(self._mod, Module)
  1246. is_graph_surgery_mode = _graph_surgery_mode()
  1247. if isinstance(self._mod, TracedModule) and is_graph_surgery_mode:
  1248. _set_graph_surgery_mode(False)
  1249. # prepare args and kwargs for inner graph
  1250. if "method_func" in kwargs:
  1251. kwargs.pop("method_func")
  1252. args, kwargs = _convert_kwargs_to_args(self._mod.forward, args, kwargs, True)
  1253. def mark_constant(x):
  1254. node = NodeMixin.get(x, None)
  1255. if node is None: # capture as constant
  1256. NodeMixin.wrap(x, lambda: Constant.make(x))
  1257. inputs, tree_def = tree_flatten(((self, *args), kwargs))
  1258. for i in inputs:
  1259. mark_constant(i)
  1260. callnode = CallMethod.make(NodeMixin.get(self))
  1261. callnode.add_inputs(inputs[1:])
  1262. callnode.arg_def = tree_def
  1263. if self._is_builtin or tree_def in self._argdef_graph_map:
  1264. unset_module_tracing()
  1265. rst = self._mod(*args, **kwargs)
  1266. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  1267. set_module_tracing()
  1268. if self._is_builtin:
  1269. self._body = None
  1270. elif tree_def in self._argdef_graph_map:
  1271. self._body = self._argdef_graph_map[tree_def]
  1272. else:
  1273. orig_self = NodeMixin.get(self)
  1274. parent_graph = active_module_tracer().current_scope()
  1275. module_qualname = orig_self._qualname
  1276. self._body = InternalGraph(
  1277. name=parent_graph._namespace.create_unique_name(module_qualname),
  1278. qualname=module_qualname,
  1279. )
  1280. parent_graph._namespace.associate_name_with_obj(self._body.name, self._body)
  1281. active_module_tracer().push_scope(self._body)
  1282. # rebind self to new input node
  1283. NodeMixin.wrap_safe(
  1284. self,
  1285. Input.make(
  1286. name="self",
  1287. qualname=module_qualname,
  1288. type=NodeMixin.get_wrapped_type(self),
  1289. ),
  1290. )
  1291. origin_inp_node = [NodeMixin.get(i, None) for i in inputs[1:]]
  1292. # prepare args and kwargs for inner graph
  1293. index_args, index_kwargs = tree_def.unflatten(
  1294. [
  1295. ArgsIndex(0),
  1296. *list(ArgsIndex(i + 1) for i in range(len(origin_inp_node))),
  1297. ]
  1298. )
  1299. key2idx = getcallargs(type(self._mod).forward, *index_args, **index_kwargs)
  1300. idx2key = {}
  1301. for k, v in key2idx.items():
  1302. if isinstance(v, ArgsIndex):
  1303. idx2key[v.index] = k
  1304. else:
  1305. flatten_argidx, _ = tree_flatten(v)
  1306. for _i, v in enumerate(flatten_argidx):
  1307. if isinstance(v, ArgsIndex):
  1308. idx2key[v.index] = k + "_%d" % _i
  1309. def wrap(x, name):
  1310. if isinstance(x, (RawTensor, NodeMixin)):
  1311. NodeMixin.wrap(
  1312. x,
  1313. lambda: Input.make(
  1314. type=NodeMixin.get_wrapped_type(x),
  1315. name=name,
  1316. qualname="%s.[%s]" % (module_qualname, name),
  1317. ),
  1318. )
  1319. return x
  1320. args = [self]
  1321. orig_traced_inputs = (
  1322. None
  1323. if not isinstance(self._mod, TracedModule)
  1324. else self._mod.argdef_graph_map[tree_def].inputs
  1325. )
  1326. ind = 1
  1327. for v in inputs[1:]:
  1328. if isinstance(v, (RawTensor, NodeMixin)):
  1329. args_name = (
  1330. orig_traced_inputs[ind]._name
  1331. if orig_traced_inputs
  1332. else idx2key[ind]
  1333. )
  1334. ind += 1
  1335. args.append(wrap(v, args_name))
  1336. else:
  1337. args.append(v)
  1338. args, kwargs = tree_def.unflatten(args)
  1339. active_module_tracer().patcher.auto_patch(
  1340. getattr(getattr(self._mod, "forward", self._mod), "__globals__", {})
  1341. )
  1342. rst = type(self._mod).forward(*args, **kwargs)
  1343. if _graph_surgery_mode():
  1344. rst = _node_to_tensor(rst)[0][0]
  1345. outputs, out_def = tree_flatten(rst, is_leaf=_is_leaf)
  1346. for i in (
  1347. outputs if isinstance(outputs, collections.abc.Sequence) else (outputs,)
  1348. ):
  1349. mark_constant(i)
  1350. active_module_tracer().current_scope()._add_output(NodeMixin.get(i))
  1351. NodeMixin.wrap_safe(self, orig_self)
  1352. for arg, node in zip(inputs[1:], origin_inp_node):
  1353. if node:
  1354. NodeMixin.wrap_safe(arg, node)
  1355. active_module_tracer().pop_scope()
  1356. # rebind output to outer graph
  1357. callnode.out_def = out_def
  1358. callnode.add_outputs(outputs)
  1359. self._argdef_graph_map[callnode.arg_def] = self._body
  1360. self._argdef_outdef_map[callnode.arg_def] = out_def
  1361. _set_graph_surgery_mode(is_graph_surgery_mode)
  1362. return rst
  1363. def __setattr__(self, name, value):
  1364. object.__setattr__(self, name, value)
  1365. def __repr__(self):
  1366. return repr(self._mod)
  1367. def __getattr__(self, name):
  1368. if name not in self._mod.__dict__:
  1369. attr = getattr(type(self._mod), name).__get__(self, type(self))
  1370. else:
  1371. attr = getattr(self._mod, name)
  1372. if (
  1373. isinstance(attr, FunctionType)
  1374. and id(attr) in active_module_tracer().patcher.patched_fn_ids
  1375. ):
  1376. return active_module_tracer().patcher.wrap_fn(attr)
  1377. if isinstance(attr, (List, Dict)):
  1378. flag = _set_graph_surgery_mode(False)
  1379. unset_module_tracing()
  1380. has_module, m_container = replace_container_with_module_container(attr)
  1381. if m_container:
  1382. attr = m_container
  1383. if has_module and not m_container:
  1384. raise ValueError(
  1385. "Can not trace the module that uses the same container to store"
  1386. " Module and Non-Module objects."
  1387. )
  1388. set_module_tracing()
  1389. _set_graph_surgery_mode(flag)
  1390. if isinstance(attr, Module):
  1391. attr = TracedModuleBuilder(attr)
  1392. if isinstance(attr, (Module, RawTensor)):
  1393. setattr(self, name, attr)
  1394. NodeMixin.wrap(
  1395. attr,
  1396. lambda: GetAttr.make(
  1397. NodeMixin.get(self),
  1398. type=NodeMixin.get_wrapped_type(attr),
  1399. attr_name=name,
  1400. name="",
  1401. ),
  1402. )
  1403. return attr
  1404. def __getattribute__(self, name):
  1405. if name in TracedModuleBuilder.__builder_attributes__:
  1406. return object.__getattribute__(self, name)
  1407. else:
  1408. wrapped = object.__getattribute__(self, name)
  1409. class_members = dict(inspect.getmembers(self.__class__))
  1410. if name in self._mod.__dict__:
  1411. mod_attr = getattr(self._mod, name)
  1412. if name in class_members:
  1413. if (
  1414. not isinstance(wrapped, TracedModuleBuilder)
  1415. and wrapped is not mod_attr
  1416. ):
  1417. wrapped = self.__getattr__(name)
  1418. if isinstance(wrapped, TracedModuleBuilder):
  1419. if not isinstance(mod_attr, (List, Dict, QATModule)):
  1420. assert mod_attr is wrapped._mod
  1421. else:
  1422. assert mod_attr is wrapped
  1423. if isinstance(wrapped, (NodeMixin, RawTensor)):
  1424. NodeMixin.wrap(
  1425. wrapped,
  1426. lambda: GetAttr.make(
  1427. NodeMixin.get(self),
  1428. type=NodeMixin.get_wrapped_type(wrapped),
  1429. attr_name=name,
  1430. name="",
  1431. ),
  1432. )
  1433. return wrapped
  1434. class _expr_iter:
  1435. def __init__(self, graph: InternalGraph, recursive: bool = True):
  1436. self.graph = graph
  1437. self.recursive = recursive
  1438. self._visited_graph = set()
  1439. def __iter__(self):
  1440. yield from self._gen_expr(self.graph)
  1441. def _gen_expr(self, graph: InternalGraph):
  1442. visit_inp = set()
  1443. for inp_node in graph.inputs:
  1444. if inp_node not in visit_inp:
  1445. yield inp_node.expr
  1446. visit_inp.add(inp_node)
  1447. for expr in graph._exprs:
  1448. yield expr
  1449. if (
  1450. self.recursive
  1451. and hasattr(expr, "graph")
  1452. and expr.graph is not None
  1453. and id(expr.graph) not in self._visited_graph
  1454. ):
  1455. self._visited_graph.add(id(expr.graph))
  1456. yield from self._gen_expr(expr.graph)
  1457. class _node_iter:
  1458. def __init__(self, graph: InternalGraph, recursive: bool = True) -> None:
  1459. nodes = []
  1460. node_ids = set()
  1461. for expr in graph.exprs(recursive):
  1462. for n in expr.outputs:
  1463. assert id(n) not in node_ids
  1464. nodes.append(n)
  1465. node_ids.add(id(n))
  1466. self.nodes = nodes
  1467. def __iter__(self):
  1468. for node in self.nodes:
  1469. yield node
  1470. class BaseFilter:
  1471. r"""``BaseFilter`` exposes some methods for converting ``_node_iter/_expr_iter`` to ``list``, ``dict``, etc."""
  1472. def __init__(self, iter: Iterable):
  1473. self._iter = iter
  1474. def __iter__(self):
  1475. return iter(self._iter)
  1476. def as_list(self):
  1477. r"""Consume this iterator and return its content as a list.
  1478. Returns:
  1479. A list of ``Node`` or ``Expr``.
  1480. """
  1481. return list(self)
  1482. def as_dict(self):
  1483. r"""Construct an ordered dict to map from ``id`` to objects in this iterator.
  1484. Returns:
  1485. An :class:`OrderedDict`.
  1486. """
  1487. return collections.OrderedDict((i._id, i) for i in self)
  1488. def as_unique(self):
  1489. """Assert that this iterator yields only one ``Node`` or ``Expr`` and return it.
  1490. Rerurns:
  1491. A ``Node`` or ``Expr``.
  1492. """
  1493. rst = self.as_list()
  1494. assert len(rst) == 1, "{} elements found".format(len(rst))
  1495. (elem,) = self
  1496. return elem
  1497. def as_count(self):
  1498. r"""Consume this iterator and get the number of elements."""
  1499. return sum(1 for _ in self)
  1500. class ExprFilter(BaseFilter):
  1501. """Filter on Expr iterator.
  1502. This class is an iterator of :class:`.Expr` objects and multiple
  1503. filtering conditions and mappers can be chained.
  1504. """
  1505. def call_function(self, func):
  1506. r"""Filter by specific ``CallFunction.func``.
  1507. See :meth:`~.InternalGraph.get_function_by_type` for details.
  1508. """
  1509. return ExprFilterCallFunction(self, func)
  1510. def call_method(self, method):
  1511. r"""Filter by specific ``CallMethod.method``.
  1512. See :meth:`~.InternalGraph.get_function_by_type` for details.
  1513. """
  1514. return ExprFilterCallMethod(self, method)
  1515. def expr_id(self, expr_id: List[int]):
  1516. r"""Filter Exprs by their ``id``.
  1517. See :meth:`~.InternalGraph.get_function_by_type` for details.
  1518. """
  1519. return ExprFilterExprId(self, expr_id)
  1520. class NodeFilter(BaseFilter):
  1521. """Filter on Node iterator.
  1522. This class is an iterator of :class:`~.traced_module.Node` objects and multiple
  1523. filtering conditions and mappers can be chained.
  1524. """
  1525. def type(self, owner_type):
  1526. r"""Filter by specific Module type.
  1527. See :meth:`~.InternalGraph.get_module_by_type` for details.
  1528. """
  1529. return NodeFilterType(self, owner_type)
  1530. def node_id(self, node_id: List[int]):
  1531. r"""Filter Nodes by their ``id``.
  1532. See :meth:`~.InternalGraph.get_node_by_id` for details.
  1533. """
  1534. return NodeFilterNodeId(self, node_id)
  1535. def name(self, name: str, ignorecase: bool = True):
  1536. r"""Filter Nodes by their full name.
  1537. See :meth:`~.InternalGraph.get_node_by_name` for details.
  1538. """
  1539. return NodeFilterName(self, name, ignorecase)
  1540. class NodeFilterType(NodeFilter):
  1541. """See :meth:`~.InternalGraph.get_module_by_type`"""
  1542. def __init__(self, expr_iter, owner_type):
  1543. super().__init__(expr_iter)
  1544. self.owner_type = owner_type
  1545. def __iter__(self):
  1546. for node in self._iter:
  1547. if not isinstance(node, ModuleNode):
  1548. continue
  1549. if not hasattr(node, "owner"):
  1550. continue
  1551. if isinstance(node.owner, self.owner_type):
  1552. yield node
  1553. class NodeFilterNodeId(NodeFilter):
  1554. """See :meth:`~.InternalGraph.get_node_by_id`"""
  1555. def __init__(self, expr_iter, node_id: List[int]):
  1556. super().__init__(expr_iter)
  1557. if not isinstance(node_id, Sequence):
  1558. node_id = [node_id]
  1559. self.node_id = node_id
  1560. def __iter__(self):
  1561. for node in self._iter:
  1562. if node._id in self.node_id:
  1563. yield node
  1564. class NodeFilterName(NodeFilter):
  1565. """See :meth:`~.InternalGraph.get_node_by_name`"""
  1566. _re = None
  1567. def __init__(self, node_iter, pattern, ignorecase):
  1568. super().__init__(node_iter)
  1569. self.pattern = pattern
  1570. self._re = self.make_re(pattern, ignorecase)
  1571. @classmethod
  1572. def make_re(cls, pattern, ignorecase=True):
  1573. assert isinstance(pattern, str), "bad pattern: {!r}".format(pattern)
  1574. assert isinstance(ignorecase, bool)
  1575. flags = 0
  1576. if ignorecase:
  1577. flags |= re.IGNORECASE
  1578. return re.compile(fnmatch.translate(pattern), flags=flags)
  1579. def __iter__(self):
  1580. for i in self._iter:
  1581. graph = i.top_graph
  1582. name = "{}_{}".format(graph._name, i._name)
  1583. if self.pattern == name or self._re.match(name):
  1584. yield i
  1585. class ExprFilterCallFunction(ExprFilter):
  1586. """See :meth:`~.InternalGraph.get_function_by_type`"""
  1587. def __init__(self, expr_iter, func: Callable = None):
  1588. super().__init__(expr_iter)
  1589. self.func = func
  1590. def __iter__(self):
  1591. for expr in self._iter:
  1592. if not isinstance(expr, CallFunction):
  1593. continue
  1594. if self.func is None or expr.func == self.func:
  1595. yield expr
  1596. class ExprFilterCallMethod(ExprFilter):
  1597. """See :meth:`~.InternalGraph.get_method_by_type`"""
  1598. def __init__(self, expr_iter, method: str = None):
  1599. super().__init__(expr_iter)
  1600. self.method = method
  1601. def __iter__(self):
  1602. for expr in self._iter:
  1603. if not isinstance(expr, CallMethod):
  1604. continue
  1605. if self.method is None or expr.method == self.method:
  1606. yield expr
  1607. class ExprFilterExprId(ExprFilter):
  1608. """See :meth:`~.InternalGraph.get_expr_by_id`"""
  1609. def __init__(self, expr_iter, expr_id: List[int]):
  1610. super().__init__(expr_iter)
  1611. if not isinstance(expr_id, Sequence):
  1612. expr_id = [expr_id]
  1613. self.expr_id = expr_id
  1614. def __iter__(self):
  1615. for expr in self._iter:
  1616. if expr._id in self.expr_id:
  1617. yield expr
  1618. class TracedModule(Module):
  1619. r"""``TracedModule`` is the Module created by tracing normal module.
  1620. It owns an argdef to graph(InternalGraph) map. The forward method of ``TracedModule``
  1621. will get a graph from ``argdef_graph_map`` according to the argdef of input ``args/kwargs``
  1622. and interpret it.
  1623. .. note::
  1624. ``TracedModule`` can only be created by :func:`~.trace_module`. See :func:`~.trace_module`
  1625. for more details.
  1626. """
  1627. # m_node = None # type: ModuleNode
  1628. argdef_graph_map = None
  1629. argdef_outdef_map = None
  1630. def __init__(self, is_top, argdef_graph_map, argdef_outdef_map, is_qat=False):
  1631. super(TracedModule, self).__init__()
  1632. self.argdef_graph_map = argdef_graph_map
  1633. self.argdef_outdef_map = argdef_outdef_map
  1634. self._is_top = is_top
  1635. self.watch_points = []
  1636. self.watch_node_value = {}
  1637. self.end_points = []
  1638. self.is_qat = is_qat
  1639. self.argspec = None
  1640. def forward(self, *args, **kwargs):
  1641. if hasattr(self, "argspec") and self.argspec is not None:
  1642. args, kwargs = _convert_kwargs_to_args(self.argspec, args, kwargs, True)
  1643. inputs, treedef = tree_flatten(((self, *args), kwargs))
  1644. assert treedef in self.argdef_graph_map
  1645. inputs = filter(
  1646. lambda i: isinstance(i, (Module, TracedModuleBuilder, RawTensor)), inputs
  1647. ) # allow TracedModuleBuilder for retrace.
  1648. outputs = self.argdef_graph_map[treedef].interpret(*inputs)
  1649. if self.watch_points:
  1650. self.watch_node_value = {}
  1651. for n in self.watch_points:
  1652. self.watch_node_value[n] = n.top_graph._rst.pop(n)
  1653. if self.end_points:
  1654. return outputs
  1655. out_def = self.argdef_outdef_map[treedef]
  1656. outputs = out_def.unflatten(outputs)
  1657. return outputs
  1658. def set_watch_points(self, nodes):
  1659. r"""Initialize the :attr:`~.TracedModule.watch_points`.
  1660. You can call this function to get the ``Tensor/Module`` corresponding to a ``Node`` at runtime.
  1661. Args:
  1662. nodes: a list of ``Node``.
  1663. For example, the following code
  1664. .. code-block::
  1665. import megengine.module as M
  1666. import megengine as mge
  1667. import megengine.traced_module as tm
  1668. class MyModule(M.Module):
  1669. def forward(self, x):
  1670. x = x + 1 + 2
  1671. return x
  1672. net = MyModule()
  1673. inp = mge.Tensor([0])
  1674. traced_module = tm.trace_module(net, inp)
  1675. add_1_node = traced_module.graph.get_node_by_id(2).as_unique()
  1676. traced_module.set_watch_points(add_1_node)
  1677. out = traced_module(inp)
  1678. Will get the following ``watch_node_value``::
  1679. print(traced_module.watch_node_value)
  1680. .. code-block:: text
  1681. {add_out: Tensor([1.], device=xpux:0)}
  1682. """
  1683. if not isinstance(nodes, Sequence):
  1684. nodes = [nodes]
  1685. self.watch_points = nodes
  1686. if nodes:
  1687. nodes[0].top_graph._watch_point = []
  1688. for n in nodes:
  1689. n.top_graph._watch_point.append(n)
  1690. def clear_watch_points(self):
  1691. r"""Clear the :attr:`~.TracedModule.watch_points` and :attr:`~.TracedModule.watch_node_value`.
  1692. """
  1693. for n in self.watch_points:
  1694. n.top_graph._watch_point = []
  1695. self.watch_points = []
  1696. self.watch_node_value = {}
  1697. def set_end_points(self, nodes: Sequence[Node]):
  1698. r"""Initialize the :attr:`~.TracedModule.end_points`.
  1699. When all the ``nodes`` are generated, the Module will stop execution and return directly.
  1700. Args:
  1701. nodes: a list of ``Node``.
  1702. For example, the following code
  1703. .. code-block::
  1704. import megengine.module as M
  1705. import megengine as mge
  1706. import megengine.traced_module as tm
  1707. class MyModule(M.Module):
  1708. def forward(self, x):
  1709. x = x + 1 + 2
  1710. return x
  1711. net = MyModule()
  1712. inp = mge.Tensor([0])
  1713. traced_module = tm.trace_module(net, inp)
  1714. add_1_node = traced_module.graph.get_node_by_id(2).as_unique()
  1715. traced_module.set_end_points(add_1_node)
  1716. out = traced_module(inp)
  1717. Will get the following ``out``::
  1718. print(out)
  1719. .. code-block:: text
  1720. [Tensor([1.], device=xpux:0)]
  1721. """
  1722. if not isinstance(nodes, Sequence):
  1723. nodes = [nodes]
  1724. self.end_points = nodes
  1725. graphs = list(self.argdef_graph_map.values())
  1726. for n in nodes:
  1727. assert n.top_graph in graphs
  1728. n.top_graph._end_point.append(n)
  1729. def clear_end_points(self):
  1730. r"""Clear the :attr:`~.TracedModule.end_points`.
  1731. """
  1732. for n in self.end_points:
  1733. n.top_graph._end_point = []
  1734. self.end_points = []
  1735. @property
  1736. def graph(self) -> InternalGraph:
  1737. """Return the ``InternalGraph`` of this ``TracedModule``.
  1738. """
  1739. assert len(self.argdef_graph_map) == 1
  1740. return list(self.argdef_graph_map.values())[0]
  1741. def _update_ref(self, actual_node_map: Union[Dict] = None, top_graph=None):
  1742. for inp_def, graph in self.argdef_graph_map.items():
  1743. if top_graph is not None:
  1744. graph._top_graph = weakref.ref(top_graph)
  1745. for n in graph._inputs + graph._outputs:
  1746. n.expr._top_graph = weakref.ref(graph)
  1747. n._top_graph = weakref.ref(graph)
  1748. graph._inputs[0]._owner = weakref.ref(self)
  1749. for i, n in enumerate(graph._inputs):
  1750. n.actual_node = []
  1751. if actual_node_map is not None and inp_def in actual_node_map.keys():
  1752. n.actual_node = list(list(zip(*(actual_node_map[inp_def])))[i])
  1753. node2obj = {}
  1754. next_actual_node_map = collections.defaultdict(
  1755. lambda: collections.defaultdict(list)
  1756. )
  1757. node2obj[graph._inputs[0]] = self
  1758. for expr in graph._exprs:
  1759. for n in expr.inputs + expr.outputs:
  1760. n._top_graph = weakref.ref(graph)
  1761. expr._top_graph = weakref.ref(graph)
  1762. if isinstance(expr, GetAttr) and isinstance(
  1763. expr.outputs[0], ModuleNode
  1764. ):
  1765. obj = expr.interpret(node2obj[expr.inputs[0]])[0]
  1766. expr.outputs[0]._owner = weakref.ref(obj)
  1767. node2obj[expr.outputs[0]] = obj
  1768. if isinstance(expr, Constant) and isinstance(
  1769. expr.outputs[0], ModuleNode
  1770. ):
  1771. obj = expr.value
  1772. expr.outputs[0]._owner = weakref.ref(obj)
  1773. node2obj[expr.outputs[0]] = obj
  1774. if (
  1775. isinstance(expr, CallMethod)
  1776. and expr.method == "__call__"
  1777. and isinstance(expr.inputs[0], ModuleNode)
  1778. ):
  1779. obj = node2obj[expr.inputs[0]]
  1780. if expr.arg_def is not None:
  1781. next_actual_node_map[obj][expr.arg_def].append(expr.inputs)
  1782. for obj in node2obj.values():
  1783. if obj is self:
  1784. continue
  1785. mnode_map = None
  1786. if obj in next_actual_node_map.keys():
  1787. mnode_map = next_actual_node_map[obj]
  1788. if isinstance(obj, TracedModule):
  1789. obj._update_ref(mnode_map, graph)
  1790. def flatten(self):
  1791. r"""Get a new TracedModule, which eliminates ``GetAttr`` and has no hierarchy.
  1792. Retruns:
  1793. A new :class:`TracedModule`.
  1794. """
  1795. new_module = copy.deepcopy(self)
  1796. def _replace_inputs_and_outputs(expr: Expr, repl_dict: Dict[Node, Node]):
  1797. inputs, outputs = expr.inputs, expr.outputs
  1798. for i, node in enumerate(inputs):
  1799. if node in repl_dict:
  1800. inputs[i] = repl_dict[node]
  1801. for i, node in enumerate(outputs):
  1802. if node in repl_dict:
  1803. outputs[i] = repl_dict[node]
  1804. outputs[i].expr = expr
  1805. def _flatten_subgraph(
  1806. parent_graph: InternalGraph,
  1807. graph: InternalGraph,
  1808. call: CallMethod,
  1809. module: Module,
  1810. ):
  1811. repl_dict, node2obj, rename_blacklist = {}, {}, []
  1812. if call is not None:
  1813. graph = copy.deepcopy(graph)
  1814. node2obj[call.inputs[0]] = module
  1815. repl_dict = dict(zip(graph._inputs, call.inputs))
  1816. for ind, out in enumerate(graph.outputs):
  1817. if isinstance(out.expr, Input):
  1818. assert out in repl_dict
  1819. call_out = call.outputs[ind]
  1820. for expr in call.outputs[ind].users:
  1821. for index, inp in enumerate(expr.inputs):
  1822. if inp is call_out:
  1823. expr.inputs[index] = repl_dict[out]
  1824. repl_dict[out].users.append(expr)
  1825. if parent_graph is not None:
  1826. for index, parent_out in enumerate(parent_graph._outputs):
  1827. if parent_out is call_out:
  1828. parent_graph._outputs[index] = repl_dict[out]
  1829. continue
  1830. repl_dict[out] = call.outputs[ind]
  1831. if isinstance(out, TensorNode):
  1832. call.outputs[ind]._qualname = out._qualname
  1833. for node, repl_node in repl_dict.items():
  1834. assert node in graph._inputs or node in graph._outputs
  1835. repl_node.users.extend(node.users)
  1836. rename_blacklist = list(chain(call.inputs, call.outputs))
  1837. node2obj[graph._inputs[0]] = module
  1838. prefix_name = call.inputs[0]._name if call else ""
  1839. flattened_exprs = []
  1840. for expr in graph._exprs:
  1841. exprs = [expr]
  1842. if call is not None:
  1843. _replace_inputs_and_outputs(expr, repl_dict)
  1844. if isinstance(expr, GetAttr):
  1845. mnode = expr.inputs[0]
  1846. node2obj[expr.outputs[0]] = expr.interpret(node2obj[mnode])[0]
  1847. if isinstance(expr, CallMethod):
  1848. obj_node = expr.inputs[0]
  1849. if isinstance(obj_node, ModuleNode) and isinstance(
  1850. obj_node.expr, GetAttr
  1851. ):
  1852. obj = node2obj[obj_node]
  1853. expr_graph = (
  1854. obj.argdef_graph_map[expr.arg_def]
  1855. if hasattr(obj, "argdef_graph_map")
  1856. else None
  1857. )
  1858. if expr_graph is not None and not obj.is_qat:
  1859. exprs = _flatten_subgraph(graph, expr_graph, expr, obj)
  1860. if parent_graph is not None:
  1861. for node in expr.outputs:
  1862. name = node._name
  1863. if node not in rename_blacklist:
  1864. name = "{}_{}".format(prefix_name, name)
  1865. node._name = parent_graph._namespace.create_unique_name(
  1866. name, node
  1867. )
  1868. flattened_exprs.extend(exprs)
  1869. if call is not None:
  1870. for i in call.inputs:
  1871. i.users.remove(call)
  1872. return flattened_exprs
  1873. new_module.graph._exprs = _flatten_subgraph(
  1874. None, new_module.graph, None, new_module
  1875. )
  1876. new_module.graph._re_associate_name()
  1877. new_module.graph.compile()
  1878. new_module._update_ref()
  1879. new_module.graph._reset_ids()
  1880. return new_module
  1881. def __getstate__(self):
  1882. d = self.__dict__.copy()
  1883. for k in Module.__dict__:
  1884. d.pop(k, None)
  1885. _check_obj_attr(d)
  1886. for k in d:
  1887. if module_tracer.is_builtin(d[k]):
  1888. assert _check_builtin_module_attr(
  1889. d[k]
  1890. ), "Module {} can not be serialized. ".format(type(d[k]))
  1891. d[k] = _ModuleState.get_module_state(d[k])
  1892. dump_info = {
  1893. "version": __version__,
  1894. "register_type": USER_REGISTERED_LEAF_TYPE,
  1895. "register_container_type": USER_REGISTERED_CONTAINER_TYPE,
  1896. "register_mdule": USER_REGISTERED_MODULE,
  1897. "register_function": USER_REGISTERED_FUNCTION,
  1898. }
  1899. d["dump_info"] = dump_info
  1900. return d
  1901. def __setstate__(self, state):
  1902. for k, v in state.items():
  1903. if isinstance(v, _ModuleState):
  1904. state[k] = v.to_module()
  1905. self.__dict__.update(state)
  1906. self._update_ref()
  1907. for _, graph in self.argdef_graph_map.items():
  1908. for expr in graph._exprs:
  1909. if isinstance(expr, CallFunction):
  1910. load_functional(expr)
  1911. if isinstance(expr, CallMethod):
  1912. if expr.method == "__call__":
  1913. load_call_module_expr(expr)
  1914. else:
  1915. load_call_tensor_method_expr(expr)
  1916. if isinstance(expr, Apply):
  1917. load_apply_expr(expr)
  1918. for _, graph in self.argdef_graph_map.items():
  1919. ind = 0
  1920. while ind < len(graph._exprs):
  1921. cur_expr = graph._exprs[ind]
  1922. has_new_expr = False
  1923. for i in cur_expr.inputs:
  1924. if i.expr not in graph._exprs and not isinstance(i.expr, Input):
  1925. graph._exprs.insert(ind, i.expr)
  1926. has_new_expr = True
  1927. if not has_new_expr:
  1928. ind += 1
  1929. for expr in graph._exprs:
  1930. for i in expr.inputs:
  1931. if expr.inputs.count(i) != i.users.count(expr):
  1932. add_or_del_count = expr.inputs.count(i) - i.users.count(expr)
  1933. if add_or_del_count > 0:
  1934. i.users.extend([expr] * add_or_del_count)
  1935. else:
  1936. [i.users.remove(expr) for i in range(-add_or_del_count)]
  1937. for o in expr.outputs:
  1938. if o.expr is not expr:
  1939. assert o not in o.expr.outputs
  1940. o.expr = expr
  1941. for node in graph.nodes(False):
  1942. # remove users of node which doesn't use node as input
  1943. node.users = [e for e in node.users if node in e.inputs]
  1944. for expr in graph._exprs:
  1945. graph._namespace.auto_naming_for_outputs(expr)
  1946. self._update_ref()
  1947. for _, graph in self.argdef_graph_map.items():
  1948. graph._reset_ids()
  1949. def __copy__(self):
  1950. cls = self.__class__
  1951. result = cls.__new__(cls)
  1952. result.__dict__.update(self.__dict__)
  1953. return result
  1954. def __deepcopy__(self, memo):
  1955. cls = self.__class__
  1956. result = cls.__new__(cls)
  1957. state = {}
  1958. memo[id(self)] = result
  1959. for k, v in self.__dict__.items():
  1960. if not isinstance(v, weakref.ReferenceType):
  1961. state[k] = copy.deepcopy(v, memo)
  1962. result.__dict__.update(state)
  1963. result._update_ref()
  1964. return result
  1965. def cpp_apply_module_trace(opdef, *args):
  1966. return Apply.apply_module_trace_hook(opdef, *args)
  1967. USER_REGISTERED_MODULE = []
  1968. USER_REGISTERED_FUNCTION = []
  1969. def register_as_builtin(mod_cls: Type[Module]) -> None:
  1970. r"""Registers class ``mod_cls`` (subclass of :class:`~.Module`) as builtin module.
  1971. Args:
  1972. mod_cls: the module class which will be treated as builtin module in tracing.
  1973. """
  1974. USER_REGISTERED_MODULE.append((mod_cls.__module__, mod_cls.__qualname__))
  1975. module_tracer.register_as_builtin(mod_cls)
  1976. def wrap(func: Callable):
  1977. r"""Call this function to register ``func`` as a builtin function.
  1978. This function can be called at module-level scope to register ``func`` as a builtin function.
  1979. A builtin function will be converted to a :class:`CallFunction` Expr in tracing::
  1980. def my_func(x, y):
  1981. return x + y
  1982. import megengine.traced_module as tm
  1983. tm.wrap(my_func)
  1984. This function can also equivalently be used as a decorator::
  1985. @tm.wrap
  1986. def my_func(x, y):
  1987. return x + y
  1988. Args:
  1989. func: the function of the global function to insert into the graph when it's called.
  1990. """
  1991. USER_REGISTERED_FUNCTION.append((func.__module__, func.__qualname__))
  1992. assert callable(func), "func must be a callable"
  1993. assert hasattr(func, "__code__")
  1994. fn_name = func.__code__.co_name
  1995. currentframe = inspect.currentframe()
  1996. assert currentframe is not None
  1997. f = currentframe.f_back
  1998. assert f is not None
  1999. assert (
  2000. f.f_code.co_name == "<module>"
  2001. ), "wrap must be called at the top level of a module"
  2002. Patcher._builtin_functions.append((f.f_globals, fn_name))
  2003. return func
  2004. def _register_all_builtin_module():
  2005. for sub_mod in [M, M.qat, M.quantized, MExternal]:
  2006. for m in getmembers(sub_mod):
  2007. if (
  2008. isclass(m[1])
  2009. and issubclass(m[1], M.Module)
  2010. and m[1] is not M.Sequential
  2011. ):
  2012. module_tracer.register_as_builtin(m[1])
  2013. module_tracer.register_as_builtin(Observer)
  2014. module_tracer.register_as_builtin(MinMaxObserver)
  2015. module_tracer.register_as_builtin(SyncMinMaxObserver)
  2016. module_tracer.register_as_builtin(ExponentialMovingAverageObserver)
  2017. module_tracer.register_as_builtin(SyncExponentialMovingAverageObserver)
  2018. module_tracer.register_as_builtin(HistogramObserver)
  2019. module_tracer.register_as_builtin(PassiveObserver)
  2020. module_tracer.register_as_builtin(LSQ)
  2021. module_tracer.register_as_builtin(TQT)
  2022. module_tracer.register_as_builtin(FakeQuantize)
  2023. module_tracer.register_as_builtin(TM_FakeQuant)
  2024. def trace_module(
  2025. mod: Module, *args: Tuple[Any], **kwargs: Dict[str, Any]
  2026. ) -> TracedModule:
  2027. r"""Traces module ``mod`` and returns corresponding :class:`TracedModule`.
  2028. Args:
  2029. mod: the module will be converted to :class:`TracedModule`.
  2030. args: the positional arguments passed to forward method of ``mod``.
  2031. kwargs: the keyword arguments passed to forward method of ``mod``.
  2032. """
  2033. assert active_module_tracer() is None
  2034. assert isinstance(mod, Module)
  2035. try:
  2036. net_name = mod._name if mod._name else mod.__class__.__name__
  2037. use_sym_shape = set_symbolic_shape(True)
  2038. set_module_tracing()
  2039. set_active_module_tracer(module_tracer(_wrapped_function))
  2040. for cls in [Expr, Node]:
  2041. cls._set_next_id(0)
  2042. with active_module_tracer().patcher:
  2043. global_scope = InternalGraph(name="top", qualname=net_name)
  2044. active_module_tracer().push_scope(global_scope)
  2045. builder = TracedModuleBuilder(mod, True)
  2046. NodeMixin.wrap_safe(
  2047. builder, Input.make(name="top", type=ModuleNode, qualname=net_name)
  2048. )
  2049. forward_argspec = (
  2050. mod.argspec
  2051. if hasattr(mod, "argspec")
  2052. else inspect.getfullargspec(mod.forward)
  2053. )
  2054. args, kwargs = _convert_kwargs_to_args(forward_argspec, args, kwargs, True)
  2055. inputs, _ = tree_flatten((args, kwargs))
  2056. for _, i in enumerate(inputs):
  2057. # assert isinstance(i, Tensor), "not support "
  2058. if isinstance(i, RawTensor):
  2059. NodeMixin.wrap_safe(
  2060. i,
  2061. Input.make(
  2062. name="arg_{}".format(_),
  2063. type=NodeMixin.get_wrapped_type(i),
  2064. qualname="{}.[{}]".format(net_name, "arg_{}".format(_)),
  2065. ),
  2066. )
  2067. builder(*args, **kwargs)
  2068. active_module_tracer().pop_scope()
  2069. traced_mod = builder.build()
  2070. traced_mod.argspec = forward_argspec
  2071. traced_mod.graph._reset_ids()
  2072. return traced_mod
  2073. finally:
  2074. set_symbolic_shape(use_sym_shape)
  2075. set_active_module_tracer(None)
  2076. unset_module_tracing()