You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_module.py 3.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import platform
  10. import pytest
  11. @pytest.mark.skipif(
  12. platform.system() == "Darwin", reason="do not imp GPU mode at macos now"
  13. )
  14. @pytest.mark.skipif(
  15. platform.system() == "Windows", reason="do not imp GPU mode at Windows now"
  16. )
  17. @pytest.mark.isolated_distributed
  18. def test_syncbn():
  19. import numpy as np
  20. import multiprocessing as mp
  21. from megengine.distributed.group import Server
  22. from megengine.core._trace_option import use_tensor_shape
  23. if use_tensor_shape(): # XXX: fix sync bn if use_tensor_shape
  24. return
  25. nr_chan = 8
  26. nr_ranks = 4
  27. data_shape = (3, nr_chan, 4, nr_ranks * 8)
  28. momentum = 0.9
  29. eps = 1e-5
  30. running_mean = np.zeros((1, nr_chan, 1, 1), dtype=np.float32)
  31. running_var = np.ones((1, nr_chan, 1, 1), dtype=np.float32)
  32. steps = 4
  33. server = Server(0)
  34. port = server.py_server_port
  35. def worker(rank, data, yv_expect, running_mean, running_var):
  36. import megengine as mge
  37. import megengine.distributed as dist
  38. from megengine import tensor
  39. from megengine.module import SyncBatchNorm
  40. from megengine.distributed.group import Group
  41. from megengine.test import assertTensorClose
  42. if mge.get_device_count("gpu") < nr_ranks:
  43. return
  44. dist.init_process_group("localhost", port, nr_ranks, rank, rank)
  45. group = Group([i for i in range(nr_ranks)])
  46. bn = SyncBatchNorm(nr_chan, eps=eps, momentum=momentum, group=group)
  47. data_tensor = None
  48. for i in range(steps):
  49. if data_tensor is None:
  50. data_tensor = tensor(data[i], device=f"gpu{rank}:0")
  51. else:
  52. data_tensor.set_value(data[i])
  53. yv = bn(data_tensor)
  54. assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6)
  55. assertTensorClose(running_mean, bn.running_mean.numpy(), max_err=5e-6)
  56. assertTensorClose(running_var, bn.running_var.numpy(), max_err=5e-6)
  57. xv = []
  58. for i in range(steps):
  59. xv.append(np.random.normal(loc=2.3, size=data_shape).astype(np.float32))
  60. xv_transposed = np.transpose(xv[i], [0, 2, 3, 1]).reshape(
  61. (data_shape[0] * data_shape[2] * data_shape[3], nr_chan)
  62. )
  63. mean = np.mean(xv_transposed, axis=0).reshape(1, nr_chan, 1, 1)
  64. var_biased = np.var(xv_transposed, axis=0).reshape((1, nr_chan, 1, 1))
  65. sd = np.sqrt(var_biased + eps)
  66. var_unbiased = np.var(xv_transposed, axis=0, ddof=1).reshape((1, nr_chan, 1, 1))
  67. running_mean = running_mean * momentum + mean * (1 - momentum)
  68. running_var = running_var * momentum + var_unbiased * (1 - momentum)
  69. yv_expect = (xv[i] - mean) / sd
  70. data = []
  71. for i in range(nr_ranks):
  72. data.append([])
  73. for j in range(steps):
  74. data[i].append(xv[j][:, :, :, i * 8 : i * 8 + 8])
  75. procs = []
  76. for rank in range(nr_ranks):
  77. p = mp.Process(
  78. target=worker,
  79. args=(
  80. rank,
  81. data[rank],
  82. yv_expect[:, :, :, rank * 8 : rank * 8 + 8],
  83. running_mean,
  84. running_var,
  85. ),
  86. )
  87. p.start()
  88. procs.append(p)
  89. for p in procs:
  90. p.join(10)
  91. assert p.exitcode == 0
  92. def test_module_conv2d():
  93. from megengine.module.conv import Conv2d
  94. conv = Conv2d(2, 3, 1)

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台