You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

inference.cpp 128 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210
  1. /**
  2. * \file src/gopt/test/inference.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "megbrain/opr/dnn/local.h"
  12. #include "megbrain/test/helper.h"
  13. #include "megbrain/gopt/inference.h"
  14. #include "megbrain/gopt/basic_arith.h"
  15. #include "megbrain/gopt/gtrans.h"
  16. #include "megbrain/opr/io.h"
  17. #include "megbrain/opr/basic_arith_wrapper.h"
  18. #include "megbrain/opr/tensor_manip.h"
  19. #include "megbrain/opr/dnn/batch_norm.h"
  20. #include "megbrain/opr/dnn/convolution.h"
  21. #include "megbrain/opr/utility.h"
  22. #include "megbrain/opr/imgproc.h"
  23. #include "megbrain/opr/tensor_manip.h"
  24. #include "megbrain/opr/nn_int.h"
  25. #include "megbrain/opr/imgproc.h"
  26. #include "megbrain/opr/dnn/pooling.h"
  27. #include "megbrain/opr/tensor_gen.h"
  28. #include "megbrain/opr/blas.h"
  29. #include "megbrain/comp_node_env.h"
  30. #include "./helper.h"
  31. #include "megdnn/tensor_format.h"
  32. #include <random>
  33. using namespace mgb;
  34. namespace {
  35. //! find first the operator of specific type; raise exception if not found
  36. template <typename T>
  37. T& find_opr(SymbolVar endpoint) {
  38. T* found = nullptr;
  39. auto cb = [&found](cg::OperatorNodeBase* opr) {
  40. if (!found && opr->same_type<T>()) {
  41. found = &opr->cast_final_safe<T>();
  42. }
  43. };
  44. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  45. mgb_assert(found);
  46. return *found;
  47. }
  48. template <typename T>
  49. size_t find_opr_num(SymbolVar endpoint) {
  50. size_t opr_num = 0;
  51. auto cb = [&opr_num](cg::OperatorNodeBase* opr) {
  52. if (opr->same_type<T>()) {
  53. opr_num++;
  54. }
  55. };
  56. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  57. return opr_num;
  58. }
  59. class NaiveMegDNNHandleScope {
  60. int m_orig_level;
  61. public:
  62. NaiveMegDNNHandleScope()
  63. : m_orig_level{MegDNNHandle::exchange_default_dbg_level(2)} {
  64. CompNode::finalize();
  65. }
  66. ~NaiveMegDNNHandleScope() {
  67. auto set = MegDNNHandle::exchange_default_dbg_level(m_orig_level);
  68. mgb_assert(set == 2);
  69. CompNode::finalize();
  70. }
  71. };
  72. #if MGB_CUDA
  73. //! this function is only used in TestGoptInference.EnableCHWN4...
  74. void warp_perspective_mat_gen(HostTensorND& mat, size_t N, size_t INP_H,
  75. size_t INP_W) {
  76. static std::mt19937 rng(next_rand_seed());
  77. auto rand_real = [&](double lo, double hi) {
  78. return rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo;
  79. };
  80. auto rand_real2 = [&](double range) { return rand_real(-range, range); };
  81. auto ptr = mat.ptr<float>();
  82. for (size_t i = 0; i < N; ++i) {
  83. auto rot = rand_real(0, M_PI * 2), scale = rand_real(0.8, 1.2),
  84. sheer = rand_real(0.9, 1.1), dy = rand_real2(INP_H * 0.5),
  85. dx = rand_real2(INP_W * 0.5), ky = rand_real2(0.1 / INP_H),
  86. kx = rand_real2(0.1 / INP_W), kb = rand_real2(0.1) + 1;
  87. ptr[0] = ptr[4] = cos(rot) * scale;
  88. ptr[1] = -(ptr[3] = sin(rot) * scale);
  89. ptr[3] *= sheer;
  90. ptr[4] *= sheer;
  91. ptr[2] = dx;
  92. ptr[5] = dy;
  93. ptr[6] = kx;
  94. ptr[7] = ky;
  95. ptr[8] = kb;
  96. ptr += 9;
  97. }
  98. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  99. }
  100. #endif
  101. } // namespace
  102. TEST(TestGoptInference, ParamFuseConstEndPoint) {
  103. constexpr size_t SIZE = 23;
  104. HostTensorGenerator<> gen;
  105. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  106. auto graph = ComputingGraph::make();
  107. graph->options().graph_opt_level = 0;
  108. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  109. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  110. p = opr::Host2DeviceCopy::make(*graph, host_p),
  111. q = p + x,
  112. a = y + 3,
  113. z0 = a + q,
  114. z1 = a + 4;
  115. HostTensorND host_z0, host_z1;
  116. SymbolVar z0_1, z1_1;
  117. unpack_vector(
  118. gopt::GraphOptimizer{}.
  119. add_pass<gopt::ParamFusePass>().
  120. apply({{z1, z0}}).endpoint_vars(),
  121. z1_1, z0_1);
  122. auto func = graph->compile({make_callback_copy(z0_1, host_z0),
  123. make_callback_copy(z1_1, host_z1)});
  124. func->to_json()->writeto_fpath(
  125. output_file("TestGoptInference.ParamFuseEndPoint.json"));
  126. func->execute();
  127. int nr_opr = 0;
  128. func->iter_opr_seq([&](cg::OperatorNodeBase*) {++ nr_opr; return true; });
  129. ASSERT_EQ(8, nr_opr);
  130. auto px = host_x->ptr<float>(), pz0 = host_z0.ptr<float>();
  131. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0],
  132. pz1 = host_z1.ptr<float>()[0];
  133. for (size_t i = 0; i < SIZE; ++ i) {
  134. MGB_ASSERT_FLOAT_EQ(px[i] + yv + 3 + pv, pz0[i]);
  135. }
  136. MGB_ASSERT_FLOAT_EQ(yv + 7, pz1);
  137. }
  138. TEST(TestGoptInference, ParamFuse) {
  139. constexpr size_t SIZE = 23;
  140. HostTensorGenerator<> gen;
  141. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  142. auto graph = ComputingGraph::make();
  143. graph->options().graph_opt_level = 0;
  144. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  145. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  146. p = opr::Host2DeviceCopy::make(*graph, host_p),
  147. z = x + y, // endpoint
  148. q = x * y + p; // middle point
  149. SymbolVar z1, q1;
  150. unpack_vector(
  151. gopt::GraphOptimizer{}.
  152. add_pass<gopt::ParamFusePass>().
  153. apply({{z, q}}).endpoint_vars(),
  154. z1, q1);
  155. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  156. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  157. ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
  158. q.node()->owner_opr()->dyn_typeinfo());
  159. HostTensorND host_z, host_q;
  160. auto func = graph->compile(
  161. {make_callback_copy(z1, host_z),
  162. make_callback_copy(q1, host_q)});
  163. func->execute();
  164. int nr_opr = 0;
  165. func->iter_opr_seq([&](cg::OperatorNodeBase*) {++ nr_opr; return true; });
  166. ASSERT_EQ(6, nr_opr);
  167. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
  168. pq = host_q.ptr<float>();
  169. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  170. for (size_t i = 0; i < SIZE; ++ i) {
  171. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  172. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  173. }
  174. }
  175. TEST(TestGoptInference, ParamFuseMultiDeviceTensorHolder) {
  176. constexpr size_t SIZE = 23;
  177. HostTensorGenerator<> gen;
  178. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  179. auto graph = ComputingGraph::make();
  180. graph->options().graph_opt_level = 0;
  181. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  182. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  183. p = opr::Host2DeviceCopy::make(*graph, host_p),
  184. z = x + y, // endpoint
  185. q = x * y + p; // middle point
  186. SymbolVar z1, q1;
  187. unpack_vector(gopt::GraphOptimizer{}
  188. .add_pass<gopt::ParamMergePass>()
  189. .apply({{z}})
  190. .endpoint_vars(),
  191. z1);
  192. ASSERT_TRUE(z1.node()
  193. ->owner_opr()->input(0)->owner_opr()
  194. ->same_type<opr::MultipleDeviceTensorHolder>());
  195. unpack_vector(
  196. gopt::GraphOptimizer{}.
  197. add_pass<gopt::ParamMergePass>().
  198. add_pass<gopt::ParamFusePass>().
  199. apply({{z, q}}).endpoint_vars(),
  200. z1, q1);
  201. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  202. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  203. ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
  204. q.node()->owner_opr()->dyn_typeinfo());
  205. HostTensorND host_z, host_q;
  206. auto func = graph->compile(
  207. {make_callback_copy(z1, host_z),
  208. make_callback_copy(q1, host_q)});
  209. func->execute();
  210. int nr_opr = 0;
  211. func->iter_opr_seq([&](cg::OperatorNodeBase*op) {++ nr_opr; return true; });
  212. ASSERT_EQ(6, nr_opr);
  213. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
  214. pq = host_q.ptr<float>();
  215. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  216. for (size_t i = 0; i < SIZE; ++ i) {
  217. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  218. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  219. }
  220. }
  221. TEST(TestGoptInference, ParamFuseMultiRead) {
  222. HostTensorGenerator<> gen;
  223. auto graph = ComputingGraph::make();
  224. graph->options().graph_opt_level = 0;
  225. auto mkvar = [&](const char *name, const TensorShape &shp) {
  226. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  227. };
  228. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  229. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  230. };
  231. auto x = mkvar("x", {23}),
  232. p0 = mkcvar("p0", {1}),
  233. p1 = mkcvar("p1", {1}),
  234. z0 = x * (p0 + p1) + x / (p0 + p1);
  235. SymbolVar z1;
  236. unpack_vector(
  237. gopt::GraphOptimizer{}.
  238. add_pass<gopt::ParamFusePass>().
  239. apply({{z0}}).endpoint_vars(),
  240. z1);
  241. ASSERT_NE(z0.node(), z1.node());
  242. ASSERT_TRUE(z1.node()->owner_opr()->input(0)->owner_opr()
  243. ->input(1)->owner_opr()->same_type<opr::SharedDeviceTensor>());
  244. ASSERT_TRUE(z1.node()->owner_opr()->input(1)->owner_opr()
  245. ->input(1)->owner_opr()->same_type<opr::SharedDeviceTensor>());
  246. HostTensorND host_z0, host_z1;
  247. graph->compile({make_callback_copy(z0, host_z0),
  248. make_callback_copy(z1, host_z1)})->execute();
  249. MGB_ASSERT_TENSOR_EQ(host_z0, host_z1);
  250. }
  251. TEST(TestGoptInference, ParamFuseStaticInfer) {
  252. HostTensorGenerator<> gen;
  253. auto graph = ComputingGraph::make();
  254. auto mkvar = [&](const char *name, const TensorShape &shp) {
  255. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  256. };
  257. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  258. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  259. };
  260. auto a = mkvar("x", {4}),
  261. b = a.reshape(opr::GetVarShape::make(mkcvar("tshp", {2, 2})));
  262. SymbolVar b1;
  263. unpack_vector(
  264. gopt::GraphOptimizer{}.
  265. add_pass<gopt::ParamFusePass>().
  266. apply({{b}}).endpoint_vars(),
  267. b1);
  268. ASSERT_EQ(b1, a.reshape({2, 2}));
  269. }
  270. TEST(TestGoptInference, ParamRedistributeConvMul) {
  271. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  272. HostTensorGenerator<> gen;
  273. auto host_x = gen({N, IC, IH, IW}), host_k = gen({IC}),
  274. host_w = gen({OC, IC, KH, KW});
  275. auto graph = ComputingGraph::make();
  276. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  277. k = opr::Dimshuffle::make(
  278. opr::SharedDeviceTensor::make(*graph, *host_k),
  279. {-1, 0, -1, -1}),
  280. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  281. y0 = opr::Convolution::make(x * k, w);
  282. SymbolVar y1;
  283. unpack_vector(
  284. gopt::GraphOptimizer{}.
  285. add_pass<gopt::ParamRedistributePass>().
  286. apply({{y0}}).endpoint_vars(),
  287. y1);
  288. ASSERT_NE(y0.node(), y1.node());
  289. HostTensorND host_y0, host_y1;
  290. auto func = graph->compile(
  291. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  292. func->execute();
  293. MGB_ASSERT_TENSOR_EQ(host_y0, host_y1);
  294. }
  295. TEST(TestGoptInference, ParamRedistributeConvMulUniqReader) {
  296. constexpr size_t N = 4, C = 3, IH = 5, IW = 4, KH = 1, KW = 1;
  297. HostTensorGenerator<> gen;
  298. auto host_x = gen({N, C, IH, IW}), host_k = gen({C}),
  299. host_w = gen({C, C, KH, KW});
  300. auto graph = ComputingGraph::make();
  301. graph->options().graph_opt_level = 0;
  302. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  303. k = opr::Dimshuffle::make(
  304. opr::SharedDeviceTensor::make(*graph, *host_k) + 2,
  305. {-1, 0, -1, -1}),
  306. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  307. // y0 should be replaced
  308. y0 = opr::powf(opr::Convolution::make(x * k, w).rename("y0") + 2, 2),
  309. y0k = (y0 * k).rename("y0k"),
  310. // y0k is accessed twice, so it should not be replaced
  311. y1 = opr::Convolution::make(y0k, w).rename("y1"),
  312. z0 = y1 / y0k;
  313. SymbolVar z1;
  314. unpack_vector(
  315. gopt::GraphOptimizer{}.
  316. add_pass<gopt::ParamRedistributePass>().
  317. apply({{z0}}).endpoint_vars(),
  318. z1);
  319. ASSERT_NE(z0.node(), z1.node());
  320. auto y1_repl = z1.node()->owner_opr()->input(0)->owner_opr();
  321. ASSERT_TRUE(y1_repl->same_type<opr::Convolution>());
  322. ASSERT_EQ(y1_repl->input(0), z1.node()->owner_opr()->input(1));
  323. HostTensorND host_z0, host_z1;
  324. auto func = graph->compile(
  325. {make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)});
  326. func->execute();
  327. MGB_ASSERT_TENSOR_NEAR(host_z0, host_z1, 5e-5);
  328. }
  329. TEST(TestGoptInference, ParamRedistributeMulConvMul) {
  330. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  331. HostTensorGenerator<> gen;
  332. auto host_x = gen({N, IC, IH, IW}),
  333. host_k1 = gen({IC}),
  334. host_k2 = gen({1, OC, 1, 1}),
  335. host_w = gen({OC, IC, KH, KW});
  336. auto graph = ComputingGraph::make();
  337. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  338. k1 = opr::Dimshuffle::make(
  339. opr::SharedDeviceTensor::make(*graph, *host_k1),
  340. {-1, 0, -1, -1}),
  341. k2 = opr::SharedDeviceTensor::make(*graph, *host_k2),
  342. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  343. y0 = opr::Convolution::make(x * k1, w) * k2;
  344. SymbolVar y1;
  345. unpack_vector(
  346. gopt::GraphOptimizer{}.
  347. add_pass<gopt::ParamRedistributePass>().
  348. add_pass<gopt::ParamFusePass>().
  349. apply({{y0}}).endpoint_vars(),
  350. y1);
  351. auto y1opr = y1.node()->owner_opr();
  352. ASSERT_TRUE(y1opr->same_type<opr::Convolution>());
  353. ASSERT_EQ(y1opr->input(0), x.node());
  354. HostTensorND host_y0, host_y1;
  355. auto func = graph->compile(
  356. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  357. func->execute();
  358. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 5e-6);
  359. }
  360. TEST(TestGoptInference, ParamRedistributeConvAdd) {
  361. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  362. HostTensorGenerator<> gen;
  363. auto host_x = gen({N, IC, IH, IW}), host_b = gen({IC}),
  364. host_w = gen({OC, IC, KH, KW});
  365. auto graph = ComputingGraph::make();
  366. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  367. b = opr::Dimshuffle::make(
  368. opr::SharedDeviceTensor::make(*graph, *host_b),
  369. {-1, 0, -1, -1}),
  370. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  371. y0 = opr::Convolution::make(x + b, w);
  372. SymbolVar y1;
  373. unpack_vector(
  374. gopt::GraphOptimizer{}.
  375. add_pass<gopt::ParamRedistributePass>().
  376. add_pass<gopt::ParamFusePass>().
  377. apply({{y0}}).endpoint_vars(),
  378. y1);
  379. ASSERT_NE(y0.node(), y1.node());
  380. HostTensorND host_y0, host_y1;
  381. auto func = graph->compile(
  382. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  383. func->execute();
  384. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  385. }
  386. TEST(TestGoptInference, ParamRedistributeDistThenReasso) {
  387. constexpr size_t N = 4, IC0 = 3, IC1 = 6, IH = 5,
  388. IW = 4, OC = 4, KH = 3, KW = 2;
  389. HostTensorGenerator<> gen;
  390. auto graph = ComputingGraph::make();
  391. auto mkvar = [&](const char *name, const TensorShape &shp) {
  392. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  393. };
  394. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  395. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  396. };
  397. auto x0 = mkvar("x0", {N, IC0, IH, IW}),
  398. x1 = mkvar("x1", {N, IC1, IH, IW}),
  399. k0 = opr::Dimshuffle::make(
  400. mkcvar("x1_", {IC0}), {-1, 0, -1, -1}).rename("x1"),
  401. w0 = mkcvar("w0", {OC, IC0, KH, KW}),
  402. k1 = mkcvar("k1", {1, IC1, 1, 1}),
  403. w1 = mkcvar("w1", {OC, IC1, KH, KW}),
  404. b0 = mkvar("b0", {1, OC, 1, 1}),
  405. b1 = mkcvar("b1", {1}),
  406. k2 = mkcvar("k2", {1}),
  407. y0 = (
  408. opr::Convolution::make(x0 * k0, w0) +
  409. opr::Convolution::make(x1 + k1, w1) +
  410. b0 + b1) * k2;
  411. SymbolVar y1;
  412. unpack_vector(
  413. gopt::GraphOptimizer{}.
  414. add_pass<gopt::ParamRedistributePass>().
  415. add_pass<gopt::ReorderArithChainPass>(
  416. gopt::ConstVarType::IMMUTABLE_AND_PARAM).
  417. add_pass<gopt::ParamFusePass>().
  418. apply({{y0}}).endpoint_vars(),
  419. y1);
  420. ASSERT_NE(y0.node(), y1.node());
  421. HostTensorND host_y0, host_y1;
  422. auto func = graph->compile(
  423. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  424. func->execute();
  425. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  426. auto chain = gopt::extract_opr_leaves(y1.node(),
  427. [](cg::OperatorNodeBase*opr){
  428. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  429. });
  430. size_t nr_conv = 0;
  431. for (auto i: chain) {
  432. auto opr = i->owner_opr();
  433. if (opr->same_type<opr::Convolution>()) {
  434. ++ nr_conv;
  435. ASSERT_TRUE(opr->input(0)->owner_opr()
  436. ->same_type<opr::Host2DeviceCopy>());
  437. ASSERT_TRUE(opr->input(1)->owner_opr()
  438. ->same_type<opr::SharedDeviceTensor>());
  439. }
  440. }
  441. ASSERT_EQ(2u, nr_conv);
  442. ASSERT_EQ(4u, chain.size());
  443. }
  444. TEST(TestGoptInference, ParamRedistributeMultiChange) {
  445. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  446. HostTensorGenerator<> gen;
  447. auto graph = ComputingGraph::make();
  448. graph->options().graph_opt_level = 0;
  449. auto mkvar = [&](const char *name, const TensorShape &shp) {
  450. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  451. };
  452. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  453. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  454. };
  455. auto x = mkvar("x", {N, IC, IH, IW}),
  456. k0 = mkcvar("k0", {1, IC, 1, 1}),
  457. b0 = mkcvar("b0", {1, IC, 1, 1}),
  458. k1 = mkcvar("k0", {1}),
  459. b1 = mkcvar("b0", {1}),
  460. w = mkcvar("w", {OC, IC, KH, KW}),
  461. y0 = (opr::Convolution::make(x * k0 + b0, w) + b1) * k1;
  462. SymbolVar y1;
  463. unpack_vector(
  464. gopt::GraphOptimizer{}.
  465. add_pass<gopt::ParamRedistributePass>().
  466. add_pass<gopt::ParamFusePass>().
  467. apply({{y0}}).endpoint_vars(),
  468. y1);
  469. ASSERT_NE(y0.node(), y1.node());
  470. HostTensorND host_y0, host_y1;
  471. auto func = graph->compile(
  472. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  473. func->execute();
  474. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  475. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  476. ASSERT_TRUE(y1elem);
  477. auto yconv = y1elem->input(0)->owner_opr();
  478. if (!yconv->same_type<opr::Convolution>())
  479. yconv = y1elem->input(1)->owner_opr();
  480. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  481. ASSERT_EQ(x.node(), yconv->input(0));
  482. }
  483. TEST(TestGoptInference, ParamRedistributeMultiReader) {
  484. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  485. HostTensorGenerator<> gen;
  486. auto graph = ComputingGraph::make();
  487. graph->options().graph_opt_level = 0;
  488. auto mkvar = [&](const char *name, const TensorShape &shp) {
  489. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  490. };
  491. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  492. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  493. };
  494. auto x = mkvar("x", {N, IC, IH, IW}),
  495. k = mkcvar("k", {1, OC, 1, 1}),
  496. w = mkcvar("w", {OC, IC, KH, KW});
  497. auto conv = opr::Convolution::make(x, w);
  498. auto t = conv * k;
  499. auto y0 = t * 4.2f + t * 2.4f;
  500. SymbolVar y1;
  501. unpack_vector(
  502. gopt::GraphOptimizer{}.
  503. add_pass<gopt::ParamRedistributePass>().
  504. add_pass<gopt::ParamFusePass>().
  505. apply({{y0}}).endpoint_vars(),
  506. y1);
  507. ASSERT_NE(y0.node(), y1.node());
  508. HostTensorND host_y0, host_y1;
  509. auto func = graph->compile(
  510. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  511. func->execute();
  512. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  513. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  514. ASSERT_TRUE(y1elem);
  515. auto ymul0 = gopt::as_elem_opr(y1elem->input(0), opr::Elemwise::Mode::MUL),
  516. ymul1 = gopt::as_elem_opr(y1elem->input(1), opr::Elemwise::Mode::MUL);
  517. ASSERT_TRUE(ymul0);
  518. ASSERT_TRUE(ymul1);
  519. auto yconv = ymul0->input(0)->owner_opr();
  520. if (!yconv->same_type<opr::Convolution>())
  521. {
  522. yconv = ymul0->input(1)->owner_opr();
  523. }
  524. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  525. if (ymul1->input(0) != yconv->output(0))
  526. {
  527. ASSERT_EQ(yconv->output(0), ymul1->input(1));
  528. }
  529. ASSERT_EQ(x.node(), yconv->input(0));
  530. }
  531. TEST(TestGoptInference, ParamFuseBiasMerge) {
  532. HostTensorGenerator<> gen;
  533. auto graph = ComputingGraph::make();
  534. graph->options().graph_opt_level = 0;
  535. auto mkvar = [&](const char* name, const TensorShape& shp) {
  536. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  537. };
  538. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  539. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  540. };
  541. auto x = mkvar("x", {6, 3, 8, 8}), w1 = mkcvar("w1", {4, 3, 3, 3}),
  542. w2 = mkcvar("w2", {4, 3, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  543. b2 = mkcvar("b2", {1, 4, 1, 1}),
  544. y1 = opr::Convolution::make(x, w1) + b1,
  545. y2 = opr::Convolution::make(x, w2) + b2, y = y1 + y2;
  546. SymbolVar y_opt;
  547. unpack_vector(gopt::optimize_for_inference({y}), y_opt);
  548. HostTensorND host_y, host_y_opt;
  549. auto func = graph->compile({make_callback_copy(y, host_y),
  550. make_callback_copy(y_opt, host_y_opt)});
  551. func->execute();
  552. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  553. graph->compile({{y_opt, {}}})
  554. ->to_json()
  555. ->writeto_fpath(
  556. output_file("TestGoptInference.ParamFuseConvMerge.json"));
  557. auto chain = gopt::extract_opr_leaves(
  558. y_opt.node(), [](cg::OperatorNodeBase* opr) {
  559. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  560. });
  561. ASSERT_EQ(3u, chain.size());
  562. }
  563. TEST(TestGoptInference, Float16IOFloat32Compute) {
  564. constexpr size_t INP_H = 10, INP_W = 10;
  565. HostTensorGenerator<> gen;
  566. auto graph = ComputingGraph::make();
  567. auto mkvar = [&](const char* name, const TensorShape& shp) {
  568. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  569. };
  570. graph->options().graph_opt_level = 0;
  571. auto a = mkvar("a", {1, 4, INP_H, INP_W}),
  572. s0 = mkvar("s0", {20, 3, INP_H, INP_W}),
  573. s1 = mkvar("s1", {4, 3, 1, 1});
  574. auto b = opr::Convolution::make(s0, s1, {}, {});
  575. auto y = a + b;
  576. y = opr::Concat::make({y, -y}, 0);
  577. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  578. SymbolVar y_opt;
  579. auto options = gopt::OptimizeForInferenceOptions{};
  580. options.enable_f16_io_f32_comp();
  581. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  582. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  583. HostTensorND host_y, host_y_opt;
  584. auto func = graph->compile({make_callback_copy(y, host_y),
  585. make_callback_copy(y_opt, host_y_opt)});
  586. func->execute();
  587. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  588. }
  589. TEST(TestGoptInference, Float16IOFloat32ComputeWarpPerspective) {
  590. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  591. HostTensorGenerator<> gen;
  592. auto graph = ComputingGraph::make();
  593. auto mkvar = [&](const char* name, const TensorShape& shp) {
  594. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  595. };
  596. graph->options().graph_opt_level = 0;
  597. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  598. float value1 = M_PI, value2 = 0.6;
  599. auto gen_mat = [&](HostTensorND& mat) {
  600. auto ptr = mat.ptr<float>();
  601. for (size_t i = 0; i < N; ++i) {
  602. auto rot = value1, scale = value2, sheer = value1, dy = value2,
  603. dx = value2, ky = value2, kx = value2, kb = value2;
  604. ptr[0] = ptr[4] = cos(rot) * scale;
  605. ptr[1] = -(ptr[3] = sin(rot) * scale);
  606. ptr[3] *= sheer;
  607. ptr[4] *= sheer;
  608. ptr[2] = dx;
  609. ptr[5] = dy;
  610. ptr[6] = kx;
  611. ptr[7] = ky;
  612. ptr[8] = kb;
  613. ptr += 9;
  614. }
  615. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  616. };
  617. auto mat_host = std::make_shared<HostTensorND>(
  618. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  619. gen_mat(*mat_host);
  620. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  621. TensorShape out_shp{20, 20};
  622. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  623. SymbolVar y_opt;
  624. auto options = gopt::OptimizeForInferenceOptions{};
  625. options.enable_f16_io_f32_comp();
  626. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  627. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  628. HostTensorND host_y, host_y_opt;
  629. auto func = graph->compile({make_callback_copy(y, host_y),
  630. make_callback_copy(y_opt, host_y_opt)});
  631. func->execute();
  632. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  633. }
  634. TEST(TestGoptInference, Float16IOFloat32ComputeRemap) {
  635. auto cn = CompNode::load("cpu1");
  636. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  637. HostTensorGenerator<> gen;
  638. auto graph = ComputingGraph::make();
  639. auto mkvar = [&](const char* name, const TensorShape& shp) {
  640. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  641. };
  642. graph->options().graph_opt_level = 0;
  643. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  644. auto gen_map = [&](HostTensorND& mat) {
  645. auto ptr = mat.ptr<float>();
  646. for(size_t n = 0; n < N; ++n){
  647. for(int h = 0; h < 5; ++h){
  648. for(int w = 0; w < 5; ++w){
  649. *ptr++ = (h * 5 * 2) + 5 * 2 + 0;
  650. *ptr++ = (h * 5 * 2) + 5 * 2 + 1;
  651. }
  652. }
  653. }
  654. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  655. };
  656. auto map_host = std::make_shared<HostTensorND>(
  657. a.node()->comp_node(), TensorShape{N, 5, 5, 2}, dtype::Float32());
  658. gen_map(*map_host);
  659. auto map = opr::Host2DeviceCopy::make(*graph, map_host).rename("map");
  660. auto y = opr::Remap::make(a, map);
  661. SymbolVar y_opt;
  662. auto options = gopt::OptimizeForInferenceOptions{};
  663. options.enable_f16_io_f32_comp();
  664. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  665. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  666. HostTensorND host_y, host_y_opt;
  667. auto func = graph->compile({make_callback_copy(y, host_y),
  668. make_callback_copy(y_opt, host_y_opt)});
  669. func->execute();
  670. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  671. }
  672. TEST(TestGoptInference, Uint8IOFloat16ComputeWarpPerspective) {
  673. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  674. HostTensorGenerator<dtype::Uint8> gen_uint8;
  675. auto graph = ComputingGraph::make();
  676. auto mkvar = [&](const char* name, const TensorShape& shp) {
  677. return opr::Host2DeviceCopy::make(*graph, gen_uint8(shp)).rename(name);
  678. };
  679. graph->options().graph_opt_level = 0;
  680. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  681. float value1 = M_PI, value2 = 0.6;
  682. auto gen_mat = [&](HostTensorND& mat) {
  683. auto ptr = mat.ptr<float>();
  684. for (size_t i = 0; i < N; ++i) {
  685. auto rot = value1, scale = value2, sheer = value1, dy = value2,
  686. dx = value2, ky = value2, kx = value2, kb = value2;
  687. ptr[0] = ptr[4] = cos(rot) * scale;
  688. ptr[1] = -(ptr[3] = sin(rot) * scale);
  689. ptr[3] *= sheer;
  690. ptr[4] *= sheer;
  691. ptr[2] = dx;
  692. ptr[5] = dy;
  693. ptr[6] = kx;
  694. ptr[7] = ky;
  695. ptr[8] = kb;
  696. ptr += 9;
  697. }
  698. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  699. };
  700. auto mat_host = std::make_shared<HostTensorND>(
  701. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  702. gen_mat(*mat_host);
  703. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  704. TensorShape out_shp{20, 20};
  705. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  706. SymbolVar y_opt;
  707. auto options = gopt::OptimizeForInferenceOptions{};
  708. options.enable_f16_io_comp();
  709. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  710. ASSERT_EQ(y_opt.dtype(), dtype::Uint8());
  711. HostTensorND host_y, host_y_opt;
  712. auto func = graph->compile({make_callback_copy(y, host_y),
  713. make_callback_copy(y_opt, host_y_opt)});
  714. func->execute();
  715. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  716. }
  717. TEST(TestGoptInference, Float32TOFloat16) {
  718. CompNode cn = CompNode::load("cpu0");
  719. HostTensorGenerator<> gen(0, 1, 0);
  720. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  721. host_x2 = gen({4, 3, 1, 1}, cn);
  722. auto graph = ComputingGraph::make();
  723. auto make_f32_to_f16_graph = [&]() {
  724. graph->options().graph_opt_level = 0;
  725. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  726. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  727. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  728. auto b = opr::Convolution::make(d1, d2, {}, {});
  729. auto y = d0 + b;
  730. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  731. SymbolVar y_opt;
  732. auto options = gopt::OptimizeForInferenceOptions{};
  733. options.enable_f16_io_comp();
  734. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  735. return y_opt;
  736. };
  737. auto make_f16_graph = [&]() {
  738. auto d0 = opr::TypeCvt::make(
  739. opr::Host2DeviceCopy::make(*graph, host_x0),
  740. dtype::Float16{}),
  741. d1 = opr::TypeCvt::make(
  742. opr::Host2DeviceCopy::make(*graph, host_x1),
  743. dtype::Float16{}),
  744. d2 = opr::TypeCvt::make(
  745. opr::SharedDeviceTensor::make(*graph, *host_x2),
  746. dtype::Float16{});
  747. auto b = opr::Convolution::make(d1, d2, {}, {});
  748. SymbolVar y = d0 + b;
  749. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  750. y = opr::TypeCvt::make(y, dtype::Float32{});
  751. return y;
  752. };
  753. auto y_opt = make_f32_to_f16_graph();
  754. auto y = make_f16_graph();
  755. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  756. ASSERT_EQ(y.dtype(), dtype::Float32{});
  757. HostTensorND host_y_opt, host_y;
  758. auto func = graph->compile({make_callback_copy(y, host_y),
  759. make_callback_copy(y_opt, host_y_opt)});
  760. func->execute();
  761. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  762. }
  763. TEST(TestGoptInference, Float32TOFloat16C32) {
  764. CompNode cn = CompNode::load("cpu0");
  765. HostTensorGenerator<> gen(0, 1, 0);
  766. auto host_x0 = gen({1, 4, 1, 1}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  767. host_x2 = gen({4, 3, 1, 1}, cn);
  768. auto graph = ComputingGraph::make();
  769. auto make_f32_to_f16_graph = [&]() {
  770. graph->options().graph_opt_level = 0;
  771. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  772. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  773. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  774. auto y = opr::ConvBias::make(d1, d2, d0);
  775. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  776. SymbolVar y_opt;
  777. auto options = gopt::OptimizeForInferenceOptions{};
  778. options.enable_f16_io_f32_comp();
  779. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  780. return y_opt;
  781. };
  782. auto make_f16_graph = [&]() {
  783. auto d0 = opr::TypeCvt::make(opr::TypeCvt::make(
  784. opr::Host2DeviceCopy::make(*graph, host_x0),
  785. dtype::Float16{}), dtype::Float32{}),
  786. d1 = opr::TypeCvt::make(opr::TypeCvt::make(
  787. opr::Host2DeviceCopy::make(*graph, host_x1),
  788. dtype::Float16{}), dtype::Float32{}),
  789. d2 = opr::TypeCvt::make(opr::TypeCvt::make(
  790. opr::SharedDeviceTensor::make(*graph, *host_x2),
  791. dtype::Float16{}), dtype::Float32{});
  792. auto y = opr::ConvBias::make(d1, d2, d0);
  793. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  794. y = opr::TypeCvt::make(
  795. opr::TypeCvt::make(y, dtype::Float16{}),
  796. dtype::Float32{});
  797. return y;
  798. };
  799. auto y_opt = make_f32_to_f16_graph();
  800. auto y = make_f16_graph();
  801. ASSERT_EQ(find_opr<opr::ConvBias>(y_opt).param().compute_mode,
  802. opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32);
  803. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  804. ASSERT_EQ(y.dtype(), dtype::Float32{});
  805. HostTensorND host_y_opt, host_y;
  806. auto func = graph->compile({make_callback_copy(y, host_y),
  807. make_callback_copy(y_opt, host_y_opt)});
  808. func->execute();
  809. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  810. }
  811. TEST(TestGoptInference, Float32TOFloat16EndpointElemwise) {
  812. CompNode cn = CompNode::load("cpu0");
  813. HostTensorGenerator<> gen(0, 1, 0);
  814. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  815. host_x2 = gen({4, 3, 1, 1}, cn);
  816. auto graph = ComputingGraph::make();
  817. auto make_f32_to_f16_graph = [&]() {
  818. graph->options().graph_opt_level = 0;
  819. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  820. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  821. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  822. auto b = opr::Convolution::make(d1, d2, {}, {});
  823. auto y = d0 + b;
  824. SymbolVar y_opt;
  825. auto options = gopt::OptimizeForInferenceOptions{};
  826. options.enable_f16_io_comp();
  827. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  828. return y_opt;
  829. };
  830. auto make_f16_graph = [&]() {
  831. auto d0 = opr::TypeCvt::make(
  832. opr::Host2DeviceCopy::make(*graph, host_x0),
  833. dtype::Float16{}),
  834. d1 = opr::TypeCvt::make(
  835. opr::Host2DeviceCopy::make(*graph, host_x1),
  836. dtype::Float16{}),
  837. d2 = opr::TypeCvt::make(
  838. opr::SharedDeviceTensor::make(*graph, *host_x2),
  839. dtype::Float16{});
  840. auto b = opr::Convolution::make(d1, d2, {}, {});
  841. SymbolVar y = d0 + b;
  842. y = opr::TypeCvt::make(y, dtype::Float32{});
  843. return y;
  844. };
  845. auto y_opt = make_f32_to_f16_graph();
  846. auto y = make_f16_graph();
  847. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  848. ASSERT_EQ(y.dtype(), dtype::Float32{});
  849. HostTensorND host_y_opt, host_y;
  850. auto func = graph->compile({make_callback_copy(y, host_y),
  851. make_callback_copy(y_opt, host_y_opt)});
  852. func->execute();
  853. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  854. }
  855. TEST(TestGoptInference, Float32TOFloat16Linspace) {
  856. CompNode cn = CompNode::load("cpu0");
  857. HostTensorGenerator<> gen(0, 1, 0);
  858. auto host_x = gen({3, 1}, cn);
  859. auto graph = ComputingGraph::make();
  860. auto make_f32_to_f16_graph = [&]() {
  861. graph->options().graph_opt_level = 0;
  862. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  863. auto xshp = opr::GetVarShape::make(x);
  864. auto cv = [&x](int v) { return x.make_scalar(v); };
  865. auto sub = [&xshp, &cv](int idx) {
  866. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  867. };
  868. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  869. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  870. auto y = opr::Reshape::make(lin, shp);
  871. auto mm = opr::MatrixMul::make(x, y);
  872. SymbolVar mm_opt;
  873. auto options = gopt::OptimizeForInferenceOptions{};
  874. options.enable_f16_io_comp();
  875. unpack_vector(gopt::optimize_for_inference({mm}, options), mm_opt);
  876. return mm_opt;
  877. };
  878. auto make_f16_graph = [&]() {
  879. auto x = opr::TypeCvt::make(opr::Host2DeviceCopy::make(*graph, host_x),
  880. dtype::Float16());
  881. auto xshp = opr::GetVarShape::make(x);
  882. auto cv = [&x](int v) { return x.make_scalar(v); };
  883. auto sub = [&xshp, &cv](int idx) {
  884. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  885. };
  886. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  887. lin = opr::TypeCvt::make(lin, dtype::Float16());
  888. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  889. auto y = opr::Reshape::make(lin, shp);
  890. auto mm = opr::MatrixMul::make(x, y);
  891. mm = opr::TypeCvt::make(mm, dtype::Float32{});
  892. return mm;
  893. };
  894. auto y_opt = make_f32_to_f16_graph();
  895. auto y = make_f16_graph();
  896. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  897. ASSERT_EQ(y.dtype(), dtype::Float32{});
  898. HostTensorND host_y_opt, host_y;
  899. auto func = graph->compile({make_callback_copy(y, host_y),
  900. make_callback_copy(y_opt, host_y_opt)});
  901. func->execute();
  902. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  903. }
  904. TEST(TestGoptInference, Float32TOFloat16Endpoints) {
  905. HostTensorGenerator<> gen;
  906. auto graph = ComputingGraph::make();
  907. auto mkvar = [&](const char* name, const TensorShape& shp) {
  908. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  909. };
  910. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  911. return opr::SharedDeviceTensor::make(*graph, *gen(shp))
  912. .rename(name);
  913. };
  914. graph->options().graph_opt_level = 0;
  915. opr::Convolution::Param param;
  916. param.pad_h = param.pad_w = 0;
  917. auto x = mkvar("x", {8, 8, 8, 8}),
  918. y = mkvar("y", {8, 8, 8, 8}),
  919. w = mkcvar("w", {4, 8, 3, 3}),
  920. z = opr::Convolution::make(x + y, w, param);
  921. auto options = gopt::OptimizeForInferenceOptions{};
  922. options.enable_f16_io_f32_comp();
  923. SymbolVarArray out = gopt::optimize_for_inference({x + y, z}, options);
  924. ASSERT_EQ(out[0].dtype(), dtype::Float32());
  925. ASSERT_EQ(out[1].dtype(), dtype::Float32());
  926. ASSERT_EQ(out[0].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
  927. ASSERT_EQ(out[1].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
  928. }
  929. TEST(TestGoptInference, ConvertFormatNHWCD4) {
  930. // hwcd4 is only supported in naive handle
  931. NaiveMegDNNHandleScope naive_megdnn_handle;
  932. HostTensorGenerator<> gen;
  933. auto cn = CompNode::load("cpu0");
  934. auto graph = ComputingGraph::make();
  935. graph->options().graph_opt_level = 0;
  936. auto mkvar = [&](const char* name, const TensorShape& shp) {
  937. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  938. };
  939. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  940. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  941. .rename(name);
  942. };
  943. auto host_x = gen({8, 8, 8, 8}, cn);
  944. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  945. opr::Convolution::Param param;
  946. param.pad_h = param.pad_w = 0;
  947. auto w1 = mkcvar("w1", {4, 8, 3, 3}),
  948. conv = opr::Convolution::make(x, w1, param);
  949. auto shape_of = opr::GetVarShape::make(conv);
  950. auto subtensor = opr::Subtensor::make(
  951. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  952. 0, x.make_scalar(2), None, x.make_scalar(1))});
  953. opr::Resize::Param param_resize;
  954. param_resize.format = opr::Resize::Param::Format::NCHW;
  955. auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
  956. auto mat = mkcvar("mat", {8, 3, 3}),
  957. warp = opr::WarpPerspectiveForward::make(
  958. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  959. auto b = mkvar("b", {1, 4, 1, 1}),
  960. elem = opr::Elemwise::make({warp + b},
  961. opr::Elemwise::Param::Mode::RELU);
  962. param.pad_h = param.pad_w = 1;
  963. auto w2 = mkcvar("w2", {4, 4, 3, 3}),
  964. y = opr::Convolution::make(elem, w2, param);
  965. SymbolVar y_opt;
  966. auto options = gopt::OptimizeForInferenceOptions{};
  967. options.enable_nhwcd4();
  968. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  969. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  970. find_opr<opr::Convolution>(y_opt).param().format);
  971. graph->compile({{y_opt, {}}})
  972. ->to_json()
  973. ->writeto_fpath(
  974. output_file("TestGoptInference.ConvertFormatNHWCD4.json"));
  975. HostTensorND host_y_opt, host_y;
  976. auto func = graph->compile({make_callback_copy(y, host_y),
  977. make_callback_copy(y_opt, host_y_opt)});
  978. func->execute();
  979. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  980. *host_x = *gen({8, 8, 16, 16}, cn);
  981. func->execute();
  982. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  983. }
  984. TEST(TestGoptInference, ConvertFormatNHWCD4LOCAL) {
  985. // hwcd4 is only supported in naive handle
  986. NaiveMegDNNHandleScope naive_megdnn_handle;
  987. HostTensorGenerator<> gen;
  988. auto cn = CompNode::load("cpu0");
  989. auto graph = ComputingGraph::make();
  990. graph->options().graph_opt_level = 0;
  991. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  992. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  993. .rename(name);
  994. };
  995. auto host_x = gen({2, 8, 8, 16}, cn);
  996. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  997. opr::Convolution::Param param;
  998. param.pad_h = param.pad_w = 1;
  999. auto w1 = mkcvar("w1", {4, 8, 3, 3}),
  1000. conv1 = opr::Convolution::make(x, w1, param);
  1001. auto w2 = mkcvar("w2", {8, 16, 4, 3, 3, 4}),
  1002. local = opr::Local::make(conv1, w2, param);
  1003. auto w3 = mkcvar("w3", {4, 4, 3, 3}),
  1004. conv2 = opr::Convolution::make(local, w3, param);
  1005. opr::GroupLocal::Param param_group_local;
  1006. param_group_local.pad_h = param_group_local.pad_w = 1;
  1007. auto w4 = mkcvar("w4", {2, 8, 16, 2, 3, 3, 2}),
  1008. group_local = opr::GroupLocal::make(conv2, w4, param_group_local);
  1009. auto w5 = mkcvar("w5", {4, 4, 3, 3}),
  1010. y = opr::Convolution::make(group_local, w5, param);
  1011. SymbolVar y_opt;
  1012. auto options = gopt::OptimizeForInferenceOptions{};
  1013. options.enable_nhwcd4();
  1014. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1015. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  1016. find_opr<opr::Convolution>(y_opt).param().format);
  1017. ASSERT_EQ(opr::Local::Param::Format::NCHW,
  1018. find_opr<opr::Local>(y_opt).param().format);
  1019. ASSERT_EQ(opr::GroupLocal::Param::Format::NCHW,
  1020. find_opr<opr::GroupLocal>(y_opt).param().format);
  1021. graph->compile({{y_opt, {}}})
  1022. ->to_json()
  1023. ->writeto_fpath(output_file(
  1024. "TestGoptInference.ConvertFormatNHWCD4LOCAL.json"));
  1025. HostTensorND host_y_opt, host_y;
  1026. auto func = graph->compile({make_callback_copy(y, host_y),
  1027. make_callback_copy(y_opt, host_y_opt)});
  1028. func->execute();
  1029. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1030. }
  1031. TEST(TestGoptInference, ConvertFormatNHWCD4Deconv) {
  1032. // hwcd4 is only supported in naive handle
  1033. NaiveMegDNNHandleScope naive_megdnn_handle;
  1034. HostTensorGenerator<> gen;
  1035. auto cn = CompNode::load("cpu0");
  1036. auto graph = ComputingGraph::make();
  1037. graph->options().graph_opt_level = 0;
  1038. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1039. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1040. .rename(name);
  1041. };
  1042. auto host_x = gen({8, 8, 8, 8}, cn);
  1043. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1044. opr::Convolution::Param param;
  1045. param.pad_h = param.pad_w = 0;
  1046. auto w0 = mkcvar("w1", {4, 8, 2, 2}),
  1047. conv = opr::Convolution::make(x, w0, param);
  1048. auto w1 = mkcvar("w1", {4, 1, 2, 2}),
  1049. y = opr::ConvolutionBackwardData::make(w1, conv, param, {}, {});
  1050. SymbolVar y_opt;
  1051. auto options = gopt::OptimizeForInferenceOptions{};
  1052. options.enable_nhwcd4();
  1053. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1054. ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
  1055. find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
  1056. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  1057. find_opr<opr::Convolution>(y_opt).param().format);
  1058. HostTensorND host_y_opt, host_y;
  1059. auto func = graph->compile({make_callback_copy(y, host_y),
  1060. make_callback_copy(y_opt, host_y_opt)});
  1061. func->execute();
  1062. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1063. }
  1064. TEST(TestGoptInference, ConvertFormatNHWCD4Qint8) {
  1065. // hwcd4 is only supported in naive handle
  1066. NaiveMegDNNHandleScope naive_megdnn_handle;
  1067. HostTensorGenerator<> gen;
  1068. auto cn = CompNode::load("cpu0");
  1069. auto graph = ComputingGraph::make();
  1070. graph->options().graph_opt_level = 0;
  1071. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1072. const DType& dtype) {
  1073. return opr::TypeCvt::make(
  1074. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1075. .rename(name),
  1076. dtype);
  1077. };
  1078. auto host_x = gen({8, 8, 8, 8}, cn);
  1079. auto _x = opr::Host2DeviceCopy::make(*graph, host_x),
  1080. x = opr::TypeCvt::make(_x, dtype::QuantizedS8(0.2f));
  1081. opr::ConvBias::Param param;
  1082. param.pad_h = param.pad_w = 0;
  1083. auto w = mkcvar("w", {4, 8, 3, 3}, dtype::QuantizedS8(0.1f)),
  1084. b = mkcvar("b", {1, 4, 1, 1}, dtype::QuantizedS32(0.02f)),
  1085. y = opr::ConvBias::make(
  1086. x, w, b, param, {},
  1087. OperatorNodeConfig{dtype::QuantizedS8(0.2f)});
  1088. SymbolVar y_opt;
  1089. auto options = gopt::OptimizeForInferenceOptions{};
  1090. options.enable_nhwcd4();
  1091. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1092. ASSERT_EQ(opr::ConvBias::Param::Format::NHWCD4,
  1093. find_opr<opr::ConvBias>(y_opt).param().format);
  1094. graph->compile({{y_opt, {}}})
  1095. ->to_json()
  1096. ->writeto_fpath(output_file(
  1097. "TestGoptInference.ConvertFormatNHWCD4Qint8.json"));
  1098. auto float_y = opr::TypeCvt::make(y, dtype::Float32()),
  1099. float_y_opt = opr::TypeCvt::make(y_opt, dtype::Float32());
  1100. HostTensorND host_y_opt, host_y;
  1101. auto func = graph->compile({make_callback_copy(float_y, host_y),
  1102. make_callback_copy(float_y_opt, host_y_opt)});
  1103. func->execute();
  1104. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1105. }
  1106. TEST(TestGoptInference, ConvertFormatPadIC) {
  1107. // hwcd4 is only supported in naive handle
  1108. NaiveMegDNNHandleScope naive_megdnn_handle;
  1109. HostTensorGenerator<> gen;
  1110. auto cn = CompNode::load("cpu0");
  1111. auto graph = ComputingGraph::make();
  1112. graph->options().graph_opt_level = 0;
  1113. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1114. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1115. .rename(name);
  1116. };
  1117. auto host_inp1 = gen({1, 6, 128, 128}, cn),
  1118. host_inp2 = gen({1, 6, 256, 256}, cn);
  1119. auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
  1120. inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);
  1121. auto shape_tmp = mkcvar("tmp", {256, 256});
  1122. auto shape_of = opr::GetVarShape::make(shape_tmp);
  1123. opr::Resize::Param param_resize;
  1124. param_resize.format = opr::Resize::Param::Format::NCHW;
  1125. auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);
  1126. auto concat = opr::Concat::make({inp2, resize}, 1);
  1127. opr::Convolution::Param param;
  1128. param.pad_h = param.pad_w = 1;
  1129. param.sparse = opr::Convolution::Param::Sparse::DENSE;
  1130. auto w1 = mkcvar("w1", {12, 12, 3, 3});
  1131. auto y = opr::Convolution::make(concat, w1, param);
  1132. SymbolVar y_opt;
  1133. auto options = gopt::OptimizeForInferenceOptions{};
  1134. options.enable_nhwcd4();
  1135. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1136. HostTensorND host_y_opt, host_y;
  1137. auto func = graph->compile({make_callback_copy(y, host_y),
  1138. make_callback_copy(y_opt, host_y_opt)});
  1139. func->execute();
  1140. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1141. }
  1142. TEST(TestGoptInference, ConvertBatchNormPass) {
  1143. auto cn = CompNode::load("cpu0");
  1144. HostTensorGenerator<> gen(0, 1, 0);
  1145. auto graph = ComputingGraph::make();
  1146. graph->options().graph_opt_level = 0;
  1147. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1148. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1149. };
  1150. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1151. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1152. .rename(name);
  1153. };
  1154. using Param = opr::BatchNorm::Param;
  1155. Param param(Param::ParamDim::DIM_1C11, Param::FwdMode::INFERENCE);
  1156. TensorShape shp = {1, 3, 1, 1};
  1157. auto x = mkvar("x", {2, 3, 16, 24}), scale = mkcvar("scale", shp),
  1158. bias = mkcvar("bias", shp), mean = mkcvar("mean", shp);
  1159. auto host_variance = gen(shp, cn);
  1160. for (size_t i = 0; i < shp.total_nr_elems(); ++i) {
  1161. host_variance->ptr<float>()[i] =
  1162. std::abs(host_variance->ptr<float>()[i]);
  1163. }
  1164. auto variance = opr::SharedDeviceTensor::make(*graph, *host_variance)
  1165. .rename("variance");
  1166. auto y = opr::BatchNorm::make(x, scale, bias, mean, variance, param)[4];
  1167. SymbolVar y_opt;
  1168. unpack_vector(gopt::optimize_for_inference(
  1169. {y}, gopt::OptimizeForInferenceOptions{}),
  1170. y_opt);
  1171. ASSERT_EQ(0u, find_opr_num<opr::BatchNorm>(y_opt));
  1172. graph->compile({{y_opt, {}}})
  1173. ->to_json()
  1174. ->writeto_fpath(
  1175. output_file("TestGoptInference.ConvertBatchNormPass.json"));
  1176. HostTensorND host_y, host_y_opt;
  1177. auto func = graph->compile({make_callback_copy(y, host_y),
  1178. make_callback_copy(y_opt, host_y_opt)});
  1179. func->execute();
  1180. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-2);
  1181. }
  1182. TEST(TestGoptInference, ConvBiasNonlinearityFusePass) {
  1183. // hwcd4 is only supported in naive handle
  1184. NaiveMegDNNHandleScope naive_megdnn_handle;
  1185. auto cn = CompNode::load("cpu0");
  1186. HostTensorGenerator<> gen;
  1187. auto graph = ComputingGraph::make();
  1188. graph->options().graph_opt_level = 0;
  1189. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1190. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1191. };
  1192. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1193. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1194. .rename(name);
  1195. };
  1196. opr::Convolution::Param param;
  1197. auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
  1198. w2 = mkcvar("w2", {4, 4, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  1199. b2 = mkcvar("b2", {1, 4, 1, 1}), w3 = mkcvar("w3", {8, 4, 1, 1}),
  1200. y_cut = opr::Convolution::make(x, w1, param),
  1201. y1 = opr::Elemwise::make({y_cut + b1},
  1202. opr::Elemwise::Param::Mode::RELU);
  1203. param.pad_w = param.pad_h = 1;
  1204. auto y2 = opr::Elemwise::make({opr::Convolution::make(y1, w2, param) + b2},
  1205. opr::Elemwise::Param::Mode::SIGMOID);
  1206. param.pad_w = param.pad_h = 0;
  1207. auto y3 = opr::Convolution::make(y2, w3, param), y_tmp = y3 + x,
  1208. y_expand =
  1209. opr::Elemwise::make({y_cut}, opr::Elemwise::Param::Mode::RELU),
  1210. y_y = opr::Convolution::make(y_expand, w3, param), y = y_y + y_tmp;
  1211. SymbolVar y_opt;
  1212. auto options = gopt::OptimizeForInferenceOptions{};
  1213. options.enable_nhwcd4().enable_fuse_conv_bias_nonlinearity();
  1214. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1215. ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
  1216. graph->compile({{y_opt, {}}})
  1217. ->to_json()
  1218. ->writeto_fpath(output_file(
  1219. "TestGoptInference.FuseConvBiasNonlinPass.json"));
  1220. HostTensorND host_y, host_y_opt;
  1221. auto func = graph->compile({make_callback_copy(y, host_y),
  1222. make_callback_copy(y_opt, host_y_opt)});
  1223. func->execute();
  1224. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1225. }
  1226. TEST(TestGoptInference, ParamMerge) {
  1227. auto cns = load_multiple_xpus(2);
  1228. HostTensorGenerator<> gen;
  1229. auto graph = ComputingGraph::make();
  1230. auto var0 = opr::SharedDeviceTensor::make(*graph, *gen({2, 3}, cns[0])),
  1231. var1 = opr::SharedDeviceTensor::make(*graph, *gen({1, 3}, cns[1])),
  1232. y = var0 + opr::Copy::make(var1, {cns[0]});
  1233. HostTensorND y_expected_val;
  1234. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1235. SymbolVar y_opt;
  1236. unpack_vector(gopt::GraphOptimizer{}
  1237. .add_pass<gopt::ParamMergePass>()
  1238. .apply({{y}})
  1239. .endpoint_vars(),
  1240. y_opt);
  1241. auto opr = y_opt.node()->owner_opr();
  1242. ASSERT_EQ(2u, opr->input().size());
  1243. ASSERT_EQ(2u,
  1244. find_opr<opr::MultipleDeviceTensorHolder>(y_opt).output().size());
  1245. HostTensorND y_got_val;
  1246. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1247. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1248. }
  1249. TEST(TestGoptInference, ParamMergeFormat) {
  1250. auto cns = load_multiple_xpus(2);
  1251. auto make_dv = [](const HostTensorND& hv) {
  1252. TensorLayout layout{hv.layout(), hv.layout().dtype,
  1253. megdnn::Image2DPack4TensorFormat::make_raw(1, 64)};
  1254. auto ret = std::make_shared<DeviceTensorND>(hv.comp_node(), layout);
  1255. ret->copy_from_fixlayout(hv).sync();
  1256. return ret;
  1257. };
  1258. HostTensorGenerator<> gen;
  1259. auto graph = ComputingGraph::make();
  1260. auto var0 = opr::SharedDeviceTensorWithFormat::make(
  1261. *graph, make_dv(*gen({2, 32}, cns[0]))),
  1262. var1 = opr::SharedDeviceTensorWithFormat::make(
  1263. *graph, make_dv(*gen({1, 32}, cns[1]))),
  1264. y = var0 + opr::Copy::make(var1, {cns[0]});
  1265. HostTensorND y_expected_val;
  1266. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1267. SymbolVar y_opt;
  1268. unpack_vector(gopt::GraphOptimizer{}
  1269. .add_pass<gopt::ParamMergePass>()
  1270. .apply({{y}})
  1271. .endpoint_vars(),
  1272. y_opt);
  1273. auto opr = y_opt.node()->owner_opr();
  1274. ASSERT_EQ(2u, opr->input().size());
  1275. ASSERT_EQ(2u, find_opr<opr::MultipleDeviceTensorWithFormatHolder>(y_opt)
  1276. .output()
  1277. .size());
  1278. HostTensorND y_got_val;
  1279. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1280. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1281. }
  1282. #if MGB_ENABLE_FASTRUN
  1283. TEST(TestGoptInference, AlgoProfile) {
  1284. HostTensorGenerator<> gen;
  1285. auto graph = ComputingGraph::make();
  1286. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1287. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1288. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1289. z = opr::Convolution::make(x, y);
  1290. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1291. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1292. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1293. gopt::enable_opr_algo_profiling_inplace({z + 2.3f});
  1294. ASSERT_EQ(S::PROFILE, conv.execution_policy().strategy);
  1295. }
  1296. #endif
  1297. TEST(TestGoptInference, ProfileCache) {
  1298. HostTensorGenerator<> gen;
  1299. auto graph = ComputingGraph::make();
  1300. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1301. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1302. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1303. z = opr::Convolution::make(x, y);
  1304. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1305. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1306. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1307. gopt::enable_opr_use_profiling_cache_inplace({z + 2.3f});
  1308. ASSERT_EQ(S::PROFILE_HEURISTIC, conv.execution_policy().strategy);
  1309. }
  1310. TEST(TestGoptInference, AlgoWorkspaceLimit) {
  1311. HostTensorGenerator<> gen;
  1312. auto graph = ComputingGraph::make();
  1313. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1314. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1315. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1316. z = opr::Convolution::make(x, y);
  1317. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1318. ASSERT_EQ(std::numeric_limits<uint64_t>::max(),
  1319. conv.execution_policy_transient().workspace_limit);
  1320. gopt::set_opr_algo_workspace_limit_inplace({z + 2.3f}, 10000u);
  1321. ASSERT_EQ(10000u, conv.execution_policy().workspace_limit);
  1322. }
  1323. TEST_PASS(FuseConvBiasNonlinPass, Basic) {
  1324. auto cn = CompNode::load("xpux");
  1325. HostTensorGenerator<dtype::Int8> gen;
  1326. auto graph = ComputingGraph::make();
  1327. graph->options().graph_opt_level = 0;
  1328. auto mkvar = [&](const char* name, const TensorShape& shp,
  1329. const DType& dtype) {
  1330. return opr::TypeCvt::make(
  1331. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1332. dtype);
  1333. };
  1334. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1335. const DType& dtype) {
  1336. return opr::TypeCvt::make(
  1337. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1338. .rename(name),
  1339. dtype);
  1340. };
  1341. for (auto format : {
  1342. opr::Convolution::Param::Format::NCHW,
  1343. opr::Convolution::Param::Format::NHWC,
  1344. opr::Convolution::Param::Format::NCHW4
  1345. }) {
  1346. opr::Convolution::Param param;
  1347. param.format = format;
  1348. SymbolVar x, w, b;
  1349. if (format == opr::Convolution::Param::Format::NHWC) {
  1350. x = mkvar("x", {20, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1351. w = mkcvar("w1", {24, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1352. b = mkcvar("b", {1, 1, 1, 24}, dtype::QuantizedS32(6.25f));
  1353. } else if (format == opr::Convolution::Param::Format::NCHW) {
  1354. x = mkvar("x", {20, 4, 20, 20}, dtype::QuantizedS8(2.5f)),
  1355. w = mkcvar("w1", {24, 4, 1, 1}, dtype::QuantizedS8(2.5f)),
  1356. b = mkcvar("b", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  1357. } else {
  1358. mgb_assert(format == opr::Convolution::Param::Format::NCHW4);
  1359. x = mkvar("x", {20, 1, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1360. w = mkcvar("w1", {24, 1, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1361. b = mkcvar("b", {1, 6, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1362. }
  1363. auto y = opr::Convolution::make(x, w, param);
  1364. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1365. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1366. opr::ConvBias::Param conv_bias_param;
  1367. conv_bias_param.format = format;
  1368. conv_bias_param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1369. auto concret_y = opr::ConvBias::make(
  1370. x, w, b, conv_bias_param, {},
  1371. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1372. check(concret_y, y);
  1373. }
  1374. }
  1375. #if MGB_CUDA
  1376. TEST(TestEnableTensorCore, SmallInputShape) {
  1377. REQUIRE_GPU(1);
  1378. auto cn = CompNode::load("gpu0");
  1379. cn.activate();
  1380. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1381. auto sm_ver = prop.major * 10 + prop.minor;
  1382. if (sm_ver < 75) {
  1383. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1384. "expected: %d)\n",
  1385. sm_ver, 75);
  1386. return;
  1387. }
  1388. HostTensorGenerator<dtype::Int8> gen;
  1389. auto graph = ComputingGraph::make();
  1390. graph->options().graph_opt_level = 0;
  1391. auto mkvar = [&](const char* name, const TensorShape& shp,
  1392. const DType& dtype) {
  1393. return opr::TypeCvt::make(
  1394. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1395. dtype);
  1396. };
  1397. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1398. const DType& dtype) {
  1399. return opr::TypeCvt::make(
  1400. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1401. .rename(name),
  1402. dtype);
  1403. };
  1404. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  1405. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1406. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1407. z = mkcvar("b1", {32, 16, 2, 4, 4}, dtype::QuantizedS8(2.5f));
  1408. opr::ConvBias::Param param;
  1409. param.format = opr::ConvBias::Param::Format::NCHW4;
  1410. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1411. param.stride_h = param.stride_w = 2;
  1412. param.pad_h = param.pad_w = 1;
  1413. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1414. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1415. y = opr::ConvBias::make(y, w, b, param, {},
  1416. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1417. y = opr::TypeCvt::make(y, dtype::Float32());
  1418. SymbolVar y_opt;
  1419. SymbolVar y_no_tc;
  1420. {
  1421. auto options = gopt::OptimizeForInferenceOptions{};
  1422. options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
  1423. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1424. }
  1425. {
  1426. auto options = gopt::OptimizeForInferenceOptions{};
  1427. options.enable_fuse_conv_bias_nonlinearity();
  1428. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1429. }
  1430. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1431. ASSERT_EQ(2u, nr_dimshuffle);
  1432. HostTensorND host_y, host_y_opt;
  1433. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1434. make_callback_copy(y_opt, host_y_opt)});
  1435. func->execute();
  1436. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1437. }
  1438. TEST(TestEnableTensorCore, Nchw4Nchw) {
  1439. REQUIRE_GPU(1);
  1440. auto cn = CompNode::load("gpu0");
  1441. cn.activate();
  1442. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1443. auto sm_ver = prop.major * 10 + prop.minor;
  1444. if (sm_ver < 75) {
  1445. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1446. "expected: %d)\n",
  1447. sm_ver, 75);
  1448. return;
  1449. }
  1450. HostTensorGenerator<dtype::Int8> gen;
  1451. auto graph = ComputingGraph::make();
  1452. graph->options().graph_opt_level = 0;
  1453. auto mkvar = [&](const char* name, const TensorShape& shp,
  1454. const DType& dtype) {
  1455. return opr::TypeCvt::make(
  1456. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1457. dtype);
  1458. };
  1459. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1460. const DType& dtype) {
  1461. return opr::TypeCvt::make(
  1462. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1463. .rename(name),
  1464. dtype);
  1465. };
  1466. auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C,
  1467. size_t H, size_t W) -> TensorShape {
  1468. mgb_assert(C % 4 == 0);
  1469. if (format == opr::ConvBias::Param::Format::NCHW4) {
  1470. return {N, C / 4, H, W, 4};
  1471. } else {
  1472. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  1473. return {N, C, H, W};
  1474. }
  1475. };
  1476. for (auto format : {opr::ConvBias::Param::Format::NCHW,
  1477. opr::ConvBias::Param::Format::NCHW4}) {
  1478. auto x = mkvar("x", mkshape(format, 32, 64, 16, 16),
  1479. dtype::QuantizedS8(2.5f)),
  1480. w = mkcvar("w1", mkshape(format, 64, 64, 3, 3),
  1481. dtype::QuantizedS8(2.5f)),
  1482. b = mkcvar("b", mkshape(format, 1, 64, 1, 1),
  1483. dtype::QuantizedS32(6.25f)),
  1484. z = mkcvar("b1", mkshape(format, 32, 64, 8, 8),
  1485. dtype::QuantizedS8(2.5f));
  1486. opr::ConvBias::Param param;
  1487. param.format = format;
  1488. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1489. param.stride_h = param.stride_w = 2;
  1490. param.pad_h = param.pad_w = 1;
  1491. auto y = opr::ConvBias::make(
  1492. x, w, b, z, param, {},
  1493. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1494. y = opr::ConvBias::make(y, w, b, param, {},
  1495. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1496. y = opr::TypeCvt::make(y, dtype::Float32());
  1497. SymbolVar y_opt;
  1498. SymbolVar y_no_tc;
  1499. {
  1500. auto options = gopt::OptimizeForInferenceOptions{};
  1501. options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
  1502. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1503. }
  1504. {
  1505. auto options = gopt::OptimizeForInferenceOptions{};
  1506. options.enable_fuse_conv_bias_nonlinearity();
  1507. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1508. }
  1509. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1510. std::string json_name;
  1511. ASSERT_EQ(2u, nr_dimshuffle);
  1512. if (format == opr::ConvBias::Param::Format::NCHW4) {
  1513. json_name = "TestGoptInference.Nchw4Nchw.NCHW4.json";
  1514. } else {
  1515. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  1516. json_name = "TestGoptInference.Nchw4Nchw.NCHW.json";
  1517. }
  1518. graph->compile({{y_opt, {}}})
  1519. ->to_json()
  1520. ->writeto_fpath(output_file(json_name.c_str()));
  1521. HostTensorND host_y, host_y_opt;
  1522. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1523. make_callback_copy(y_opt, host_y_opt)});
  1524. func->execute();
  1525. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1526. }
  1527. }
  1528. TEST(TestEnableTensorCore, ConvBiasWithZ) {
  1529. REQUIRE_GPU(1);
  1530. auto cn = CompNode::load("gpu0");
  1531. cn.activate();
  1532. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1533. auto sm_ver = prop.major * 10 + prop.minor;
  1534. if (sm_ver < 75) {
  1535. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1536. "expected: %d)\n",
  1537. sm_ver, 75);
  1538. return;
  1539. }
  1540. HostTensorGenerator<dtype::Int8> gen;
  1541. auto graph = ComputingGraph::make();
  1542. graph->options().graph_opt_level = 0;
  1543. auto mkvar = [&](const char* name, const TensorShape& shp,
  1544. const DType& dtype) {
  1545. return opr::TypeCvt::make(
  1546. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1547. dtype);
  1548. };
  1549. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1550. const DType& dtype) {
  1551. return opr::TypeCvt::make(
  1552. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1553. .rename(name),
  1554. dtype);
  1555. };
  1556. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1557. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1558. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1559. z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1560. opr::ConvBias::Param param;
  1561. param.format = opr::ConvBias::Param::Format::NCHW4;
  1562. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1563. param.stride_h = param.stride_w = 1;
  1564. param.pad_h = param.pad_w = 1;
  1565. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1566. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1567. y = opr::TypeCvt::make(y, dtype::Float32());
  1568. SymbolVar y_opt;
  1569. SymbolVar y_no_tc;
  1570. {
  1571. auto options = gopt::OptimizeForInferenceOptions{};
  1572. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1573. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1574. }
  1575. {
  1576. auto options = gopt::OptimizeForInferenceOptions{};
  1577. options.enable_fuse_conv_bias_nonlinearity();
  1578. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1579. }
  1580. HostTensorND host_y, host_y_opt;
  1581. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1582. make_callback_copy(y_opt, host_y_opt)});
  1583. func->execute();
  1584. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1585. }
  1586. TEST(TestGoptInference, EnableTensorCore) {
  1587. REQUIRE_GPU(1);
  1588. auto cn = CompNode::load("gpu0");
  1589. cn.activate();
  1590. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1591. auto sm_ver = prop.major * 10 + prop.minor;
  1592. if (sm_ver < 75) {
  1593. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1594. "expected: %d)\n",
  1595. sm_ver, 75);
  1596. return;
  1597. }
  1598. HostTensorGenerator<dtype::Int8> gen;
  1599. auto graph = ComputingGraph::make();
  1600. graph->options().graph_opt_level = 0;
  1601. auto mkvar = [&](const char* name, const TensorShape& shp,
  1602. const DType& dtype) {
  1603. return opr::TypeCvt::make(
  1604. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1605. dtype);
  1606. };
  1607. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1608. const DType& dtype) {
  1609. return opr::TypeCvt::make(
  1610. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1611. .rename(name),
  1612. dtype);
  1613. };
  1614. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1615. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1616. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1617. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1618. opr::Convolution::Param param;
  1619. param.format = opr::Convolution::Param::Format::NCHW4;
  1620. param.stride_h = param.stride_w = 1;
  1621. param.pad_h = param.pad_w = 1;
  1622. auto y = opr::Convolution::make(x, w, param);
  1623. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1624. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1625. auto y1 = y + b1, y2 = opr::Convolution::make(y, w, param),
  1626. y3 = opr::Elemwise::make({y - b1}, opr::Elemwise::Param::Mode::RELU);
  1627. y2 = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU),
  1628. y2 = opr::TypeCvt::make(y2, dtype::QuantizedS8(2.5f));
  1629. auto y4 = y1 + y2 + y3;
  1630. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  1631. SymbolVar y_opt;
  1632. SymbolVar y_no_tc;
  1633. {
  1634. auto options = gopt::OptimizeForInferenceOptions{};
  1635. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1636. unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
  1637. }
  1638. {
  1639. auto options = gopt::OptimizeForInferenceOptions{};
  1640. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1641. unpack_vector(gopt::optimize_for_inference({y4}, options), y_no_tc);
  1642. }
  1643. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1644. ASSERT_EQ(3u, nr_dimshuffle);
  1645. graph->compile({{y_opt, {}}})
  1646. ->to_json()
  1647. ->writeto_fpath(
  1648. output_file("TestGoptInference.EnableTensorCorePass.json"));
  1649. HostTensorND host_y, host_y_opt;
  1650. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1651. make_callback_copy(y_opt, host_y_opt)});
  1652. func->execute();
  1653. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1654. }
  1655. TEST(FuseConvBiasZPass, BlockFuse) {
  1656. REQUIRE_GPU(1);
  1657. auto cn = CompNode::load("gpu0");
  1658. cn.activate();
  1659. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1660. auto sm_ver = prop.major * 10 + prop.minor;
  1661. if (sm_ver < 61) {
  1662. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1663. "expected: %d)\n",
  1664. sm_ver, 61);
  1665. return;
  1666. }
  1667. HostTensorGenerator<dtype::Int8> gen;
  1668. auto graph = ComputingGraph::make();
  1669. graph->options().graph_opt_level = 0;
  1670. auto mkvar = [&](const char* name, const TensorShape& shp,
  1671. const DType& dtype) {
  1672. return opr::TypeCvt::make(
  1673. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1674. dtype);
  1675. };
  1676. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1677. const DType& dtype) {
  1678. return opr::TypeCvt::make(
  1679. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1680. .rename(name),
  1681. dtype);
  1682. };
  1683. using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
  1684. using NonlineMode = opr::ConvBias::Param::NonlineMode;
  1685. for (auto mode :
  1686. {ElemMultiMode::QFUSE_ADD_RELU, ElemMultiMode::QFUSE_ADD_H_SWISH}) {
  1687. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1688. w1 = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1689. b1 = mkcvar("b1", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1690. w2 = mkcvar("w2", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1691. b2 = mkcvar("b2", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1692. w3 = mkcvar("w3", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1693. b3 = mkcvar("b3", {1, 16, 1, 1, 4}, dtype::QuantizedS32(3.0f));
  1694. NonlineMode nonline_mode = NonlineMode::RELU;
  1695. if (mode == ElemMultiMode::QFUSE_ADD_H_SWISH) {
  1696. nonline_mode = NonlineMode::H_SWISH;
  1697. }
  1698. opr::ConvBias::Param param;
  1699. param.format = opr::Convolution::Param::Format::NCHW4;
  1700. param.nonlineMode = nonline_mode;
  1701. param.stride_h = param.stride_w = 1;
  1702. param.pad_h = param.pad_w = 1;
  1703. auto y1 = opr::ConvBias::make(
  1704. x, w1, b1, param, {},
  1705. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1706. param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
  1707. auto y2 = opr::ConvBias::make(
  1708. y1, w2, b2, param, {},
  1709. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1710. y3 = opr::ElemwiseMultiType::make(
  1711. {y1, y2}, {mode},
  1712. OperatorNodeConfig{dtype::QuantizedS8(1.2f)});
  1713. param.nonlineMode = nonline_mode;
  1714. auto y4 = opr::ConvBias::make(
  1715. y3, w3, b3, param, {},
  1716. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1717. z = opr::ElemwiseMultiType::make(
  1718. {y3, y4}, {opr::ElemwiseMultiType::Param::Mode::QADD},
  1719. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1720. z = opr::TypeCvt::make(z, dtype::Float32());
  1721. //! fuse z mannually
  1722. auto z0 = opr::ConvBias::make(
  1723. x, w1, b1, param, {},
  1724. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1725. auto z1 = opr::ConvBias::make(
  1726. z0, w2, b2, z0, param, {},
  1727. OperatorNodeConfig{dtype::QuantizedS8(1.2f)}),
  1728. z2 = opr::ConvBias::make(
  1729. z1, w3, b3, param, {},
  1730. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1731. z4 = opr::ElemwiseMultiType::make(
  1732. {z1, z2}, {opr::ElemwiseMultiType::Mode::QADD},
  1733. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1734. z4 = opr::TypeCvt::make(z4, dtype::Float32());
  1735. SymbolVar z_fuse;
  1736. SymbolVar z_nonfuse;
  1737. {
  1738. auto options = gopt::OptimizeForInferenceOptions{};
  1739. options.enable_fuse_conv_bias_nonlinearity()
  1740. .enable_fuse_conv_bias_with_z();
  1741. unpack_vector(gopt::optimize_for_inference({z}, options), z_fuse);
  1742. }
  1743. {
  1744. auto options = gopt::OptimizeForInferenceOptions{};
  1745. options.enable_fuse_conv_bias_nonlinearity();
  1746. unpack_vector(gopt::optimize_for_inference({z4}, options),
  1747. z_nonfuse);
  1748. }
  1749. auto nr_elem_multi_type =
  1750. find_opr_num<mgb::opr::ElemwiseMultiType>(z_fuse);
  1751. MGB_MARK_USED_VAR(nr_elem_multi_type);
  1752. ASSERT_EQ(1u, nr_elem_multi_type);
  1753. graph->compile({{z_fuse, {}}})
  1754. ->to_json()
  1755. ->writeto_fpath(
  1756. output_file("FuseConvBiasZPass.BlockFuse_fuse.json"));
  1757. graph->compile({{z_nonfuse, {}}})
  1758. ->to_json()
  1759. ->writeto_fpath(output_file(
  1760. "FuseConvBiasZPass.BlockFuse_nonfuse.json"));
  1761. HostTensorND host_z_fuse, host_z_nonfuse;
  1762. auto func =
  1763. graph->compile({make_callback_copy(z_nonfuse, host_z_nonfuse),
  1764. make_callback_copy(z_fuse, host_z_fuse)});
  1765. func->execute();
  1766. MGB_ASSERT_TENSOR_EQ(host_z_fuse, host_z_nonfuse);
  1767. }
  1768. }
  1769. TEST(TestEnableTensorCore, ShuffleMerge) {
  1770. REQUIRE_GPU(1);
  1771. auto cn = CompNode::load("gpu0");
  1772. cn.activate();
  1773. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1774. auto sm_ver = prop.major * 10 + prop.minor;
  1775. if (sm_ver < 75) {
  1776. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1777. "expected: %d)\n",
  1778. sm_ver, 75);
  1779. return;
  1780. }
  1781. HostTensorGenerator<dtype::Int8> gen;
  1782. auto graph = ComputingGraph::make();
  1783. graph->options().graph_opt_level = 0;
  1784. auto mkvar = [&](const char* name, const TensorShape& shp,
  1785. const DType& dtype) {
  1786. return opr::TypeCvt::make(
  1787. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1788. dtype);
  1789. };
  1790. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1791. const DType& dtype) {
  1792. return opr::TypeCvt::make(
  1793. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1794. .rename(name),
  1795. dtype);
  1796. };
  1797. auto nchw2nchw4 = [](SymbolVar x) {
  1798. auto xshp = opr::GetVarShape::make(x);
  1799. auto cv = [&x](int v) { return x.make_scalar(v); };
  1800. auto sub = [&xshp, &cv](int idx) {
  1801. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1802. };
  1803. auto tshp = opr::Concat::make(
  1804. {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  1805. auto y0 = opr::Reshape::make(x, tshp);
  1806. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  1807. return y1;
  1808. };
  1809. auto nchw42nchw = [](SymbolVar x) {
  1810. auto xshp = opr::GetVarShape::make(x);
  1811. auto cv = [&x](int v) { return x.make_scalar(v); };
  1812. auto sub = [&xshp, &cv](int idx) {
  1813. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1814. };
  1815. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  1816. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  1817. auto y1 = opr::Reshape::make(y0, tshp);
  1818. return y1;
  1819. };
  1820. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  1821. w = mkcvar("w1", {64, 64, 3, 3}, dtype::QuantizedS8(2.5f)),
  1822. b = mkcvar("b", {1, 64, 1, 1}, dtype::QuantizedS32(6.25f)),
  1823. z = mkvar("b1", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f));
  1824. x = nchw2nchw4(x), w = nchw2nchw4(w), b = nchw2nchw4(b), z= nchw2nchw4(z);
  1825. opr::ConvBias::Param param;
  1826. param.format = opr::ConvBias::Param::Format::NCHW4;
  1827. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1828. param.stride_h = param.stride_w = 1;
  1829. param.pad_h = param.pad_w = 1;
  1830. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1831. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1832. y = nchw42nchw(y);
  1833. y = opr::TypeCvt::make(y, dtype::Float32());
  1834. SymbolVar y_opt;
  1835. SymbolVar y_no_tc;
  1836. {
  1837. auto options = gopt::OptimizeForInferenceOptions{};
  1838. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1839. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1840. }
  1841. {
  1842. auto options = gopt::OptimizeForInferenceOptions{};
  1843. options.enable_fuse_conv_bias_nonlinearity();
  1844. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1845. }
  1846. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1847. ASSERT_EQ(3u, nr_dimshuffle);
  1848. HostTensorND host_y, host_y_opt;
  1849. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1850. make_callback_copy(y_opt, host_y_opt)});
  1851. func->execute();
  1852. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1853. }
  1854. #endif
  1855. TEST(FuseConvBiasZPass, Basic) {
  1856. REQUIRE_GPU(1);
  1857. auto cn = CompNode::load("gpu0");
  1858. HostTensorGenerator<dtype::Int8> gen;
  1859. auto graph = ComputingGraph::make();
  1860. graph->options().graph_opt_level = 0;
  1861. auto mkvar = [&](const char* name, const TensorShape& shp,
  1862. const DType& dtype) {
  1863. return opr::TypeCvt::make(
  1864. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1865. dtype);
  1866. };
  1867. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1868. const DType& dtype) {
  1869. return opr::TypeCvt::make(
  1870. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1871. .rename(name),
  1872. dtype);
  1873. };
  1874. auto format = opr::Convolution::Param::Format::NCHW4;
  1875. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1876. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1877. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1878. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1879. b2 = mkvar("b2", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1880. opr::ConvBias::Param conv_bias_param;
  1881. conv_bias_param.format = format;
  1882. conv_bias_param.stride_h = conv_bias_param.stride_w = 1;
  1883. conv_bias_param.pad_h = conv_bias_param.pad_w = 1;
  1884. auto y = opr::ConvBias::make(x, w, b, conv_bias_param, {},
  1885. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1886. SymbolVar y_opt;
  1887. // check fuse mode
  1888. for (auto mode : {opr::ElemwiseMultiType::Param::Mode::QADD,
  1889. opr::ElemwiseMultiType::Param::Mode::QMUL,
  1890. opr::ElemwiseMultiType::Param::Mode::QFUSE_ADD_RELU}) {
  1891. auto y1 = opr::ElemwiseMultiType::make(
  1892. {y, b1}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1893. {
  1894. auto options = gopt::OptimizeForInferenceOptions{};
  1895. options.enable_fuse_conv_bias_nonlinearity()
  1896. .enable_fuse_conv_bias_with_z()
  1897. .enable_nchw32();
  1898. unpack_vector(gopt::optimize_for_inference({y1}, options), y_opt);
  1899. }
  1900. auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
  1901. if (mode == opr::ElemwiseMultiType::Param::Mode::QMUL) {
  1902. ASSERT_NE(0u, nr_elemwisemultitype);
  1903. } else
  1904. ASSERT_EQ(0u, nr_elemwisemultitype);
  1905. // fuse convbiasz and z
  1906. if (mode == opr::ElemwiseMultiType::Param::Mode::QADD) {
  1907. auto y2 = opr::ElemwiseMultiType::make(
  1908. {y1, b2}, {mode},
  1909. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1910. {
  1911. auto options = gopt::OptimizeForInferenceOptions{};
  1912. options.enable_fuse_conv_bias_nonlinearity()
  1913. .enable_fuse_conv_bias_with_z()
  1914. .enable_nchw32();
  1915. unpack_vector(gopt::optimize_for_inference({y2}, options),
  1916. y_opt);
  1917. }
  1918. auto nr_elemwisemultitype =
  1919. find_opr_num<opr::ElemwiseMultiType>(y_opt);
  1920. ASSERT_NE(0u, nr_elemwisemultitype);
  1921. }
  1922. }
  1923. }
  1924. #if MGB_CUDA
  1925. TEST(TestGoptInference, EnableCHWN4) {
  1926. REQUIRE_GPU(1);
  1927. auto cn = CompNode::load("gpu0");
  1928. cn.activate();
  1929. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1930. auto sm_ver = prop.major * 10 + prop.minor;
  1931. if (sm_ver < 61) {
  1932. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1933. "expected: %d)\n",
  1934. sm_ver, 61);
  1935. return;
  1936. }
  1937. HostTensorGenerator<dtype::Int8> gen;
  1938. auto graph = ComputingGraph::make();
  1939. graph->options().graph_opt_level = 0;
  1940. auto mkvar = [&](const char* name, const TensorShape& shp,
  1941. const DType& dtype) {
  1942. return opr::TypeCvt::make(
  1943. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1944. dtype);
  1945. };
  1946. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1947. const DType& dtype) {
  1948. return opr::TypeCvt::make(
  1949. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1950. .rename(name),
  1951. dtype);
  1952. };
  1953. auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C,
  1954. size_t H, size_t W) -> TensorShape {
  1955. mgb_assert(C % 4 == 0);
  1956. if (format == opr::ConvBias::Param::Format::NCHW4) {
  1957. return {N, C / 4, H, W, 4};
  1958. } else {
  1959. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  1960. return {N, C, H, W};
  1961. }
  1962. };
  1963. for (auto format : {opr::ConvBias::Param::Format::NCHW,
  1964. opr::ConvBias::Param::Format::NCHW4}) {
  1965. auto x = mkvar("x", mkshape(format, 32, 64, 16, 16),
  1966. dtype::QuantizedS8(2.5f)),
  1967. w = mkcvar("w1", mkshape(format, 64, 64, 3, 3),
  1968. dtype::QuantizedS8(2.5f)),
  1969. b = mkcvar("b", mkshape(format, 1, 64, 1, 1),
  1970. dtype::QuantizedS32(6.25f)),
  1971. b1 = mkvar("b1", mkshape(format, 32, 64, 16, 16),
  1972. dtype::QuantizedS8(2.5f));
  1973. opr::ConvBias::Param param;
  1974. param.format = format;
  1975. param.stride_h = param.stride_w = 1;
  1976. param.pad_h = param.pad_w = 1;
  1977. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1978. auto y = opr::ConvBiasForward::make(
  1979. x, w, b, param, {},
  1980. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1981. auto y1 = opr::ElemwiseMultiType::make(
  1982. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  1983. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1984. auto y2 = opr::ConvBiasForward::make(
  1985. y, w, b, param, {},
  1986. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1987. auto y3 = opr::ElemwiseMultiType::make(
  1988. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  1989. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1990. auto y4 = opr::ElemwiseMultiType::make(
  1991. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  1992. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1993. y4 = opr::ElemwiseMultiType::make(
  1994. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  1995. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1996. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  1997. SymbolVar y_opt;
  1998. SymbolVar y_cudnn;
  1999. {
  2000. auto options = gopt::OptimizeForInferenceOptions{};
  2001. options.enable_chwn4();
  2002. unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
  2003. }
  2004. unpack_vector(gopt::GraphOptimizer{}
  2005. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2006. .add_pass<gopt::FuseConvBiasZPass>()
  2007. .apply({{y4}})
  2008. .endpoint_vars(),
  2009. y_cudnn);
  2010. ASSERT_EQ(opr::ConvBias::Param::Format::CHWN4,
  2011. find_opr<opr::ConvBias>(y_opt).param().format);
  2012. HostTensorND host_y, host_y_opt;
  2013. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  2014. make_callback_copy(y_opt, host_y_opt)});
  2015. func->execute();
  2016. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2017. }
  2018. }
  2019. TEST(TestGoptInference, EnableCHWN4WarpPespective) {
  2020. REQUIRE_GPU(1);
  2021. auto cn = CompNode::load("gpu0");
  2022. cn.activate();
  2023. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2024. auto sm_ver = prop.major * 10 + prop.minor;
  2025. if (sm_ver < 61) {
  2026. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2027. "expected: %d)\n",
  2028. sm_ver, 61);
  2029. return;
  2030. }
  2031. HostTensorGenerator<dtype::Int8> gen;
  2032. auto graph = ComputingGraph::make();
  2033. graph->options().graph_opt_level = 0;
  2034. auto mkvar = [&](const char* name, const TensorShape& shp,
  2035. const DType& dtype) {
  2036. return opr::TypeCvt::make(
  2037. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2038. dtype);
  2039. };
  2040. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2041. const DType& dtype) {
  2042. return opr::TypeCvt::make(
  2043. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2044. .rename(name),
  2045. dtype);
  2046. };
  2047. std::shared_ptr<HostTensorND> mat = std::make_shared<HostTensorND>(
  2048. cn, TensorShape{32, 3, 3}, dtype::Float32());
  2049. warp_perspective_mat_gen(*mat, 32, 16, 16);
  2050. auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
  2051. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2052. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2053. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  2054. opr::ConvBias::Param param;
  2055. param.format = opr::ConvBias::Param::Format::NCHW4;
  2056. param.stride_h = param.stride_w = 1;
  2057. param.pad_h = param.pad_w = 1;
  2058. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2059. auto y = opr::ConvBiasForward::make(
  2060. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2061. opr::WarpPerspective::Param warp_param;
  2062. warp_param.format = opr::WarpPerspective::Param::Format::NCHW4;
  2063. auto y1 = opr::WarpPerspective::make(y, mat_var, TensorShape{16, 16}, warp_param);
  2064. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  2065. auto nchw42nchw = [](SymbolVar x) {
  2066. auto xshp = opr::GetVarShape::make(x);
  2067. auto cv = [&x](int v) { return x.make_scalar(v); };
  2068. auto sub = [&xshp, &cv](int idx) {
  2069. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2070. };
  2071. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2072. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2073. auto y1 = opr::Reshape::make(y0, tshp);
  2074. return y1;
  2075. };
  2076. y1 = nchw42nchw(y1);
  2077. warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
  2078. auto y2 = opr::WarpPerspective::make(y1, mat_var, TensorShape{16, 16}, warp_param);
  2079. SymbolVar y_opt;
  2080. SymbolVar y_cudnn;
  2081. {
  2082. auto options = gopt::OptimizeForInferenceOptions{};
  2083. options.enable_chwn4();
  2084. unpack_vector(gopt::optimize_for_inference({y2}, options), y_opt);
  2085. }
  2086. unpack_vector(gopt::GraphOptimizer{}
  2087. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2088. .add_pass<gopt::FuseConvBiasZPass>()
  2089. .apply({{y2}})
  2090. .endpoint_vars(),
  2091. y_cudnn);
  2092. HostTensorND host_y, host_y_opt;
  2093. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  2094. make_callback_copy(y_opt, host_y_opt)});
  2095. func->execute();
  2096. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2097. }
  2098. TEST(TestGoptInference, EnableCHWN4Pooling) {
  2099. REQUIRE_GPU(1);
  2100. auto cn = CompNode::load("gpu0");
  2101. cn.activate();
  2102. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2103. auto sm_ver = prop.major * 10 + prop.minor;
  2104. if (sm_ver < 61) {
  2105. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2106. "expected: %d)\n",
  2107. sm_ver, 61);
  2108. return;
  2109. }
  2110. HostTensorGenerator<dtype::Int8> gen;
  2111. auto graph = ComputingGraph::make();
  2112. graph->options().graph_opt_level = 0;
  2113. auto mkvar = [&](const char* name, const TensorShape& shp,
  2114. const DType& dtype) {
  2115. return opr::TypeCvt::make(
  2116. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2117. dtype);
  2118. };
  2119. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2120. const DType& dtype) {
  2121. return opr::TypeCvt::make(
  2122. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2123. .rename(name),
  2124. dtype);
  2125. };
  2126. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2127. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2128. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  2129. opr::ConvBias::Param param;
  2130. param.format = opr::ConvBias::Param::Format::NCHW4;
  2131. param.stride_h = param.stride_w = 1;
  2132. param.pad_h = param.pad_w = 1;
  2133. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2134. auto y = opr::ConvBiasForward::make(
  2135. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2136. opr::Pooling::Param pool_param;
  2137. pool_param.format = opr::Pooling::Param::Format::NCHW4;
  2138. y = opr::Pooling::make(y, pool_param);
  2139. y = opr::TypeCvt::make(y, dtype::Float32());
  2140. auto nchw42nchw = [](SymbolVar x) {
  2141. auto xshp = opr::GetVarShape::make(x);
  2142. auto cv = [&x](int v) { return x.make_scalar(v); };
  2143. auto sub = [&xshp, &cv](int idx) {
  2144. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2145. };
  2146. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2147. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2148. auto y1 = opr::Reshape::make(y0, tshp);
  2149. return y1;
  2150. };
  2151. y = nchw42nchw(y);
  2152. pool_param.format = opr::Pooling::Param::Format::NCHW;
  2153. auto y1 = opr::Pooling::make(y, pool_param);
  2154. SymbolVar y_opt;
  2155. SymbolVar y_cudnn;
  2156. unpack_vector(
  2157. gopt::GraphOptimizer{}
  2158. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2159. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  2160. .add_pass<gopt::FuseConvBiasZPass>()
  2161. .apply({{y1}})
  2162. .endpoint_vars(),
  2163. y_opt);
  2164. unpack_vector(gopt::GraphOptimizer{}
  2165. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2166. .add_pass<gopt::FuseConvBiasZPass>()
  2167. .apply({{y1}})
  2168. .endpoint_vars(),
  2169. y_cudnn);
  2170. HostTensorND host_y, host_y_opt;
  2171. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  2172. make_callback_copy(y_opt, host_y_opt)});
  2173. func->execute();
  2174. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2175. }
  2176. TEST(TestGoptInference, EnableCHWN4ShuffleRemove) {
  2177. REQUIRE_GPU(1);
  2178. auto cn = CompNode::load("gpu0");
  2179. cn.activate();
  2180. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2181. auto sm_ver = prop.major * 10 + prop.minor;
  2182. if (sm_ver < 61) {
  2183. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2184. "expected: %d)\n",
  2185. sm_ver, 61);
  2186. return;
  2187. }
  2188. HostTensorGenerator<dtype::Int8> gen;
  2189. auto graph = ComputingGraph::make();
  2190. graph->options().graph_opt_level = 0;
  2191. auto mkvar = [&](const char* name, const TensorShape& shp,
  2192. const DType& dtype) {
  2193. return opr::TypeCvt::make(
  2194. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2195. dtype);
  2196. };
  2197. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2198. const DType& dtype) {
  2199. return opr::TypeCvt::make(
  2200. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2201. .rename(name),
  2202. dtype);
  2203. };
  2204. auto nchw2nchw4 = [](SymbolVar x) {
  2205. auto xshp = opr::GetVarShape::make(x);
  2206. auto cv = [&x](int v) { return x.make_scalar(v); };
  2207. auto sub = [&xshp, &cv](int idx) {
  2208. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2209. };
  2210. auto tshp = opr::Concat::make(
  2211. {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  2212. auto y0 = opr::Reshape::make(x, tshp);
  2213. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  2214. return y1;
  2215. };
  2216. auto nchw42nchw = [](SymbolVar x) {
  2217. auto xshp = opr::GetVarShape::make(x);
  2218. auto cv = [&x](int v) { return x.make_scalar(v); };
  2219. auto sub = [&xshp, &cv](int idx) {
  2220. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2221. };
  2222. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2223. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2224. auto y1 = opr::Reshape::make(y0, tshp);
  2225. return y1;
  2226. };
  2227. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  2228. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2229. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2230. b1 = mkcvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8{2.5f});
  2231. x = nchw2nchw4(x);
  2232. opr::ConvBias::Param param;
  2233. param.format = opr::ConvBias::Param::Format::NCHW4;
  2234. param.stride_h = param.stride_w = 1;
  2235. param.pad_h = param.pad_w = 1;
  2236. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2237. auto y = opr::ConvBiasForward::make(
  2238. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2239. auto y1 = opr::ElemwiseMultiType::make(
  2240. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  2241. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2242. auto y2 = opr::ConvBiasForward::make(
  2243. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2244. auto y3 = opr::ElemwiseMultiType::make(
  2245. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  2246. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2247. auto y4 = opr::ElemwiseMultiType::make(
  2248. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2249. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2250. y4 = opr::ElemwiseMultiType::make(
  2251. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2252. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2253. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  2254. y4 = nchw42nchw(y4);
  2255. SymbolVar y_opt;
  2256. SymbolVar y_cudnn;
  2257. unpack_vector(
  2258. gopt::GraphOptimizer{}
  2259. .add_pass<gopt::ParamRedistributePass>()
  2260. .add_pass<gopt::ParamFusePass>()
  2261. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2262. .add_pass<gopt::FuseConvBiasZPass>()
  2263. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  2264. .add_pass<gopt::ShuffleShuffleRemovePass>()
  2265. .add_pass<gopt::ParamFusePass>()
  2266. .apply({{y4}})
  2267. .endpoint_vars(),
  2268. y_opt);
  2269. graph->compile({{y_opt, {}}})
  2270. ->to_json()
  2271. ->writeto_fpath(output_file(
  2272. "TestGoptInference.EnableCHWN4ShuffleRemove.json"));
  2273. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2274. ASSERT_EQ(2u, nr_dimshuffle);
  2275. auto nr_reformat = find_opr_num<mgb::opr::RelayoutFormat>(y_opt);
  2276. ASSERT_EQ(0u, nr_reformat);
  2277. unpack_vector(gopt::GraphOptimizer{}
  2278. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2279. .add_pass<gopt::FuseConvBiasZPass>()
  2280. .apply({{y4}})
  2281. .endpoint_vars(),
  2282. y_cudnn);
  2283. HostTensorND host_y, host_y_opt;
  2284. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  2285. make_callback_copy(y_opt, host_y_opt)});
  2286. func->execute();
  2287. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2288. }
  2289. TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
  2290. REQUIRE_GPU(1);
  2291. auto cn = CompNode::load("gpu0");
  2292. cn.activate();
  2293. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2294. auto sm_ver = prop.major * 10 + prop.minor;
  2295. if (sm_ver < 61) {
  2296. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2297. "expected: %d)\n",
  2298. sm_ver, 61);
  2299. return;
  2300. }
  2301. HostTensorGenerator<dtype::Int8> gen;
  2302. auto graph = ComputingGraph::make();
  2303. graph->options().graph_opt_level = 0;
  2304. auto mkvar = [&](const char* name, const TensorShape& shp,
  2305. const DType& dtype) {
  2306. return opr::TypeCvt::make(
  2307. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2308. dtype);
  2309. };
  2310. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2311. const DType& dtype) {
  2312. return opr::TypeCvt::make(
  2313. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2314. .rename(name),
  2315. dtype);
  2316. };
  2317. auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
  2318. opr::ConvBias::Param param_conv_bias;
  2319. param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
  2320. param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
  2321. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2322. param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2323. // dense
  2324. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2325. auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2326. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2327. auto conv1 = opr::ConvBiasForward::make(
  2328. x, w1, b1, param_conv_bias, {},
  2329. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2330. // group
  2331. // icpg != 1 && ocpg != 1
  2332. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2333. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2334. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2335. auto conv2 = opr::ConvBiasForward::make(
  2336. conv1, w2, b2, param_conv_bias, {},
  2337. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2338. auto y = opr::TypeCvt::make(conv2, dtype::Float32());
  2339. SymbolVar y_opt;
  2340. {
  2341. auto options = gopt::OptimizeForInferenceOptions{};
  2342. options.enable_nchw4();
  2343. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2344. }
  2345. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
  2346. find_opr<opr::ConvBias>(y_opt).param().format);
  2347. auto nr_reshape = find_opr_num<mgb::opr::Reshape>(y_opt);
  2348. ASSERT_EQ(2u, nr_reshape);
  2349. graph->compile({{y_opt, {}}})
  2350. ->to_json()
  2351. ->writeto_fpath(output_file(
  2352. "TestGoptInference.ConvertFormatNCHW4GPU.json"));
  2353. HostTensorND host_y, host_y_opt;
  2354. auto func = graph->compile({make_callback_copy(y, host_y),
  2355. make_callback_copy(y_opt, host_y_opt)});
  2356. func->execute();
  2357. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2358. }
  2359. #endif
  2360. TEST(TestGoptInference, ConvertFormatNCHW4NonConvOpr) {
  2361. auto cn = CompNode::load("xpu0");
  2362. HostTensorGenerator<dtype::Int8> gen;
  2363. auto graph = ComputingGraph::make();
  2364. graph->options().graph_opt_level = 0;
  2365. auto mkvar = [&](const char* name, const TensorShape& shp,
  2366. const DType& dtype) {
  2367. return opr::TypeCvt::make(
  2368. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2369. dtype);
  2370. };
  2371. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2372. const DType& dtype) {
  2373. return opr::TypeCvt::make(
  2374. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2375. .rename(name),
  2376. dtype);
  2377. };
  2378. auto mkcvarf32 = [&](const char* name, const TensorShape& shp) {
  2379. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2380. .rename(name);
  2381. };
  2382. auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
  2383. opr::ConvBias::Param param_conv_bias;
  2384. param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
  2385. param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
  2386. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2387. param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2388. // dense
  2389. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2390. auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2391. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2392. auto conv1 = opr::ConvBiasForward::make(
  2393. x, w1, b1, param_conv_bias, {},
  2394. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2395. // test Resize
  2396. auto shape_of = opr::GetVarShape::make(x);
  2397. auto subtensor = opr::Subtensor::make(
  2398. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2399. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2400. opr::Resize::Param param_resize;
  2401. param_resize.format = opr::Resize::Param::Format::NCHW;
  2402. auto resize = opr::ResizeForward::make(conv1, subtensor * 2, param_resize);
  2403. // test WarpPerspective
  2404. auto mat = mkcvarf32("mat", {2, 3, 3}),
  2405. warp = opr::WarpPerspectiveForward::make(
  2406. resize, mat, nullptr, cg::var_from_tensor_shape(x, {32, 32}));
  2407. opr::Pooling::Param pool_param;
  2408. pool_param.format = opr::Pooling::Param::Format::NCHW;
  2409. // test Pooling
  2410. auto pool = opr::Pooling::make(warp, pool_param);
  2411. // group
  2412. // icpg != 1 && ocpg != 1
  2413. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2414. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2415. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2416. auto conv2 = opr::ConvBiasForward::make(
  2417. pool, w2, b2, param_conv_bias, {},
  2418. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2419. auto add = opr::ElemwiseMultiType::make(
  2420. {conv1, conv2}, {opr::ElemwiseMultiType::Param::Mode::QADD},
  2421. OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
  2422. auto y = opr::TypeCvt::make(add, dtype::Float32());
  2423. SymbolVar y_opt;
  2424. {
  2425. auto options = gopt::OptimizeForInferenceOptions{};
  2426. options.enable_nchw4();
  2427. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2428. }
  2429. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2430. ASSERT_EQ(2u, nr_dimshuffle);
  2431. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
  2432. find_opr<opr::ConvBias>(y_opt).param().format);
  2433. ASSERT_EQ(opr::ResizeForward::Param::Format::NCHW4,
  2434. find_opr<opr::ResizeForward>(y_opt).param().format);
  2435. ASSERT_EQ(opr::WarpPerspectiveForward::Param::Format::NCHW4,
  2436. find_opr<opr::WarpPerspectiveForward>(y_opt).param().format);
  2437. ASSERT_EQ(opr::PoolingForward::Param::Format::NCHW4,
  2438. find_opr<opr::PoolingForward>(y_opt).param().format);
  2439. }
  2440. TEST(TestGoptInference, ConvertFormatNCHW4) {
  2441. HostTensorGenerator<> gen;
  2442. auto cn = CompNode::load("cpu0");
  2443. auto graph = ComputingGraph::make();
  2444. graph->options().graph_opt_level = 0;
  2445. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2446. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2447. };
  2448. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2449. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2450. .rename(name);
  2451. };
  2452. auto x = mkvar("x", {2, 4, 16, 16});
  2453. // ConvBias test dense
  2454. opr::ConvBias::Param param_conv_bias;
  2455. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2456. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2457. auto w1 = mkcvar("w1", {8, 4, 3, 3}), b1 = mkcvar("b1", {1, 8, 1, 1});
  2458. auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
  2459. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2460. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1});
  2461. auto conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  2462. // Convolution
  2463. opr::Convolution::Param param_conv;
  2464. param_conv.pad_h = param_conv.pad_w = 1;
  2465. param_conv.sparse = opr::Convolution::Param::Sparse::DENSE;
  2466. auto w3 = mkcvar("w3", {8, 8, 3, 3});
  2467. auto y = opr::Convolution::make(conv2, w3, param_conv);
  2468. SymbolVar y_opt;
  2469. {
  2470. auto options = gopt::OptimizeForInferenceOptions{};
  2471. options.enable_nchw4();
  2472. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2473. }
  2474. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
  2475. find_opr<opr::ConvBias>(y_opt).param().format);
  2476. graph->compile({{y_opt, {}}})
  2477. ->to_json()
  2478. ->writeto_fpath(
  2479. output_file("TestGoptInference.ConvertFormatNCHW4.json"));
  2480. HostTensorND host_y_opt, host_y;
  2481. auto func = graph->compile({make_callback_copy(y, host_y),
  2482. make_callback_copy(y_opt, host_y_opt)});
  2483. func->execute();
  2484. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  2485. }
  2486. TEST(TestGoptInference, ConvertFormatNCHW4Ic3) {
  2487. REQUIRE_GPU(1);
  2488. auto cn = CompNode::load("gpu0");
  2489. cn.activate();
  2490. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  2491. HostTensorGenerator<dtype::Float32, RandomDistribution::UNIFORM> gen{
  2492. 1.2f, 127 * 127};
  2493. auto graph = ComputingGraph::make();
  2494. graph->options().graph_opt_level = 0;
  2495. auto mkvar = [&](const char* name, const TensorShape& shp,
  2496. const DType& dtype) {
  2497. return opr::TypeCvt::make(
  2498. opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name),
  2499. dtype);
  2500. };
  2501. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2502. const DType& dtype) {
  2503. return opr::TypeCvt::make(
  2504. opr::SharedDeviceTensor::make(*graph, *gen(shp))
  2505. .rename(name),
  2506. dtype);
  2507. };
  2508. auto x = mkvar("x", {2, 3, 16, 16}, dtype::QuantizedS8(2.5f));
  2509. // ConvBias test dense
  2510. opr::ConvBias::Param param_conv_bias;
  2511. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2512. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2513. auto w1 = mkcvar("w1", {8, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  2514. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2515. auto conv1 =
  2516. opr::ConvBias::make(x, w1, b1, param_conv_bias, {},
  2517. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2518. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2519. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2520. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2521. auto conv2 =
  2522. opr::ConvBias::make(conv1, w2, b2, param_conv_bias, {},
  2523. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2524. auto y = opr::TypeCvt::make(conv2, dtype::Float32());
  2525. SymbolVar y_opt;
  2526. {
  2527. auto options = gopt::OptimizeForInferenceOptions{};
  2528. options.enable_nchw4();
  2529. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2530. }
  2531. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
  2532. find_opr<opr::ConvBias>(y_opt).param().format);
  2533. graph->compile({{y_opt, {}}})
  2534. ->to_json()
  2535. ->writeto_fpath(output_file(
  2536. "TestGoptInference.ConvertFormatNCHW4Ic3.json"));
  2537. HostTensorND host_y_opt, host_y;
  2538. auto func = graph->compile({make_callback_copy(y, host_y),
  2539. make_callback_copy(y_opt, host_y_opt)});
  2540. func->execute();
  2541. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  2542. }
  2543. TEST(TestGoptInference, ConvertFormatNCHW88) {
  2544. HostTensorGenerator<> gen;
  2545. auto cn = CompNode::load("cpu0");
  2546. auto graph = ComputingGraph::make();
  2547. graph->options().graph_opt_level = 0;
  2548. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2549. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2550. };
  2551. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2552. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2553. .rename(name);
  2554. };
  2555. auto host_x = gen({2, 3, 16, 16}, cn);
  2556. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  2557. //!Hybrid nchw88 mode
  2558. opr::Convolution::Param param_conv;
  2559. param_conv.pad_h = param_conv.pad_w = 1;
  2560. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  2561. conv1 = opr::Convolution::make(x, w1, param_conv);
  2562. //!channel wise
  2563. opr::ConvBias::Param param_conv_bias;
  2564. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2565. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2566. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  2567. conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  2568. //! group
  2569. auto w3 = mkcvar("w3", {1, 8, 8, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  2570. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  2571. auto shape_of = opr::GetVarShape::make(conv3);
  2572. auto subtensor = opr::Subtensor::make(
  2573. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2574. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2575. opr::Resize::Param param_resize;
  2576. param_resize.format = opr::Resize::Param::Format::NCHW;
  2577. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  2578. auto mat = mkcvar("mat", {2, 3, 3}),
  2579. warp = opr::WarpPerspectiveForward::make(
  2580. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  2581. auto b = mkvar("b", {1, 8, 1, 1}),
  2582. elem = opr::Elemwise::make({warp + b},
  2583. opr::Elemwise::Param::Mode::RELU);
  2584. //! Dense
  2585. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2586. auto w4 = mkcvar("w4", {2, 6, 4, 3, 3}), b4 = mkcvar("b4", {1, 12, 1, 1}),
  2587. conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
  2588. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2589. auto w5 = mkcvar("w5", {8, 12, 3, 3}), b5 = mkcvar("b5", {1, 8, 1, 1}),
  2590. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
  2591. auto w6 = mkcvar("w6", {8, 8, 3, 3}), b6 = mkcvar("b6", {1, 8, 1, 1}),
  2592. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
  2593. SymbolVar y_opt;
  2594. {
  2595. auto options = gopt::OptimizeForInferenceOptions{};
  2596. options.enable_nchw88();
  2597. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2598. }
  2599. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW88,
  2600. find_opr<opr::ConvBias>(y_opt).param().format);
  2601. graph->compile({{y_opt, {}}})
  2602. ->to_json()
  2603. ->writeto_fpath(
  2604. output_file("TestGoptInference.ConvertFormatNCHW88.json"));
  2605. HostTensorND host_y_opt, host_y;
  2606. auto func = graph->compile({make_callback_copy(y, host_y),
  2607. make_callback_copy(y_opt, host_y_opt)});
  2608. func->execute();
  2609. //! meybe go to winograd in x86-32, so set error 1e-1
  2610. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2611. *host_x = *gen({2, 3, 32, 32}, cn);
  2612. func->execute();
  2613. //! meybe go to winograd in x86-32, so set error 1e-1
  2614. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2615. }
  2616. TEST(TestGoptInference, ConvertFormatNCHW44) {
  2617. HostTensorGenerator<> gen;
  2618. auto cn = CompNode::load("cpu0");
  2619. auto graph = ComputingGraph::make();
  2620. graph->options().graph_opt_level = 0;
  2621. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2622. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2623. };
  2624. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2625. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2626. .rename(name);
  2627. };
  2628. auto host_x = gen({2, 3, 16, 16}, cn);
  2629. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  2630. //!Hybrid nchw88 mode
  2631. opr::Convolution::Param param_conv;
  2632. param_conv.pad_h = param_conv.pad_w = 1;
  2633. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  2634. conv1 = opr::Convolution::make(x, w1, param_conv);
  2635. //!channel wise
  2636. opr::ConvBias::Param param_conv_bias;
  2637. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2638. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2639. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  2640. conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  2641. //! group
  2642. auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  2643. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  2644. auto shape_of = opr::GetVarShape::make(conv3);
  2645. auto subtensor = opr::Subtensor::make(
  2646. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2647. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2648. opr::Resize::Param param_resize;
  2649. param_resize.format = opr::Resize::Param::Format::NCHW;
  2650. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  2651. auto mat = mkcvar("mat", {2, 3, 3}),
  2652. warp = opr::WarpPerspectiveForward::make(
  2653. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  2654. auto b = mkvar("b", {1, 8, 1, 1}),
  2655. elem = opr::Elemwise::make({warp + b},
  2656. opr::Elemwise::Param::Mode::RELU);
  2657. //! Dense
  2658. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2659. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2660. auto w4 = mkcvar("w4", {4, 8, 3, 3}), b4 = mkcvar("b4", {1, 4, 1, 1}),
  2661. conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
  2662. auto w5 = mkcvar("w5", {6, 4, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
  2663. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
  2664. auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
  2665. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
  2666. SymbolVar y_opt;
  2667. auto options = gopt::OptimizeForInferenceOptions{};
  2668. options.enable_nchw44();
  2669. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2670. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW44,
  2671. find_opr<opr::ConvBias>(y_opt).param().format);
  2672. graph->compile({{y_opt, {}}})
  2673. ->to_json()
  2674. ->writeto_fpath(
  2675. output_file("TestGoptInference.ConvertFormatNCHW44.json"));
  2676. HostTensorND host_y_opt, host_y;
  2677. auto func = graph->compile({make_callback_copy(y, host_y),
  2678. make_callback_copy(y_opt, host_y_opt)});
  2679. func->execute();
  2680. //! meybe go to winograd in x86-32, so set error 1e-1
  2681. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2682. *host_x = *gen({2, 3, 32, 32}, cn);
  2683. func->execute();
  2684. //! meybe go to winograd in x86-32, so set error 1e-1
  2685. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2686. }
  2687. TEST(TestGoptInference, ConvertFormatNCHW44MultiInput) {
  2688. HostTensorGenerator<> gen;
  2689. auto cn = CompNode::load("cpu0");
  2690. auto graph = ComputingGraph::make();
  2691. graph->options().graph_opt_level = 0;
  2692. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2693. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2694. };
  2695. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2696. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2697. .rename(name);
  2698. };
  2699. auto host_x1 = gen({1, 8, 16, 16}, cn);
  2700. auto host_x2 = gen({1, 1, 16, 16}, cn);
  2701. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  2702. opr::Convolution::Param param_conv;
  2703. param_conv.pad_h = param_conv.pad_w = 1;
  2704. auto w1 = mkcvar("w1", {8, 8, 3, 3}),
  2705. conv1 = opr::Convolution::make(x, w1, param_conv);
  2706. auto b = mkvar("b", {1, 1, 16, 16}),
  2707. y = opr::Elemwise::make({conv1 + b}, opr::Elemwise::Param::Mode::RELU);
  2708. SymbolVar y_opt;
  2709. auto options = gopt::OptimizeForInferenceOptions{};
  2710. options.enable_nchw44();
  2711. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2712. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  2713. find_opr<opr::Convolution>(y_opt).param().format);
  2714. graph->compile({{y_opt, {}}})
  2715. ->to_json()
  2716. ->writeto_fpath(output_file(
  2717. "TestGoptInference.ConvertFormatNCHW44MultiInput.json"));
  2718. HostTensorND host_y_opt, host_y;
  2719. auto func = graph->compile({make_callback_copy(y, host_y),
  2720. make_callback_copy(y_opt, host_y_opt)});
  2721. func->execute();
  2722. //! meybe go to winograd in x86-32, so set error 1e-1
  2723. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2724. }
  2725. TEST(TestGoptInference, ConvertFormatNCHW44Reshape) {
  2726. HostTensorGenerator<> gen;
  2727. auto cn = CompNode::load("cpu0");
  2728. auto graph = ComputingGraph::make();
  2729. graph->options().graph_opt_level = 0;
  2730. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2731. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2732. .rename(name);
  2733. };
  2734. auto host_x1 = gen({1, 8, 16, 16}, cn);
  2735. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  2736. opr::Convolution::Param param_conv;
  2737. param_conv.pad_h = param_conv.pad_w = 1;
  2738. auto w1 = mkcvar("w1", {8, 8, 3, 3}),
  2739. conv1 = opr::Convolution::make(x, w1, param_conv);
  2740. auto y = opr::Reshape::make(conv1, {8, 16 * 16});
  2741. SymbolVar y_opt;
  2742. auto options = gopt::OptimizeForInferenceOptions{};
  2743. options.enable_nchw44();
  2744. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2745. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  2746. find_opr<opr::Convolution>(y_opt).param().format);
  2747. graph->compile({{y_opt, {}}})
  2748. ->to_json()
  2749. ->writeto_fpath(output_file(
  2750. "TestGoptInference.ConvertFormatNCHW44Reshape.json"));
  2751. HostTensorND host_y_opt, host_y;
  2752. auto func = graph->compile({make_callback_copy(y, host_y),
  2753. make_callback_copy(y_opt, host_y_opt)});
  2754. func->execute();
  2755. //! meybe go to winograd in x86-32, so set error 1e-1
  2756. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2757. }
  2758. TEST(TestGoptInference, ConvertFormatNCHW44_DOT) {
  2759. HostTensorGenerator<> gen;
  2760. auto cn = CompNode::load("cpu0");
  2761. auto graph = ComputingGraph::make();
  2762. graph->options().graph_opt_level = 0;
  2763. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2764. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2765. };
  2766. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2767. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2768. .rename(name);
  2769. };
  2770. auto host_x = gen({2, 3, 16, 16}, cn);
  2771. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  2772. //!Hybrid nchw88 mode
  2773. opr::Convolution::Param param_conv;
  2774. param_conv.pad_h = param_conv.pad_w = 1;
  2775. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  2776. conv1 = opr::Convolution::make(x, w1, param_conv);
  2777. //!channel wise
  2778. opr::ConvBias::Param param_conv_bias;
  2779. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2780. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2781. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  2782. conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  2783. //! group
  2784. auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  2785. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  2786. auto shape_of = opr::GetVarShape::make(conv3);
  2787. auto subtensor = opr::Subtensor::make(
  2788. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2789. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2790. opr::Resize::Param param_resize;
  2791. param_resize.format = opr::Resize::Param::Format::NCHW;
  2792. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  2793. auto mat = mkcvar("mat", {2, 3, 3}),
  2794. warp = opr::WarpPerspectiveForward::make(
  2795. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  2796. auto b = mkvar("b", {1, 8, 1, 1}),
  2797. elem = opr::Elemwise::make({warp + b},
  2798. opr::Elemwise::Param::Mode::RELU);
  2799. //! Dense
  2800. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2801. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2802. auto w4 = mkcvar("w4", {4, 8, 3, 3}), b4 = mkcvar("b4", {1, 4, 1, 1}),
  2803. conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
  2804. auto w5 = mkcvar("w5", {6, 4, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
  2805. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
  2806. auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
  2807. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
  2808. SymbolVar y_opt;
  2809. auto options = gopt::OptimizeForInferenceOptions{};
  2810. options.enable_nchw44_dot();
  2811. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2812. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW44_DOT,
  2813. find_opr<opr::Convolution>(y_opt).param().format);
  2814. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  2815. find_opr<opr::ConvBias>(y_opt).param().format);
  2816. graph->compile({{y_opt, {}}})
  2817. ->to_json()
  2818. ->writeto_fpath(
  2819. output_file("TestGoptInference.ConvertFormatNCHW44.json"));
  2820. HostTensorND host_y_opt, host_y;
  2821. auto func = graph->compile({make_callback_copy(y, host_y),
  2822. make_callback_copy(y_opt, host_y_opt)});
  2823. func->execute();
  2824. //! meybe go to winograd in x86-32, so set error 1e-1
  2825. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2826. *host_x = *gen({2, 3, 32, 32}, cn);
  2827. func->execute();
  2828. //! meybe go to winograd in x86-32, so set error 1e-1
  2829. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2830. }
  2831. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台