You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

matrix_mul.cpp 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408
  1. /**
  2. * \file dnn/test/common/matrix_mul.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #include "src/common/utils.h"
  13. #include "test/common/benchmarker.h"
  14. #include "test/common/checker.h"
  15. #include "test/common/matrix_mul.h"
  16. using namespace megdnn;
  17. using namespace test;
  18. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_no_mask() {
  19. std::vector<TestArg> args;
  20. for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 32})
  21. for (size_t n : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  22. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 32})
  23. for (size_t k : {1, 2, 4, 8, 11, 12, 15, 16, 31, 32, 37})
  24. args.emplace_back(m, n, k, 0);
  25. for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17})
  26. args.emplace_back(m, m + 1, m + 2, 0);
  27. for (size_t mbase : {11})
  28. for (size_t test_case_offset : {64, 256, 512}) {
  29. size_t mnk = mbase + test_case_offset;
  30. args.emplace_back(mnk, mnk, mnk, 0);
  31. return args;
  32. }
  33. return args;
  34. }
  35. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_mk_packed_args(
  36. size_t nbase) {
  37. std::vector<TestArg> args;
  38. for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 11})
  39. for (size_t n : {1, 2, 3, 4, 5, 8, 12, 16, 24})
  40. for (size_t k : {1, 2, 3, 4, 5, 9, 10, 11})
  41. args.emplace_back(m, n * nbase, k, 0);
  42. return args;
  43. }
  44. std::vector<matrix_mul::TestArg>
  45. matrix_mul::get_batched_matmul_args_cublaslt() {
  46. std::vector<TestArg> args;
  47. for (size_t m : {4, 6, 8, 16}) {
  48. for (size_t n : {4, 6, 8, 16}) {
  49. //[TODO]: the following test case are disabled due to the
  50. // cublasLt(version: 10020) produce wrong result when k in [65, 97],
  51. // so please uncomment it if the bug is fixed
  52. for (size_t k : {32, 64}) {
  53. args.emplace_back(m, n, k, 0, 0, 0, 0, 2);
  54. }
  55. }
  56. }
  57. return args;
  58. }
  59. std::vector<matrix_mul::TestArg>
  60. matrix_mul::get_batched_matmul_args_int8x8x32() {
  61. std::vector<TestArg> args;
  62. for (size_t m : {1, 2, 3, 4, 5, 8, 64}) {
  63. for (size_t n : {1, 2, 3, 4, 5, 8, 64}) {
  64. for (size_t k : {1, 2, 3, 4, 5, 8, 64}) {
  65. args.emplace_back(m, n, k, 0, 0, 0, 0, 2);
  66. }
  67. }
  68. }
  69. return args;
  70. }
  71. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args_mask(
  72. uint8_t mask) {
  73. std::vector<TestArg> args;
  74. std::vector<TestArg> args_temp = matrix_mul::get_matmul_args_no_mask();
  75. for (auto arg : args_temp) {
  76. arg.mask = mask;
  77. args.emplace_back(arg);
  78. }
  79. // non-contiguous case
  80. for (size_t m : {110})
  81. for (size_t n : {119})
  82. for (size_t k : {120}) {
  83. // A: (m, k)
  84. size_t Astride = mask & 1 ? m + 2 : k + 2;
  85. // B: (k, n)
  86. size_t Bstride = mask & 2 ? k + 2 : n + 2;
  87. size_t Cstride = n + 2;
  88. args.emplace_back(m, n, k, mask, Astride, Bstride, Cstride);
  89. }
  90. return args;
  91. }
  92. std::vector<matrix_mul::TestArg> matrix_mul::get_matmul_args() {
  93. std::vector<TestArg> args;
  94. for (size_t mask = 0; mask < 4; ++mask) {
  95. std::vector<TestArg> args_temp = matrix_mul::get_matmul_args_mask(mask);
  96. for (auto arg : args_temp)
  97. args.emplace_back(arg);
  98. }
  99. return args;
  100. }
  101. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args_mask(
  102. uint8_t mask) {
  103. std::vector<TestArg> args;
  104. for (size_t b : {1, 2, 3}) {
  105. std::vector<TestArg> args_temp =
  106. megdnn::test::matrix_mul::get_matmul_args_mask(mask);
  107. for (auto arg : args_temp) {
  108. arg.b = b;
  109. args.emplace_back(arg);
  110. }
  111. }
  112. return args;
  113. }
  114. std::vector<matrix_mul::TestArg> matrix_mul::get_batched_matmul_args() {
  115. std::vector<TestArg> args;
  116. for (size_t mask = 0; mask < 4; ++mask) {
  117. std::vector<TestArg> args_temp =
  118. matrix_mul::get_batched_matmul_args_mask(mask);
  119. for (auto arg : args_temp)
  120. args.emplace_back(arg);
  121. }
  122. return args;
  123. }
  124. template <typename Opr>
  125. void matrix_mul::check_matrix_mul(DType A_dtype, DType B_dtype, DType C_dtype,
  126. Handle* handle, const char* algo,
  127. param::MatrixMul::Format format, size_t nbase,
  128. float eps, std::vector<TestArg>&& user_args) {
  129. megdnn_assert(A_dtype.enumv() == B_dtype.enumv());
  130. Checker<Opr> checker(handle);
  131. if (algo) {
  132. checker.set_before_exec_callback(AlgoChecker<Opr>(algo));
  133. }
  134. std::unique_ptr<RNG> rng;
  135. checker.set_epsilon(eps);
  136. if (A_dtype.enumv() == DTypeEnum::Int8 ||
  137. A_dtype.enumv() == DTypeEnum::QuantizedS8) {
  138. //! use larger rng to check the overflow
  139. rng = std::make_unique<UniformIntRNG>(-127, 127);
  140. } else if (A_dtype.enumv() == DTypeEnum::Uint8 ||
  141. A_dtype.enumv() == DTypeEnum::Quantized8Asymm) {
  142. rng = std::make_unique<NormalRNG>(128.f);
  143. } else if (A_dtype.enumv() == DTypeEnum::Int16) {
  144. rng = std::make_unique<UniformIntRNG>(-32767, 32767);
  145. } else if (A_dtype.enumv() == DTypeEnum::Float16) {
  146. rng = std::make_unique<NormalRNG>(2.f);
  147. //! if fp16 not set eps, default 1e-3, we just set it to 1e-2
  148. if (eps < 1e-2) {
  149. checker.set_epsilon(1e-2);
  150. }
  151. }
  152. if (rng) {
  153. checker.set_rng(0, rng.get()).set_rng(1, rng.get());
  154. }
  155. //! return expect if stride == 0, stride otherwise
  156. auto stride_val = [](size_t stride, size_t expect) -> size_t {
  157. if (stride == 0) {
  158. return expect;
  159. } else {
  160. return stride;
  161. }
  162. };
  163. constexpr static bool batched =
  164. std::is_same<Opr, megdnn::BatchedMatrixMul>::value;
  165. using Param = MatrixMul::Param;
  166. std::vector<TestArg> args;
  167. if (user_args.empty()) {
  168. if (format == param::MatrixMul::Format::DEFAULT) {
  169. if (batched) {
  170. args = matrix_mul::get_batched_matmul_args();
  171. } else {
  172. args = matrix_mul::get_matmul_args();
  173. }
  174. } else {
  175. megdnn_assert(!batched,
  176. "BatchedMatrixMul does not support MK4/MK8");
  177. args = matrix_mul::get_matmul_mk_packed_args(nbase);
  178. }
  179. } else {
  180. args = user_args;
  181. }
  182. size_t pack_size = MatrixMulForward::pack_size(format);
  183. for (auto& arg : args) {
  184. size_t m = arg.m, n = arg.n, k = arg.k;
  185. #if MEGDNN_WITH_CUDA
  186. //[NOTE]: cublas can only process 4B aligned 8-bit input matrix;
  187. bool is_dt_8bit = A_dtype.enumv() == DTypeEnum::Int8 ||
  188. A_dtype.enumv() == DTypeEnum::QuantizedS8 ||
  189. A_dtype.enumv() == DTypeEnum::Uint8 ||
  190. A_dtype.enumv() == DTypeEnum::Quantized8Asymm;
  191. if (is_dt_8bit && ((m % 4 != 0) || (n % 4 != 0))) {
  192. continue;
  193. }
  194. #endif
  195. Param param;
  196. param.transposeA = arg.mask & 0x1;
  197. param.transposeB = arg.mask & 0x2;
  198. param.format = format;
  199. checker.set_dtype(0, A_dtype)
  200. .set_dtype(1, B_dtype)
  201. .set_dtype(2, C_dtype);
  202. size_t A0 = m, A1 = k, B0 = k, B1 = n;
  203. TensorShape A, B;
  204. if (param.transposeA) {
  205. std::swap(A0, A1);
  206. }
  207. if (param.transposeB) {
  208. std::swap(B0, B1);
  209. }
  210. ptrdiff_t A_stride = arg.A_stride, B_stride = arg.B_stride,
  211. C_stride = arg.C_stride, A_batch_stride = arg.A_batch_stride,
  212. B_batch_stride = arg.B_batch_stride,
  213. C_batch_stride = arg.C_batch_stride;
  214. A_stride = stride_val(A_stride, A1);
  215. B_stride = stride_val(B_stride, B1);
  216. C_stride = stride_val(C_stride, n);
  217. A_batch_stride = stride_val(A_batch_stride, A0 * A_stride);
  218. B_batch_stride = stride_val(B_batch_stride, B0 * B_stride);
  219. C_batch_stride = stride_val(C_batch_stride, m * C_stride);
  220. checker.set_param(param);
  221. if (format == param::MatrixMul::Format::DEFAULT) {
  222. if (batched) {
  223. checker.execl({TensorLayout{{arg.b, A0, A1},
  224. {A_batch_stride, A_stride, 1},
  225. A_dtype},
  226. TensorLayout{{arg.b, B0, B1},
  227. {B_batch_stride, B_stride, 1},
  228. B_dtype},
  229. TensorLayout{{arg.b, m, n},
  230. {C_batch_stride, C_stride, 1},
  231. C_dtype}});
  232. } else {
  233. checker.execl({TensorLayout{{A0, A1}, {A_stride, 1}, A_dtype},
  234. TensorLayout{{B0, B1}, {B_stride, 1}, B_dtype},
  235. TensorLayout{{m, n}, {C_stride, 1}, C_dtype}});
  236. }
  237. } else {
  238. //! ignore non-contiguous, only DEFAULT format support
  239. //! non-contiguous input
  240. checker.execs(
  241. {{A0, A1, pack_size, pack_size}, {B0, B1, pack_size}, {}});
  242. }
  243. }
  244. }
  245. void matrix_mul::check_batched_matrix_mul(DType A_dtype, DType B_dtype,
  246. DType C_dtype, Handle* handle,
  247. const char* algo, float eps,
  248. std::vector<TestArg>&& args) {
  249. check_matrix_mul<megdnn::BatchedMatrixMul>(
  250. A_dtype, B_dtype, C_dtype, handle, algo,
  251. param::MatrixMul::Format::DEFAULT, 8, eps,
  252. std::forward<decltype(args)>(args));
  253. }
  254. void matrix_mul::check_matrix_mul(DType A_dtype, DType B_dtype, DType C_dtype,
  255. Handle* handle, const char* algo,
  256. param::MatrixMul::Format format, size_t nbase,
  257. float eps) {
  258. check_matrix_mul<megdnn::MatrixMul>(A_dtype, B_dtype, C_dtype, handle, algo,
  259. format, nbase, eps);
  260. }
  261. #if MEGDNN_WITH_BENCHMARK
  262. std::vector<matrix_mul::TestArg> matrix_mul::get_benchmark_matmul_args() {
  263. std::vector<matrix_mul::TestArg> args;
  264. args.emplace_back(256, 12 * 24, 256, 0);
  265. //////////////////////// gemv //////////////////////////
  266. for (size_t M : {8, 64, 112, 256}) {
  267. for (size_t K : {8, 64, 112, 256}) {
  268. args.emplace_back(M, 1, K, 0);
  269. }
  270. }
  271. //////////////////////// gemm //////////////////////////
  272. for (size_t M : {8, 64, 112, 256}) {
  273. for (size_t K : {8, 16, 32, 64, 112, 256}) {
  274. for (size_t N : {8, 64, 112, 256}) {
  275. args.emplace_back(M, N, K, 0);
  276. }
  277. }
  278. }
  279. return args;
  280. }
  281. std::vector<matrix_mul::TestArg>
  282. matrix_mul::get_benchmark_matmul_mk_packed_args(size_t nbase) {
  283. std::vector<TestArg> args;
  284. for (size_t m : {2, 4, 8, 16, 24, 32, 64})
  285. for (size_t n : {1, 2, 3, 4, 8, 16, 32, 64})
  286. for (size_t k : {2, 4, 8, 16, 24, 32, 64})
  287. args.emplace_back(m, n * nbase, k, 0);
  288. return args;
  289. }
  290. void matrix_mul::benchmark_with_contrast(
  291. Handle* handle, const std::vector<TestArg>& args, DType A_dtype,
  292. DType B_dtype, DType C_dtype, const char* algo,
  293. param::MatrixMul::Format format, DType contrast_A_dtype,
  294. DType contrast_B_dtype, DType contrast_C_dtype,
  295. const char* contrast_algo, param::MatrixMul::Format contrast_format) {
  296. using Param = MatrixMul::Param;
  297. megdnn_assert(A_dtype.enumv() == B_dtype.enumv());
  298. megdnn_assert(contrast_A_dtype.enumv() == contrast_B_dtype.enumv());
  299. Benchmarker<MatrixMul> benchmark_contrast(handle);
  300. Benchmarker<MatrixMul> benchmark(handle);
  301. constexpr size_t RUNS = 50;
  302. if (algo) {
  303. benchmark.set_before_exec_callback(AlgoChecker<MatrixMul>(algo));
  304. }
  305. if (contrast_algo) {
  306. benchmark_contrast.set_before_exec_callback(
  307. AlgoChecker<MatrixMul>(contrast_algo));
  308. }
  309. benchmark.set_dtype(0, A_dtype).set_dtype(1, B_dtype).set_dtype(2, C_dtype);
  310. benchmark.set_times(RUNS);
  311. benchmark_contrast.set_dtype(0, contrast_A_dtype)
  312. .set_dtype(1, contrast_B_dtype)
  313. .set_dtype(2, contrast_C_dtype);
  314. benchmark_contrast.set_times(RUNS);
  315. auto bench = [](Benchmarker<MatrixMul>& benchmark, Param param,
  316. param::MatrixMul::Format format, size_t m, size_t n,
  317. size_t k, size_t pack_size) -> float {
  318. param.format = format;
  319. benchmark.set_param(param);
  320. float used_algo = 1.0;
  321. if (format == param::MatrixMul::Format::DEFAULT) {
  322. size_t A0 = m * pack_size, A1 = k * pack_size, B0 = k * pack_size,
  323. B1 = n;
  324. TensorShape A, B;
  325. if (param.transposeA) {
  326. std::swap(A0, A1);
  327. }
  328. if (param.transposeB) {
  329. std::swap(B0, B1);
  330. }
  331. used_algo = benchmark.execs({{A0, A1}, {B0, B1}, {}}) / RUNS;
  332. } else {
  333. size_t A0 = m, A1 = k, B0 = k, B1 = n;
  334. if (param.transposeA) {
  335. std::swap(A0, A1);
  336. }
  337. if (param.transposeB) {
  338. std::swap(B0, B1);
  339. }
  340. used_algo = benchmark.execs({{A0, A1, pack_size, pack_size},
  341. {B0, B1, pack_size},
  342. {}}) /
  343. RUNS;
  344. }
  345. return used_algo;
  346. };
  347. size_t mk_size = MatrixMulForward::pack_size(format);
  348. size_t mk_size_contrast = MatrixMulForward::pack_size(contrast_format);
  349. size_t pack_size = std::max(mk_size, mk_size_contrast);
  350. for (auto& arg : args) {
  351. Param param;
  352. param.transposeA = arg.mask & 0x1;
  353. param.transposeB = arg.mask & 0x2;
  354. auto used_contrast = bench(benchmark_contrast, param, contrast_format,
  355. arg.m, arg.n, arg.k, pack_size);
  356. auto used_algo =
  357. bench(benchmark, param, format, arg.m, arg.n, arg.k, pack_size);
  358. float computations =
  359. 2.f * arg.m * pack_size * arg.k * pack_size * arg.n * 1e-6;
  360. printf("run: {(%zu, %zu) x (%zu, %zu)} contrast: %f ms %f Gflops %s: "
  361. "%f "
  362. "ms "
  363. "%f Gflops "
  364. "speedup: %f \n",
  365. arg.m * pack_size, arg.k * pack_size, arg.k * pack_size, arg.n,
  366. used_contrast, computations / used_contrast, algo, used_algo,
  367. computations / used_algo, used_contrast / used_algo);
  368. }
  369. }
  370. #endif
  371. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台