You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_loss.py 1.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import numpy as np
  10. import megengine.functional as F
  11. from megengine import tensor
  12. def test_cross_entropy_with_logits():
  13. data = tensor([[0, 50], [0, -150]]).astype(np.float32)
  14. label = tensor([1, 0]).astype(np.int32)
  15. loss = F.nn.cross_entropy(data, label)
  16. np.testing.assert_allclose(loss.numpy(), 0.0)
  17. label = tensor([0, 1]).astype(np.int32)
  18. loss = F.nn.cross_entropy(data, label)
  19. np.testing.assert_allclose(loss.numpy(), 100)
  20. label = np.array([1, 0])
  21. loss = F.nn.cross_entropy(data, label)
  22. np.testing.assert_allclose(loss.numpy(), 0.0)
  23. def test_cross_entropy():
  24. def softmax(x):
  25. x = np.exp(x)
  26. x /= x.sum(1, keepdims=True)
  27. return x
  28. def ref(x, y):
  29. return np.mean([-np.log(x[i, y[i]]) for i in range(len(y))])
  30. x = (np.random.rand(5, 10) - 0.5) * 4
  31. y = np.random.randint(10, size=(5,))
  32. for i in range(len(x)):
  33. x[i, y[i]] += np.random.rand() * 2
  34. x = softmax(x)
  35. l_ref = ref(x, y)
  36. l = F.nn.cross_entropy(tensor(x, "float32"), tensor(y, "int32"), with_logits=False)
  37. np.testing.assert_allclose(l.numpy(), l_ref)

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台