You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

node.py 7.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. import abc
  9. import weakref
  10. from typing import Any, Dict, List, Tuple, Type
  11. import numpy
  12. from ..core._imperative_rt.core2 import Tensor as RawTensor
  13. from ..module import Module
  14. from ..tensor import Tensor
  15. class Node:
  16. r"""``Node`` represents the variables (Tensor/Module/other python object) used in Module's forward method.
  17. They are inputs/outputs of Expr(the operations on variables).
  18. Args:
  19. expr: the Expr which produces the node
  20. name: the name of the node
  21. """
  22. expr = None
  23. __total_id = 0
  24. _id = None
  25. _top_graph = None # type: weakref.ReferenceType
  26. _name = None
  27. _orig_name = None
  28. _format_spec = ""
  29. def __init__(self, expr: "Expr", name: str = None, orig_name: str = None):
  30. self.expr = expr
  31. self.users = [] # List[Expr]
  32. self._id = Node.__total_id
  33. Node.__total_id += 1
  34. self._name = name
  35. self._orig_name = orig_name
  36. self.actual_node = [] # type: List[Node]
  37. def __setstate__(self, d):
  38. self.__dict__ = d
  39. Node.__total_id = max(Node.__total_id, self._id) + 1
  40. def __repr__(self):
  41. format_spec = Node._format_spec
  42. return self.__format__(format_spec)
  43. def __format__(self, format_spec: str) -> str:
  44. if not format_spec:
  45. format_spec = Node._format_spec
  46. name = self._name
  47. if name is None:
  48. name = ""
  49. if format_spec in ["i", "p", "ip", "pi"]:
  50. if "p" in format_spec:
  51. graph = self.top_graph
  52. prefix_name = ""
  53. if graph is not None:
  54. prefix_name = graph._name
  55. if graph._prefix_name:
  56. prefix_name = "{}_{}".format(
  57. graph._prefix_name, prefix_name.lstrip("_")
  58. )
  59. if name:
  60. name = "_" + name.lstrip("_")
  61. name = "{}{}".format(prefix_name, name)
  62. if "i" in format_spec:
  63. if name:
  64. name = "_" + name.lstrip("_")
  65. name = "%{}{}".format(self._id, name)
  66. return name
  67. else:
  68. return name if name else ("%d" % self._id)
  69. @property
  70. def top_graph(self):
  71. if self._top_graph:
  72. return self._top_graph()
  73. return None
  74. @classmethod
  75. def set_format_spec(cls, str):
  76. old_format_spec = cls._format_spec
  77. cls._format_spec = str
  78. return old_format_spec
  79. class ModuleNode(Node):
  80. r"""``ModuleNode`` represents the Module objects."""
  81. module_type = Module # type: Type[Module]
  82. _owner = None # type: weakref.ReferenceType
  83. def __init__(self, expr: "Expr", name: str = None, orig_name: str = None):
  84. super().__init__(expr, name, orig_name)
  85. def __getstate__(self):
  86. return {
  87. "expr": self.expr,
  88. "users": self.users,
  89. "_id": self._id,
  90. "_name": self._name,
  91. "_orig_name": self._orig_name,
  92. "module_type": self.module_type,
  93. }
  94. @property
  95. def owner(self):
  96. if self._owner:
  97. return self._owner()
  98. return None
  99. class TensorNode(Node):
  100. r"""``TensorNode`` represents the Tensor objects."""
  101. _shape = None # type: Tuple[int]
  102. _dtype = None # type: numpy.dtype
  103. _qparams = None
  104. _device = None
  105. _value = None # type: Tensor
  106. def __getstate__(self):
  107. return {
  108. "expr": self.expr,
  109. "users": self.users,
  110. "_id": self._id,
  111. "_qparams": self._qparams,
  112. "_shape": self._shape,
  113. "_dtype": self._dtype,
  114. "_device": self._device,
  115. "_name": self._name,
  116. "_orig_name": self._orig_name,
  117. }
  118. @property
  119. def shape(self):
  120. return self._shape
  121. @shape.setter
  122. def shape(self, shape):
  123. self._shape = shape
  124. @property
  125. def dtype(self):
  126. return self._dtype
  127. @dtype.setter
  128. def dtype(self, dtype):
  129. self._dtype = dtype
  130. @property
  131. def device(self):
  132. return self._device
  133. @device.setter
  134. def device(self, device):
  135. self._device = device
  136. @property
  137. def qparams(self):
  138. return self._qparams
  139. @qparams.setter
  140. def qparams(self, qparams):
  141. self._qparams = qparams
  142. @property
  143. def value(self):
  144. return self._value
  145. @value.setter
  146. def value(self, value):
  147. if isinstance(value, RawTensor) and NodeMixin.get(value, None) is not None:
  148. setattr(value, "_NodeMixin__node", None)
  149. self._value = value
  150. class NodeMixin(abc.ABC):
  151. __node = None
  152. @abc.abstractmethod
  153. def _record_wrapped_nodes(self, node):
  154. # record the nodes which had been bound to this NodeMixin
  155. pass
  156. @classmethod
  157. def _record_tensornode_property(cls, node, value):
  158. assert isinstance(node, TensorNode)
  159. assert isinstance(value, RawTensor)
  160. if isinstance(value, RawTensor):
  161. node._dtype = value.dtype
  162. node._shape = (
  163. value._tuple_shape if isinstance(value, Tensor) else value.shape
  164. )
  165. node._device = value.device
  166. if hasattr(value, "_qparams") and value._qparams is not None:
  167. node._qparams = value.qparams
  168. @classmethod
  169. def wrap(cls, value, node):
  170. if isinstance(value, (NodeMixin, RawTensor)):
  171. if isinstance(node, Node):
  172. if isinstance(value, RawTensor):
  173. cls._record_tensornode_property(node, value)
  174. if isinstance(value, NodeMixin):
  175. value._record_wrapped_nodes(node)
  176. setattr(value, "_NodeMixin__node", node)
  177. else:
  178. assert callable(node)
  179. n = node()
  180. assert isinstance(n, Node)
  181. if isinstance(value, RawTensor):
  182. cls._record_tensornode_property(n, value)
  183. if isinstance(value, NodeMixin):
  184. value._record_wrapped_nodes(n)
  185. setattr(value, "_NodeMixin__node", n)
  186. @classmethod
  187. def wrap_safe(cls, value, node):
  188. assert isinstance(value, (NodeMixin, RawTensor))
  189. if isinstance(value, RawTensor):
  190. cls._record_tensornode_property(node, value)
  191. setattr(value, "_NodeMixin__node", node)
  192. if isinstance(value, NodeMixin):
  193. value._record_wrapped_nodes(node)
  194. @classmethod
  195. def get(cls, value, *default):
  196. return getattr(value, "_NodeMixin__node", *default)
  197. @classmethod
  198. def get_wrapped_type(cls, value):
  199. if isinstance(value, RawTensor):
  200. return TensorNode
  201. if isinstance(value, (Module, NodeMixin)):
  202. return ModuleNode
  203. return Node

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台