You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

basic_arith.cpp 64 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803
  1. #include "megbrain/opr/basic_arith.h"
  2. #include "megbrain/gopt/basic_arith.h"
  3. #include "megbrain/gopt/gtrans.h"
  4. #include "megbrain/graph/grad_impl.h"
  5. #include "megbrain/opr/basic_arith_wrapper.h"
  6. #include "megbrain/opr/cond.h"
  7. #include "megbrain/opr/io.h"
  8. #include "megbrain/opr/tensor_manip.h"
  9. #include "megbrain/opr/utility.h"
  10. #include "megbrain/utils/arith_helper.h"
  11. #include "./internal/megdnn_opr_wrapper.inl"
  12. #include <cmath>
  13. using namespace mgb;
  14. using namespace opr;
  15. /* ========================= BatchedDTypePromotion ========================= */
  16. intl::BatchedDTypePromotion::BatchedDTypePromotion(const VarNodeArrayView& vars)
  17. : m_orig_vars{vars} {
  18. mgb_assert(!vars.empty());
  19. DType final_dtype;
  20. bool changed = false;
  21. for (size_t i = 0; i < vars.size(); ++i) {
  22. auto cur = vars[i]->dtype();
  23. if (!i) {
  24. final_dtype = cur;
  25. } else {
  26. auto promoted = dtype_promotion(final_dtype, cur);
  27. changed |= promoted != final_dtype || promoted != cur;
  28. final_dtype = promoted;
  29. }
  30. }
  31. m_changed = changed;
  32. m_final_dtype = final_dtype;
  33. }
  34. void intl::BatchedDTypePromotion::set_dtype(DType dtype) {
  35. mgb_assert(!m_finalized);
  36. if (m_final_dtype != dtype) {
  37. m_final_dtype = dtype;
  38. m_changed = true;
  39. }
  40. }
  41. const VarNodeArrayView& intl::BatchedDTypePromotion::get_vars() {
  42. m_finalized = true;
  43. if (!m_changed) {
  44. return m_orig_vars;
  45. }
  46. if (!m_cvt_vars_view.valid()) {
  47. m_cvt_vars.resize(m_orig_vars.size());
  48. auto dtype = m_final_dtype;
  49. for (size_t i = 0; i < m_cvt_vars.size(); ++i) {
  50. m_cvt_vars[i] = TypeCvt::make(m_orig_vars[i], dtype).node();
  51. }
  52. m_cvt_vars_view.emplace(m_cvt_vars);
  53. }
  54. return m_cvt_vars_view.val();
  55. }
  56. /* =========================== Elemwise =========================== */
  57. MGB_DYN_TYPE_OBJ_FINAL_IMPL(Elemwise);
  58. Elemwise::Elemwise(
  59. const ModeTrait& mode_trait, const VarNodeArrayView& inputs, Param param,
  60. const OperatorNodeConfig& config)
  61. : Super{inputs.at(0)->owner_graph(), config, mode_trait.name, inputs} {
  62. init_megdnn_opr(*this, param);
  63. output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
  64. if (mode_trait.commutable) {
  65. mgb_assert(inputs.size() == 2);
  66. add_input({inputs[0], inputs[1]}, AddInputSortType::CUR_ADDED);
  67. } else {
  68. if (param.mode == Mode::FUSE_MUL_ADD3) {
  69. add_input({inputs[0], inputs[1]}, AddInputSortType::CUR_ADDED);
  70. add_input({inputs[2]});
  71. } else if (param.mode == Mode::FUSE_MUL_ADD4) {
  72. auto i0 = inputs[0], i1 = inputs[1], i2 = inputs[2], i3 = inputs[3];
  73. if (i0->id() > i1->id())
  74. std::swap(i0, i1);
  75. if (i2->id() > i3->id())
  76. std::swap(i2, i3);
  77. if (i0->id() > i2->id()) {
  78. std::swap(i0, i2);
  79. std::swap(i1, i3);
  80. }
  81. add_input({i0, i1, i2, i3});
  82. } else {
  83. for (auto i : inputs)
  84. add_input({i});
  85. }
  86. }
  87. mgb_assert(m_input_broadcastable.size() >= inputs.size());
  88. for (size_t i = 0; i < inputs.size(); ++i) {
  89. if (input()[i]->owner_opr()->same_type<opr::MarkNoBroadcastElemwise>()) {
  90. m_input_broadcastable[i] = false;
  91. } else {
  92. m_input_broadcastable[i] = true;
  93. }
  94. }
  95. if (inputs.size() == 1) {
  96. m_input_broadcastable[0] = false;
  97. } else {
  98. Maybe<size_t> non_scalar;
  99. using namespace cg::static_infer;
  100. auto&& mgr = owner_graph()->static_infer_manager();
  101. for (size_t i = 0; i < input().size(); ++i) {
  102. auto it = mgr.get_infer_type(input(i));
  103. if (!((it.shape & InferType::CONST) &&
  104. mgr.infer_shape(input(i)).is_scalar())) {
  105. if (non_scalar.valid()) {
  106. non_scalar.invalidate();
  107. break;
  108. }
  109. non_scalar = i;
  110. }
  111. }
  112. if (non_scalar.valid()) {
  113. // exactly one input is non-scalar
  114. m_input_broadcastable[non_scalar.val()] = false;
  115. }
  116. }
  117. if (inputs.size() && inputs[0]->dtype().category() == DTypeCategory::QUANTIZED) {
  118. mgb_assert(
  119. param.mode == Param::Mode::ADD || param.mode == Param::Mode::SUB ||
  120. param.mode == Param::Mode::NEGATE ||
  121. param.mode == Param::Mode::RELU ||
  122. param.mode == Param::Mode::MAX ||
  123. param.mode == Param::Mode::MIN,
  124. "Only ADD, SUB, NEGATE, RELU, MAX and MIN is guaranteed "
  125. "to be supported on Elemwise for quantized DType, no support %d",
  126. (int)param.mode);
  127. }
  128. }
  129. SymbolVar Elemwise::make(
  130. const VarNodeArrayView& inputs, Param param, const OperatorNodeConfig& config) {
  131. auto trait = ModeTrait::from_mode(param.mode);
  132. mgb_assert(
  133. inputs.size() == trait.arity, "%s expects %u inputs; got %zu actually",
  134. trait.name, trait.arity, inputs.size());
  135. intl::BatchedDTypePromotion dtp{inputs};
  136. if (dtp.get_dtype().category() == DTypeCategory::INT && !trait.allow_int) {
  137. dtp.set_dtype(dtype::Float32());
  138. }
  139. mgb_throw_if(
  140. dtp.get_dtype().category() == DTypeCategory::FLOAT && !trait.allow_float,
  141. ConversionError,
  142. "elemwise mode %s does not allow float input; "
  143. "got inputs: %s",
  144. trait.name, cg::dump_var_info(inputs).c_str());
  145. #if !MGB_BUILD_SLIM_SERVING
  146. auto&& options = inputs[0]->owner_graph()->options();
  147. if (options.graph_opt_level && !(options.disable_inplace_arith_opt)) {
  148. auto repl = gopt::optimize_elemwise_expr_inplace(dtp.get_vars(), param, config);
  149. if (repl)
  150. return repl;
  151. }
  152. #endif
  153. return SymbolVar{inputs[0]}.insert_single_output_opr<Elemwise>(
  154. trait, dtp.get_vars(), param, config);
  155. }
  156. TensorShape Elemwise::get_output_var_shape(
  157. Mode mode, const TensorShapeArray& input_shapes) {
  158. mgb_assert(input_shapes.size() == ModeTrait::from_mode(mode).arity);
  159. TensorShape ret;
  160. megdnn::Elemwise::deduce_shape(input_shapes, ret);
  161. return ret;
  162. }
  163. void Elemwise::perform(
  164. Mode mode, DeviceTensorND& dest, const SmallVector<DeviceTensorND>& inputs,
  165. intl::UniqPtrWithCN<megdnn::Elemwise>& opr) {
  166. megdnn::TensorNDArray dnn_inputs(inputs.size());
  167. TensorShapeArray inp_shapes(inputs.size());
  168. DType out_dt;
  169. CompNode out_cn;
  170. for (size_t i = 0; i < inputs.size(); ++i) {
  171. auto&& t = inputs[i];
  172. if (!i) {
  173. out_cn = t.comp_node();
  174. out_dt = t.dtype();
  175. } else {
  176. mgb_assert(t.comp_node() == out_cn);
  177. mgb_assert(t.dtype() == out_dt);
  178. }
  179. if (t.shape().is_empty()) {
  180. mgb_assert(dest.empty());
  181. return;
  182. }
  183. inp_shapes[i] = t.shape();
  184. }
  185. if (!opr) {
  186. opr = intl::create_megdnn_opr<megdnn::Elemwise>(out_cn);
  187. } else {
  188. mgb_assert(out_cn == opr.comp_node());
  189. }
  190. out_cn.activate();
  191. for (size_t i = 0; i < inputs.size(); ++i)
  192. dnn_inputs[i] = inputs[i].as_megdnn();
  193. dest.comp_node(out_cn).dtype(out_dt).resize(get_output_var_shape(mode, inp_shapes));
  194. opr->param() = {mode};
  195. call_megdnn_opr_exec(out_cn, dnn_inputs, dest.as_megdnn(), opr.get(), nullptr);
  196. }
  197. void Elemwise::perform_dnn(
  198. CompNode cn, const megdnn::TensorND& dest, megdnn::TensorNDArray& inputs,
  199. intl::UniqPtrWithCN<megdnn::Elemwise>& opr) {
  200. call_megdnn_opr_exec(cn, inputs, dest, opr.get(), nullptr);
  201. }
  202. TensorLayoutArray Elemwise::collective_collapse(const TensorLayoutArray& layouts) {
  203. TensorLayoutPtrArray inp(layouts.size());
  204. TensorLayoutArray result(inp.size());
  205. for (size_t i = 0; i < layouts.size(); ++i) {
  206. result[i] = layouts[i];
  207. inp[i] = &result[i];
  208. }
  209. collective_collapse_inplace(inp);
  210. return result;
  211. }
  212. void Elemwise::collective_collapse_inplace(const TensorLayoutPtrArray& layouts) {
  213. mgb_assert(layouts.size());
  214. size_t ndim = layouts[0]->ndim;
  215. for (auto i : layouts) {
  216. if (i->ndim != ndim)
  217. mgb_throw(MegBrainError, "ndims must be same");
  218. }
  219. auto update_all = [&layouts](size_t axis) {
  220. for (auto i : layouts) {
  221. i->shape[axis] *= i->shape[axis + 1];
  222. i->stride[axis] = i->stride[axis + 1];
  223. i->remove_axis_inplace(axis + 1);
  224. }
  225. };
  226. auto check = [&layouts](size_t axis) -> bool {
  227. auto std_p =
  228. std::make_pair(layouts[0]->shape[axis], layouts[0]->shape[axis + 1]);
  229. for (auto i : layouts) {
  230. auto cur_p = std::make_pair(i->shape[axis], i->shape[axis + 1]);
  231. if (std_p != cur_p)
  232. return false;
  233. if (i->stride[axis] !=
  234. i->stride[axis + 1] * static_cast<ptrdiff_t>(i->shape[axis + 1]))
  235. return false;
  236. }
  237. return true;
  238. };
  239. for (int i = static_cast<int>(ndim) - 2; i >= 0; i--) {
  240. if (check(i)) {
  241. update_all(i);
  242. }
  243. }
  244. }
  245. void Elemwise::broadcast_collective_collapse(
  246. const TensorLayoutPtrArray& inp_layouts, TensorLayout* target_layout) {
  247. for (auto&& p : inp_layouts) {
  248. *p = p->broadcast(*target_layout);
  249. }
  250. TensorLayoutPtrArray buf(inp_layouts.size() + 1);
  251. buf[0] = target_layout;
  252. for (size_t i = 0; i < inp_layouts.size(); i++) {
  253. buf[i + 1] = inp_layouts[i];
  254. }
  255. collective_collapse_inplace(buf);
  256. }
  257. void Elemwise::mem_plan_fwd_in2out_writable() {
  258. mixin_mem_plan_fwd_in2out_writable(*this);
  259. }
  260. void Elemwise::scn_do_execute() {
  261. auto&& inp = input();
  262. megdnn::TensorNDArray dnn_inp;
  263. mgb_assert(dnn_inp.capacity() >= inp.size(), "heap allocation in elemwise exec");
  264. dnn_inp.resize(inp.size());
  265. for (size_t i = 0; i < inp.size(); ++i) {
  266. if (inp[i]->dev_tensor().empty()) {
  267. mgb_assert(output(0)->dev_tensor().empty());
  268. return;
  269. }
  270. dnn_inp[i] = (inp[i]->dev_tensor().as_megdnn());
  271. }
  272. mgb_assert(!output(0)->dev_tensor().empty());
  273. megdnn_opr()->param() = param();
  274. call_megdnn_opr_exec(
  275. comp_node(), dnn_inp, output(0)->dev_tensor().as_megdnn(), megdnn_opr(),
  276. this);
  277. }
  278. void Elemwise::init_output_static_infer_desc() {
  279. Super::init_output_static_infer_desc();
  280. static StaticInferOpr<megdnn::Elemwise> static_infer_opr;
  281. using namespace cg::static_infer;
  282. auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
  283. SmallVector<DeviceTensorND> inp_vals(inp.val.size());
  284. for (size_t i = 0; i < inp_vals.size(); ++i)
  285. inp_vals[i] = inp.val[i].value();
  286. auto sopr = static_infer_opr.lock();
  287. perform(param().mode, dest, inp_vals, sopr());
  288. return true;
  289. };
  290. DepVal deps(input().size());
  291. for (size_t i = 0; i < input().size(); ++i)
  292. deps[i] = {input(i), DepType::VALUE};
  293. owner_graph()->static_infer_manager().register_value_infer(
  294. output(0), {SourceType::DEP, deps, infer_value});
  295. }
  296. void Elemwise::get_output_var_shape(
  297. const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const {
  298. out_shape.at(0) = get_output_var_shape(param().mode, inp_shape);
  299. for (size_t i = 0; i < input().size(); ++i) {
  300. mgb_throw_if(
  301. !m_input_broadcastable[i] && !out_shape[0].eq_shape(inp_shape[i]),
  302. GraphError,
  303. "input %zu declared to be non-broadcastable but broacast "
  304. "actually happened",
  305. i);
  306. }
  307. }
  308. void Elemwise::add_input_layout_constraint() {
  309. for (auto i : input()) {
  310. i->add_layout_constraint_monotone();
  311. }
  312. }
  313. void Elemwise::call_megdnn_opr_exec(
  314. CompNode comp_node, megdnn::TensorNDArray& inp, const megdnn::TensorND& out,
  315. megdnn::Elemwise* opr, Elemwise* caller) {
  316. if (opr->param().mode == Mode::FUSE_MUL_ADD3 &&
  317. !(inp[2].layout.eq_layout(inp[0].layout) ||
  318. inp[2].layout.eq_layout(inp[1].layout) || inp[2].layout.is_scalar())) {
  319. if (caller && !caller->fuse_badlayout_warn_printed()) {
  320. mgb_log_debug(
  321. "%s: FUSE_MUL_ADD3 input layouts mismatch: %s %s %s; "
  322. "fallback to normal computing",
  323. caller->cname(), inp[0].layout.to_string().c_str(),
  324. inp[1].layout.to_string().c_str(),
  325. inp[2].layout.to_string().c_str());
  326. caller->m_fuse_badlayout_warn_printed = true;
  327. }
  328. for (auto&& i : inp) {
  329. i.layout = i.layout.broadcast(out.layout);
  330. }
  331. megdnn::TensorNDArray run_inp(2);
  332. auto run = [&](Mode mode, const megdnn::TensorND& i0,
  333. const megdnn::TensorND& i1, const megdnn::TensorND& out) {
  334. run_inp[0] = i0;
  335. run_inp[1] = i1;
  336. opr->param() = {mode};
  337. opr->exec(run_inp, out);
  338. };
  339. auto tmp = intl::get_temp_tensor(
  340. caller ? caller->owner_graph() : nullptr, comp_node, out.layout);
  341. auto tmpv = tmp.as_megdnn();
  342. MGB_TRY {
  343. run(Mode::MUL, inp[0], inp[1], tmpv);
  344. run(Mode::ADD, inp[2], tmpv, out);
  345. }
  346. MGB_FINALLY(opr->param() = {Mode::FUSE_MUL_ADD3});
  347. return;
  348. }
  349. if (opr->param().mode == Mode::FUSE_MUL_ADD4 &&
  350. !(inp[0].layout.eq_layout(inp[2].layout) &&
  351. inp[1].layout.eq_layout(inp[3].layout)) &&
  352. !(inp[0].layout.eq_layout(inp[3].layout) &&
  353. inp[1].layout.eq_layout(inp[2].layout))) {
  354. if (caller && !caller->fuse_badlayout_warn_printed()) {
  355. mgb_log_debug(
  356. "%s: FUSE_MUL_ADD4 input layouts mismatch: %s %s %s %s; "
  357. "fallback to normal computing",
  358. caller->cname(), inp[0].layout.to_string().c_str(),
  359. inp[1].layout.to_string().c_str(),
  360. inp[2].layout.to_string().c_str(),
  361. inp[3].layout.to_string().c_str());
  362. caller->m_fuse_badlayout_warn_printed = true;
  363. }
  364. for (auto&& i : inp) {
  365. i.layout = i.layout.broadcast(out.layout);
  366. }
  367. megdnn::TensorNDArray run_inp(2);
  368. auto run = [&](Mode mode, const megdnn::TensorND& i0,
  369. const megdnn::TensorND& i1, const megdnn::TensorND& out) {
  370. run_inp[0] = i0;
  371. run_inp[1] = i1;
  372. opr->param() = {mode};
  373. opr->exec(run_inp, out);
  374. };
  375. auto tmp = intl::get_temp_tensor(
  376. caller ? caller->owner_graph() : nullptr, comp_node, out.layout);
  377. auto tmpv = tmp.as_megdnn();
  378. MGB_TRY {
  379. run(Mode::MUL, inp[0], inp[1], tmpv);
  380. run(Mode::MUL, inp[2], inp[3], out);
  381. run(Mode::ADD, out, tmpv, out);
  382. }
  383. MGB_FINALLY(opr->param() = {Mode::FUSE_MUL_ADD4});
  384. return;
  385. }
  386. // All Elemwise operations on QuantizedS32/QuantizedS8 are not related to
  387. // scale. MegDNN does not support computing Elemwise for
  388. // QuantizedS32/QuantizedS8, we translate the data type to Int32/Int8 before
  389. // passing to MegDNN.
  390. if (inp.size() && inp[0].layout.dtype.category() == DTypeCategory::QUANTIZED) {
  391. auto inp_dtype = inp[0].layout.dtype;
  392. DType compute_dtype;
  393. if (inp_dtype.enumv() == DTypeEnum::QuantizedS32) {
  394. compute_dtype = dtype::Int32();
  395. } else if (inp_dtype.enumv() == DTypeEnum::QuantizedS8) {
  396. compute_dtype = dtype::Int8();
  397. } else {
  398. mgb_throw(
  399. MegBrainError, "Unsupported Quantized Elemwise Mode %s: %d on %s",
  400. inp[0].layout.dtype.name(), int(opr->param().mode),
  401. comp_node.to_string().c_str());
  402. }
  403. megdnn::TensorNDArray run_inp(inp);
  404. for (size_t i = 0; i < inp.size(); i++) {
  405. run_inp[i].layout.dtype = compute_dtype;
  406. }
  407. megdnn::TensorND run_out = out;
  408. run_out.layout.dtype = compute_dtype;
  409. opr->exec(run_inp, run_out);
  410. return;
  411. }
  412. opr->exec(inp, out);
  413. }
  414. #if MGB_ENABLE_GRAD
  415. MGB_IMPL_OPR_GRAD(Elemwise) {
  416. SymbolVar i[5];
  417. SymbolVar i0(opr.input(0)), i1, i2, out(opr.output(0)), og{out_grad.at(0)}, result;
  418. for (size_t t = 0; t < opr.input().size(); ++t)
  419. i[t] = opr.input()[t];
  420. if (opr.input().size() >= 2)
  421. i1 = opr.input(1);
  422. if (opr.input().size() >= 3)
  423. i2 = opr.input(2);
  424. // negate after reduce, for better performance
  425. bool negate_result = false;
  426. #define RET(_v) \
  427. result = (_v); \
  428. break
  429. #define EL1(_mode, _a) Elemwise::make({_a}, Mode::_mode)
  430. #define EL2(_mode, _a, _b) Elemwise::make({_a, _b}, Mode::_mode)
  431. #define EL3(_mode, _a, _b, _c) Elemwise::make({_a, _b, _c}, Mode::_mode)
  432. #define RET_INVALID() return InvalidGrad::make(opr, wrt_idx)
  433. using Mode = Elemwise::Mode;
  434. switch (opr.param().mode) {
  435. // unary
  436. case Mode::RELU:
  437. case Mode::FUSE_ADD_RELU:
  438. RET(EL2(SWITCH_GT0, out, og));
  439. case Mode::ABS:
  440. RET(EL2(ABS_GRAD, i0, og));
  441. case Mode::ACOS:
  442. negate_result = true;
  443. RET(og / EL1(SIN, out));
  444. case Mode::ASIN:
  445. RET(og / EL1(COS, out));
  446. case Mode::ATAN2:
  447. if (wrt_idx) {
  448. negate_result = true;
  449. }
  450. RET(og * i[!wrt_idx] / (i0 * i0 + i1 * i1));
  451. case Mode::CEIL:
  452. return nullptr;
  453. case Mode::COS:
  454. negate_result = true;
  455. RET(EL1(SIN, i0) * og);
  456. case Mode::EXP:
  457. RET(og * out);
  458. case Mode::EXPM1:
  459. RET(og * EL1(EXP, i0));
  460. case Mode::FLOOR:
  461. return nullptr;
  462. case Mode::LOG:
  463. RET(og / i0);
  464. case Mode::LOG1P:
  465. RET(og / (i0 + 1));
  466. case Mode::NEGATE:
  467. negate_result = true;
  468. RET(og);
  469. case Mode::SIGMOID:
  470. case Mode::FUSE_ADD_SIGMOID:
  471. RET(EL2(SIGMOID_GRAD, out, og));
  472. case Mode::SIN:
  473. RET(EL1(COS, i0) * og);
  474. case Mode::TANH:
  475. case Mode::FUSE_ADD_TANH:
  476. RET(EL2(TANH_GRAD, out, og));
  477. case Mode::FAST_TANH:
  478. RET(EL2(FAST_TANH_GRAD, i0, og));
  479. case Mode::ROUND:
  480. return nullptr;
  481. case Mode::ERF:
  482. RET(EL1(EXP, -i0 * i0) * 2 / static_cast<float>(sqrt(M_PI)) * og);
  483. case Mode::ERFINV:
  484. RET(EL1(EXP, out * out) * static_cast<float>(sqrt(M_PI)) / 2 * og);
  485. case Mode::ERFC:
  486. RET(-EL1(EXP, -i0 * i0) * 2 / static_cast<float>(sqrt(M_PI)) * og);
  487. case Mode::H_SWISH:
  488. RET(EL2(H_SWISH_GRAD, i0, og));
  489. case Mode::FUSE_ADD_H_SWISH:
  490. RET(EL2(H_SWISH_GRAD, (i0 + i1), og));
  491. case Mode::NOT:
  492. return nullptr;
  493. case Mode::SILU:
  494. RET(EL2(SILU_GRAD, i0, og));
  495. case Mode::GELU:
  496. RET(EL2(GELU_GRAD, i0, og));
  497. // binary
  498. case Mode::ABS_GRAD:
  499. if (wrt_idx == 0) {
  500. return nullptr;
  501. }
  502. RET(EL2(ABS_GRAD, i0, og));
  503. case Mode::ADD:
  504. RET(og);
  505. case Mode::FLOOR_DIV:
  506. return nullptr;
  507. case Mode::MAX:
  508. if (wrt_idx) {
  509. RET(EL3(COND_LT_MOV, i[0], i[1], og));
  510. } else {
  511. RET(EL3(COND_LEQ_MOV, i[1], i[0], og));
  512. }
  513. case Mode::MIN:
  514. if (wrt_idx) {
  515. RET(EL3(COND_LT_MOV, i[1], i[0], og));
  516. } else {
  517. RET(EL3(COND_LEQ_MOV, i[0], i[1], og));
  518. }
  519. case Mode::MOD:
  520. if (wrt_idx == 0) {
  521. RET(og);
  522. }
  523. RET_INVALID();
  524. case Mode::MUL:
  525. RET(og * i[!wrt_idx]);
  526. case Mode::POW:
  527. if (wrt_idx) {
  528. RET(out * EL1(LOG, i0) * og);
  529. }
  530. RET(og * i1 * EL2(POW, i0, i1 - 1));
  531. case Mode::SIGMOID_GRAD:
  532. if (wrt_idx == 0) {
  533. auto one = i0.make_scalar_dt(1), two = i0.make_scalar_dt(2);
  534. RET((one - i0 * two) * i1 * og);
  535. }
  536. RET(EL2(SIGMOID_GRAD, i0, og));
  537. case Mode::SUB:
  538. negate_result = wrt_idx;
  539. RET(og);
  540. case Mode::SWITCH_GT0:
  541. if (!wrt_idx)
  542. return nullptr;
  543. RET(EL2(SWITCH_GT0, i0, og));
  544. case Mode::TANH_GRAD:
  545. if (wrt_idx == 0) {
  546. auto mtwo = i0.make_scalar_dt(-2);
  547. RET(mtwo * i0 * i1 * og);
  548. }
  549. RET(EL2(TANH_GRAD, i0, og));
  550. case Mode::TRUE_DIV:
  551. if (wrt_idx == 0) {
  552. RET(og / i1);
  553. }
  554. negate_result = true;
  555. RET((og * i0) * EL2(POW, i1, i1.make_scalar(-2)));
  556. case Mode::LOG_SUM_EXP:
  557. if (wrt_idx == 0) {
  558. RET(og * EL1(SIGMOID, i0 - i1));
  559. }
  560. RET(og * EL1(SIGMOID, i1 - i0));
  561. case Mode::LT:
  562. case Mode::LEQ:
  563. return nullptr;
  564. case Mode::EQ:
  565. RET_INVALID();
  566. case Mode::OR:
  567. case Mode::XOR:
  568. case Mode::AND:
  569. return nullptr;
  570. // ternary
  571. case Mode::COND_LEQ_MOV:
  572. if (wrt_idx <= 1)
  573. return nullptr;
  574. RET(EL3(COND_LEQ_MOV, i0, i1, og));
  575. case Mode::COND_LT_MOV:
  576. if (wrt_idx <= 1)
  577. return nullptr;
  578. RET(EL3(COND_LT_MOV, i0, i1, og));
  579. // fuse oprs
  580. case Mode::FUSE_MUL_ADD3:
  581. if (wrt_idx < 2) {
  582. RET(og * i[wrt_idx ^ 1]);
  583. } else {
  584. RET(og);
  585. }
  586. case Mode::FUSE_MUL_ADD4:
  587. RET(og * i[wrt_idx ^ 1]);
  588. default:
  589. mgb_throw(
  590. GraphError, "grad for elemwise mode %s unimplemented",
  591. megdnn::Elemwise::ModeTrait::from_mode(opr.param().mode).name);
  592. }
  593. #undef EL3
  594. #undef EL2
  595. #undef EL1
  596. #undef RET
  597. if (opr.input_broadcastable()[wrt_idx]) {
  598. result = reduce_sum(result, opr::GetVarShape::make(opr.input(wrt_idx)));
  599. } else if (result.node()->owner_opr()->same_type<Broadcast>()) {
  600. // forward broadcast for optimizer to work
  601. result = opr::Broadcast::make(
  602. result.node()->owner_opr()->input(0),
  603. opr::GetVarShape::make(i[wrt_idx]));
  604. }
  605. if (negate_result)
  606. result = -result;
  607. return result.node();
  608. }
  609. #endif
  610. VarNode* Elemwise::sum_grad_list(VarNode* wrt, VarNodeArray& grads) {
  611. mgb_assert(!grads.empty());
  612. if (grads.size() == 1)
  613. return grads[0];
  614. #if MGB_ENABLE_COND_EXEC
  615. CondExecMerge::modify_grad_sum_list(wrt, grads);
  616. #endif
  617. VarNodeArray mid_results;
  618. VarNode* ret;
  619. if (wrt->owner_graph()->options().graph_opt_level) {
  620. ret = gopt::GradSumListOptimizer{wrt, grads, mid_results}.get_sum();
  621. } else {
  622. ret = gopt::elemwise_reduce_var_list(grads, Elemwise::Mode::ADD, &mid_results);
  623. }
  624. mid_results.swap(grads);
  625. return ret;
  626. }
  627. void Elemwise::record_execute_deps(ExecDependencyArray& deps) {
  628. record_megdnn_opr(deps);
  629. }
  630. Elemwise::NodeProp* Elemwise::do_make_node_prop() const {
  631. auto ret = Super::do_make_node_prop();
  632. for (auto& inp : input()) {
  633. ret->add_dep_type_existing_var(inp, NodeProp::DepType::VALUE_ALLOW_EMPTY);
  634. }
  635. return ret;
  636. }
  637. /* =========================== TypeCvt =========================== */
  638. MGB_DYN_TYPE_OBJ_FINAL_IMPL(TypeCvt);
  639. TypeCvt::TypeCvt(VarNode* inp, DType dest_type, const OperatorNodeConfig& config)
  640. : Super{inp->owner_graph(),
  641. config,
  642. std::string("as") + dest_type.name(),
  643. {inp}} {
  644. init_megdnn_opr(*this, {});
  645. mgb_assert(dest_type.valid());
  646. add_input({inp});
  647. add_equivalence_component<ScalarHash<const void*>>(dest_type.handle());
  648. output(0)->dtype(dest_type).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
  649. }
  650. SymbolVar TypeCvt::make(
  651. SymbolVar input, DType dest_type, const OperatorNodeConfig& config) {
  652. if (input.dtype() == dest_type)
  653. return input;
  654. return input.insert_single_output_opr<TypeCvt>(input.node(), dest_type, config);
  655. }
  656. void TypeCvt::perform(
  657. DeviceTensorND& dest, DType dest_type, const DeviceTensorND& src,
  658. intl::UniqPtrWithCN<megdnn::TypeCvt>& opr) {
  659. mgb_assert(src.comp_node() == opr.comp_node());
  660. mgb_assert(dest_type.valid());
  661. if (src.empty()) {
  662. mgb_assert(dest.empty());
  663. return;
  664. }
  665. if (src.dtype() == dest_type) {
  666. dest.copy_from(src);
  667. return;
  668. }
  669. src.comp_node().activate();
  670. dest.comp_node(src.comp_node()).dtype(dest_type).resize(src.shape());
  671. opr->exec(src.as_megdnn(), dest.as_megdnn());
  672. }
  673. void TypeCvt::add_input_layout_constraint() {
  674. //! Because the implementation of typecvt on arm/x86/cuda/opencl support
  675. //! non-contiguous memory. So we change constraint of typecvt to monotone
  676. for (auto i : input()) {
  677. i->add_layout_constraint_monotone();
  678. }
  679. }
  680. TypeCvt::NodeProp* TypeCvt::do_make_node_prop() const {
  681. auto ret = Super::do_make_node_prop();
  682. ret->add_dep_type_existing_var(input(0), NodeProp::DepType::VALUE_ALLOW_EMPTY);
  683. return ret;
  684. }
  685. #if MGB_ENABLE_GRAD
  686. MGB_IMPL_OPR_GRAD(TypeCvt) {
  687. MGB_MARK_USED_VAR(wrt_idx);
  688. auto itype = opr.input(0)->dtype(), otype = opr.output(0)->dtype();
  689. if (itype.category() == DTypeCategory::FLOAT &&
  690. otype.category() == DTypeCategory::INT) {
  691. return nullptr;
  692. }
  693. if (itype.category() != DTypeCategory::FLOAT) {
  694. return InvalidGrad::make(opr, 0);
  695. }
  696. return TypeCvt::make(out_grad[0], opr.input(0)->dtype()).node();
  697. }
  698. #endif
  699. void TypeCvt::mem_plan_fwd_in2out_writable() {
  700. bool cond_low_bit = input(0)->dtype().is_low_bit() &&
  701. output(0)->dtype().is_low_bit() &&
  702. input(0)->dtype().low_bit() == output(0)->dtype().low_bit();
  703. bool cond_normal = !input(0)->dtype().is_low_bit() &&
  704. !output(0)->dtype().is_low_bit() &&
  705. input(0)->dtype().size() == output(0)->dtype().size();
  706. if ((cond_low_bit || cond_normal) && input(0)->layout().is_contiguous()) {
  707. output(0)->set_fwd_in2out_writable(input(0));
  708. }
  709. }
  710. void TypeCvt::scn_do_execute() {
  711. auto ovar = output(0)->dev_tensor().as_megdnn();
  712. for (size_t i = 0; i < ovar.layout.ndim; ++i) {
  713. if (!ovar.layout[i]) {
  714. // skip execution for empty var
  715. return;
  716. }
  717. }
  718. megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(), ovar);
  719. }
  720. void TypeCvt::init_output_static_infer_desc() {
  721. static StaticInferOpr<megdnn::TypeCvt> static_infer_opr;
  722. Super::init_output_static_infer_desc();
  723. using namespace cg::static_infer;
  724. auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
  725. auto sopr = static_infer_opr.lock();
  726. perform(dest, output(0)->dtype(), inp.val.at(0).value(), sopr());
  727. return true;
  728. };
  729. owner_graph()->static_infer_manager().register_value_infer(
  730. output(0), {SourceType::DEP, {{input(0), DepType::VALUE}}, infer_value});
  731. }
  732. void TypeCvt::record_execute_deps(ExecDependencyArray& deps) {
  733. record_megdnn_opr(deps);
  734. }
  735. /* =========================== AddUpdate =========================== */
  736. MGB_DYN_TYPE_OBJ_FINAL_IMPL(AddUpdate);
  737. AddUpdate::AddUpdate(
  738. VarNode* dest, VarNode* delta, const Param& param,
  739. const OperatorNodeConfig& config)
  740. : Super{dest->owner_graph(), config, "inplace_add", {dest, delta}},
  741. m_param{param} {
  742. auto dest_opr = dest->owner_opr();
  743. mgb_throw_if(
  744. dest_opr->same_type<ImmutableTensor>(), GraphError,
  745. "AddUpdate cannot be applied on ImmutableTensor; ");
  746. add_input({dest, delta});
  747. /*
  748. * here we tell the system that output(0) would force-update input(0); the
  749. * topo-sorting system would ensure that all the readers finish before
  750. * executing this AddUpdate operation
  751. */
  752. add_output(None)->set_fwd_in2out_writable_force(input(0)).add_flag(
  753. VarNode::Flag::NO_MEM_RECLAIM);
  754. mgb_assert(
  755. m_param.disable->dtype() == dtype::Int32{},
  756. "dtype of disable flag on AddUpdate must be Int32, got %s actually.",
  757. m_param.disable->dtype().name());
  758. add_equivalence_component<ScalarHash<void*>>(m_param.alpha.get());
  759. add_equivalence_component<ScalarHash<void*>>(m_param.beta.get());
  760. add_equivalence_component<ScalarHash<void*>>(m_param.bias.get());
  761. add_equivalence_component<ScalarHash<void*>>(m_param.disable.get());
  762. }
  763. SymbolVar AddUpdate::make(
  764. SymbolVar dest, SymbolVar delta, const Param& param,
  765. const OperatorNodeConfig& config) {
  766. delta = opr::TypeCvt::make(delta, dest.dtype());
  767. return dest.insert_single_output_opr<AddUpdate>(
  768. dest.node(), delta.node(), param, config);
  769. }
  770. cg::OperatorNodeBase::NodeProp* AddUpdate::do_make_node_prop() const {
  771. auto ret = Super::do_make_node_prop();
  772. ret->add_flag(NodeProp::Flag::FORCE_UPDATE_INPUT_VAR);
  773. return ret;
  774. }
  775. void AddUpdate::create_megdnn_opr() {
  776. set_megdnn_opr(
  777. intl::get_megdnn_handle(comp_node())->create_operator<megdnn::AddUpdate>());
  778. }
  779. void AddUpdate::scn_do_execute() {
  780. mgb_assert(
  781. m_param.disable->dtype() == dtype::Int32{},
  782. "dtype of disable flag on AddUpdate must be Int32, got %s actually.",
  783. m_param.disable->dtype().name());
  784. auto disable = m_param.disable->get_cast<int>();
  785. if (disable == 1)
  786. return;
  787. mgb_assert(
  788. disable == 0,
  789. "disable flag on AddUpdate can only be 0 or 1,"
  790. " got %d actually.",
  791. disable);
  792. auto&& dest = output(0)->dev_tensor();
  793. auto&& delta_nobrd = input(1)->dev_tensor();
  794. auto delta = delta_nobrd.sub(SubTensorSpec::make_from_offset_elem(
  795. delta_nobrd.layout().broadcast(dest.shape()), 0));
  796. mgb_assert(input(0)->dev_tensor().raw_ptr() == dest.raw_ptr());
  797. auto beta = m_param.beta->get_cast<float>();
  798. if (!m_param.alpha->get_cast<bool>() && beta == 1 &&
  799. !m_param.bias->get_cast<bool>()) {
  800. dest.copy_from_fixlayout(delta);
  801. } else {
  802. auto opr = static_cast<megdnn::AddUpdate*>(megdnn_opr());
  803. opr->param() = {
  804. m_param.alpha->get_cast<float>(), beta,
  805. m_param.bias->get_cast<float>()};
  806. opr->exec(dest.as_megdnn(), delta.as_megdnn());
  807. }
  808. }
  809. void AddUpdate::init_output_static_infer_desc() {
  810. using namespace cg::static_infer;
  811. owner_graph()->static_infer_manager().register_shape_infer(
  812. output(0), ShapeInferDesc::make_identity(input(0)));
  813. }
  814. void AddUpdate::record_execute_deps(ExecDependencyArray& deps) {
  815. record_megdnn_opr(deps);
  816. }
  817. #if MGB_ENABLE_GRAD
  818. MGB_IMPL_OPR_GRAD(AddUpdate) {
  819. // actually valid, just not implemented
  820. return InvalidGrad::make(opr, wrt_idx);
  821. }
  822. #endif
  823. /* =========================== Reduce =========================== */
  824. class Reduce::KernScheduler {
  825. class ValueDep final : public ExecDependency {
  826. DeviceTensorStorage m_val;
  827. public:
  828. explicit ValueDep(DeviceTensorStorage val) : m_val(std::move(val)) {}
  829. };
  830. public:
  831. bool has_actual_computing() const {
  832. mgb_assert(m_shape_computed);
  833. return !m_kern_param.empty() || m_apply_side_effect;
  834. }
  835. size_t workspace_size() const { return m_workspace_spec[2].end(); }
  836. bool shape_computed() const { return m_shape_computed; }
  837. //! init shapes in kern param
  838. void init_shapes(
  839. megdnn::Reduce* opr, CompNode comp_node, DType dtype, Mode mode,
  840. TensorShape ishp, TensorShape oshp, const Param::DataType data_type);
  841. void setup_kern_params_layout_and_mode(
  842. Mode mode, DType inp_dtype, TensorShape& inp_shp, const Param::DataType);
  843. void check_shapes(const TensorShape& ishp, const TensorShape& oshp) {
  844. mgb_assert(m_prev_ishp.eq_shape(ishp) && m_prev_oshp.eq_shape(oshp));
  845. }
  846. //! update pointers in kern param; the tensors must have been allocated
  847. void update_ptr(
  848. const DeviceTensorND& input, const DeviceTensorND& dest,
  849. const DeviceTensorND& workspace);
  850. void execute(
  851. megdnn::Reduce* opr, const DeviceTensorND& input,
  852. const DeviceTensorND& dest);
  853. void record_execute_deps(ExecDependencyArray& deps) {
  854. if (m_elemwise_trans_opr) {
  855. deps.emplace_back(std::make_unique<intl::MegDNNGraphDep>(
  856. std::move(m_elemwise_trans_opr)));
  857. }
  858. if (m_typecvt_opr) {
  859. deps.emplace_back(
  860. std::make_unique<intl::MegDNNGraphDep>(std::move(m_typecvt_opr)));
  861. }
  862. deps.emplace_back(std::make_unique<ValueDep>(m_side_affect_wkspc.storage()));
  863. }
  864. private:
  865. struct KernParam {
  866. megdnn::TensorND input, output;
  867. //! param passed to megdnn
  868. megdnn::param::Reduce kparam;
  869. megdnn::Workspace workspace;
  870. KernParam(Mode mode, int32_t ra) : kparam{mode, ra} {}
  871. };
  872. struct SubWorkspace {
  873. size_t size, offset;
  874. size_t end() const { return size + offset; }
  875. };
  876. void update_kparam_for_elemwise_side_effect(
  877. CompNode comp_node, Mode mode, const Param::DataType data_type);
  878. bool m_shape_computed = false;
  879. std::vector<KernParam> m_kern_param;
  880. TensorShape m_prev_ishp, m_prev_oshp;
  881. SubWorkspace m_workspace_spec[3]; //! tmp output[2], kern workspce
  882. /*!
  883. * some reduce mode (like SUM_SQR) has side effect of element-wise
  884. * trans. If this is the case and there is no kernel param,
  885. * m_apply_side_effect would be non-null
  886. */
  887. thin_function<void(const DeviceTensorND& in, const DeviceTensorND& out)>
  888. m_apply_side_effect;
  889. std::unique_ptr<megdnn::Elemwise> m_elemwise_trans_opr;
  890. std::unique_ptr<megdnn::TypeCvt> m_typecvt_opr;
  891. std::unique_ptr<megdnn::Fill> m_fill_opr;
  892. DeviceTensorND m_side_affect_wkspc;
  893. };
  894. void Reduce::KernScheduler::setup_kern_params_layout_and_mode(
  895. Mode mode, DType inp_dtype, TensorShape& ishp,
  896. const Param::DataType data_type) {
  897. auto prev_dtype = inp_dtype;
  898. for (size_t idx = 0; idx < m_kern_param.size(); ++idx) {
  899. auto&& i = m_kern_param[idx];
  900. #if !MEGDNN_DISABLE_FLOAT16
  901. if (idx == 0 && data_type == Param::DataType::FLOAT_O32xC32) {
  902. i.input.layout.dtype = inp_dtype;
  903. i.output.layout.dtype = dtype::Float32();
  904. i.kparam.data_type = data_type;
  905. } else if (data_type == Param::DataType::FLOAT_O16xC32) {
  906. i.input.layout.dtype = prev_dtype;
  907. if (idx + 1 == m_kern_param.size()) {
  908. i.output.layout.dtype = dtype::Float16();
  909. i.kparam.data_type = data_type;
  910. } else {
  911. i.output.layout.dtype = dtype::Float32();
  912. i.kparam.data_type = Param::DataType::FLOAT_O32xC32;
  913. }
  914. } else
  915. #endif
  916. {
  917. mgb_assert(
  918. data_type == Param::DataType::DEFAULT ||
  919. (data_type == Param::DataType::FLOAT_O32xC32 && idx));
  920. i.input.layout.dtype = prev_dtype;
  921. i.output.layout.dtype = prev_dtype;
  922. i.kparam.data_type = Param::DataType::DEFAULT;
  923. }
  924. prev_dtype = i.output.layout.dtype;
  925. i.input.layout.init_contiguous_stride(ishp);
  926. ishp.shape[i.kparam.axis] = 1;
  927. i.output.layout.init_contiguous_stride(ishp);
  928. }
  929. if (mode == Mode::SUM_SQR) {
  930. for (size_t i = 1; i < m_kern_param.size(); ++i)
  931. m_kern_param[i].kparam.mode = Mode::SUM;
  932. }
  933. }
  934. void Reduce::KernScheduler::init_shapes(
  935. megdnn::Reduce* opr, CompNode comp_node, DType inp_dtype, Mode mode,
  936. TensorShape ishp, TensorShape oshp, const Param::DataType data_type) {
  937. mgb_assert(ishp.ndim && oshp.ndim);
  938. if (ishp.eq_shape(m_prev_ishp) && oshp.eq_shape(m_prev_oshp))
  939. return;
  940. m_prev_ishp = ishp;
  941. m_prev_oshp = oshp;
  942. m_kern_param.clear();
  943. if (oshp.is_scalar()) {
  944. // if ishp is non-contiguous, add_layout_constraint_contiguous would be
  945. // added; so we do not have to worry about this
  946. ishp.shape[0] = ishp.total_nr_elems();
  947. ishp.ndim = 1;
  948. }
  949. mgb_assert(
  950. oshp.ndim == ishp.ndim,
  951. "input and output ndim mismatch for reduction: ishp=%s oshp=%s",
  952. ishp.to_string().c_str(), oshp.to_string().c_str());
  953. for (size_t i = 0; i < ishp.ndim; ++i) {
  954. if (ishp.shape[i] != oshp.shape[i]) {
  955. mgb_assert(
  956. oshp.shape[i] == 1,
  957. "input and output shape mismatch for reduction: "
  958. "ishp=%s oshp=%s",
  959. ishp.to_string().c_str(), oshp.to_string().c_str());
  960. }
  961. }
  962. auto remove_axis = [](TensorShape& shp, size_t ax) {
  963. mgb_assert(shp.ndim > 1);
  964. for (auto i = ax + 1; i < shp.ndim; ++i)
  965. shp.shape[i - 1] = shp.shape[i];
  966. --shp.ndim;
  967. };
  968. // collapse consecutive shape-1 axes in oshp
  969. for (size_t i = 0; i < oshp.ndim; ++i) {
  970. auto start = i;
  971. while (i < oshp.ndim && oshp.shape[i] == 1)
  972. ++i;
  973. if (start + 1 < i) {
  974. for (auto j = start + 1; j < i; ++j)
  975. ishp.shape[start] *= ishp.shape[j];
  976. for (auto j = start + 1; j < i; ++j) {
  977. remove_axis(ishp, start + 1);
  978. remove_axis(oshp, start + 1);
  979. }
  980. i = start;
  981. }
  982. }
  983. for (uint32_t i = 0; i < ishp.ndim; ++i) {
  984. if (ishp.shape[i] != oshp.shape[i]) {
  985. mgb_assert(oshp.shape[i] == 1);
  986. m_kern_param.push_back({mode, static_cast<int32_t>(i)});
  987. }
  988. }
  989. // sort according to reduction size, so workspace can be smaller
  990. small_sort(
  991. m_kern_param.begin(), m_kern_param.end(),
  992. [&](const KernParam& a, const KernParam& b) {
  993. return ishp.shape[a.kparam.axis] > ishp.shape[b.kparam.axis];
  994. });
  995. // init kparam input/output layout
  996. setup_kern_params_layout_and_mode(mode, inp_dtype, ishp, data_type);
  997. // init workspace size
  998. memset(m_workspace_spec, 0, sizeof(m_workspace_spec));
  999. for (auto&& i : m_kern_param) {
  1000. opr->param() = i.kparam;
  1001. i.workspace.size = opr->get_workspace_in_bytes(i.input.layout, i.output.layout);
  1002. update_max(m_workspace_spec[2].size, i.workspace.size);
  1003. }
  1004. mgb_assert(ishp.eq_shape(oshp));
  1005. if (m_kern_param.size() >= 2) {
  1006. m_workspace_spec[0].size = m_kern_param[1].input.layout.span().high_byte;
  1007. }
  1008. if (m_kern_param.size() >= 3) {
  1009. m_workspace_spec[1].size = m_kern_param[2].input.layout.span().high_byte;
  1010. }
  1011. auto align = comp_node.get_mem_addr_alignment();
  1012. for (int i = 0; i < 2; ++i) {
  1013. m_workspace_spec[i + 1].offset =
  1014. get_aligned_power2(m_workspace_spec[i].end(), align);
  1015. }
  1016. update_kparam_for_elemwise_side_effect(comp_node, mode, data_type);
  1017. m_shape_computed = true;
  1018. }
  1019. void Reduce::KernScheduler::update_kparam_for_elemwise_side_effect(
  1020. CompNode comp_node, Mode mode, const Param::DataType data_type) {
  1021. m_apply_side_effect = nullptr;
  1022. m_elemwise_trans_opr.reset();
  1023. m_typecvt_opr.reset();
  1024. if (!m_kern_param.empty()) {
  1025. // no need to set m_apply_side_effect
  1026. return;
  1027. } /* else */
  1028. // case A: input.layout == output.layout
  1029. // case B: input.total_nr_elems == 1 and output is a scalar
  1030. if (mode == Mode::SUM_SQR) {
  1031. m_elemwise_trans_opr =
  1032. intl::get_megdnn_handle(comp_node)->create_operator<megdnn::Elemwise>();
  1033. m_elemwise_trans_opr->param() = {Elemwise::Mode::MUL};
  1034. }
  1035. if (data_type != Param::DataType::DEFAULT) {
  1036. m_side_affect_wkspc = DeviceTensorND{comp_node, dtype::Float32()};
  1037. m_typecvt_opr =
  1038. intl::get_megdnn_handle(comp_node)->create_operator<megdnn::TypeCvt>();
  1039. }
  1040. if (!m_typecvt_opr && !m_elemwise_trans_opr)
  1041. return;
  1042. m_apply_side_effect = [this](const DeviceTensorND& in, const DeviceTensorND& out) {
  1043. if (m_typecvt_opr) {
  1044. m_side_affect_wkspc.resize(in.shape());
  1045. }
  1046. if (!m_elemwise_trans_opr) {
  1047. mgb_assert(m_typecvt_opr);
  1048. m_typecvt_opr->exec(in.as_megdnn(), out.as_megdnn());
  1049. return;
  1050. }
  1051. auto im = in.as_megdnn();
  1052. megdnn::TensorND wm;
  1053. if (m_typecvt_opr && in.dtype() != m_side_affect_wkspc.dtype()) {
  1054. m_side_affect_wkspc.resize(in.shape());
  1055. wm = m_side_affect_wkspc.as_megdnn();
  1056. m_typecvt_opr->exec(im, wm);
  1057. } else {
  1058. wm = im;
  1059. }
  1060. if (m_typecvt_opr && wm.layout.dtype != out.dtype()) {
  1061. m_elemwise_trans_opr->exec({wm, wm}, wm);
  1062. m_typecvt_opr->exec(wm, out.as_megdnn());
  1063. } else {
  1064. auto&& wshp = wm.layout;
  1065. if (wshp.ndim != out.layout().ndim) {
  1066. // to ensure that wkspc.ndim equals out.ndim in the case:
  1067. // wkspc.shape=(1, 1, ..., 1) and out.shape=(1), otherwise it
  1068. // may lead the 'TensorShape Dimension' assertion failed in
  1069. // the following broadcast operator
  1070. mgb_assert(wshp.total_nr_elems() == 1 && out.layout().ndim == 1);
  1071. wshp.ndim = 1;
  1072. }
  1073. m_elemwise_trans_opr->exec({wm, wm}, out.as_megdnn());
  1074. }
  1075. };
  1076. }
  1077. void Reduce::KernScheduler::update_ptr(
  1078. const DeviceTensorND& input, const DeviceTensorND& dest,
  1079. const DeviceTensorND& workspace) {
  1080. auto dtype = dest.layout().dtype;
  1081. mgb_assert(dtype.valid());
  1082. mgb_assert(m_shape_computed);
  1083. if (workspace_size()) {
  1084. mgb_assert(
  1085. workspace.layout().dtype == dtype::Byte() &&
  1086. workspace.layout().ndim == 1 &&
  1087. workspace.shape()[0] >= workspace_size());
  1088. }
  1089. if (m_kern_param.empty())
  1090. return;
  1091. mgb_assert(
  1092. input.layout().total_nr_elems() ==
  1093. m_kern_param[0].input.layout.total_nr_elems());
  1094. mgb_assert(
  1095. dest.shape().total_nr_elems() ==
  1096. m_kern_param.back().output.layout.total_nr_elems());
  1097. auto in_tensor = input.as_megdnn();
  1098. in_tensor.layout = m_kern_param[0].input.layout;
  1099. m_kern_param[0].input = in_tensor;
  1100. dt_byte *workspace_begin = workspace_size()
  1101. ? const_cast<dt_byte*>(workspace.raw_ptr())
  1102. : nullptr,
  1103. *tmp_reduce_ptr[2] =
  1104. {workspace_begin + m_workspace_spec[0].offset,
  1105. workspace_begin + m_workspace_spec[1].offset},
  1106. *kern_workspace = workspace_begin + m_workspace_spec[2].offset;
  1107. for (size_t i = 0; i < m_kern_param.size() - 1; ++i) {
  1108. auto optr = tmp_reduce_ptr[i % 2];
  1109. m_kern_param[i].output.reset_ptr(optr);
  1110. m_kern_param[i + 1].input.reset_ptr(optr);
  1111. }
  1112. for (auto&& i : m_kern_param)
  1113. i.workspace.raw_ptr = kern_workspace;
  1114. auto out_tensor = dest.as_megdnn();
  1115. out_tensor.layout = m_kern_param.back().output.layout;
  1116. m_kern_param.back().output = out_tensor;
  1117. }
  1118. void Reduce::KernScheduler::execute(
  1119. megdnn::Reduce* opr, const DeviceTensorND& input, const DeviceTensorND& dest) {
  1120. if (m_apply_side_effect) {
  1121. mgb_assert(m_kern_param.empty());
  1122. m_apply_side_effect(input, dest);
  1123. return;
  1124. }
  1125. mgb_assert(!m_kern_param.empty());
  1126. // empty input
  1127. if (input.shape_valid() && input.empty()) {
  1128. auto mode = m_kern_param[0].kparam.mode;
  1129. if (!m_fill_opr) {
  1130. m_fill_opr = intl::get_megdnn_handle(dest.comp_node())
  1131. ->create_operator<megdnn::Fill>();
  1132. }
  1133. std::string err_msg;
  1134. switch (mode) {
  1135. case Reduce::Mode::SUM:
  1136. if (!dest.empty()) {
  1137. m_fill_opr->param() = 0;
  1138. m_fill_opr->exec(dest.as_megdnn(), {});
  1139. }
  1140. break;
  1141. case Reduce::Mode::PRODUCT:
  1142. if (!dest.empty()) {
  1143. m_fill_opr->param() = 1;
  1144. m_fill_opr->exec(dest.as_megdnn(), {});
  1145. }
  1146. break;
  1147. case Reduce::Mode::MEAN:
  1148. err_msg = "mean";
  1149. break;
  1150. case Reduce::Mode::MIN:
  1151. err_msg = "min";
  1152. break;
  1153. case Reduce::Mode::MAX:
  1154. err_msg = "max";
  1155. break;
  1156. case Reduce::Mode::SUM_SQR:
  1157. err_msg = "sum_sqr";
  1158. break;
  1159. default:
  1160. mgb_throw(MegBrainError, "bad reduce mode");
  1161. }
  1162. if (!err_msg.empty()) {
  1163. mgb_throw(
  1164. MegBrainError, "empty input is not allowed for reduce mode: %s",
  1165. err_msg.c_str());
  1166. }
  1167. return;
  1168. }
  1169. mgb_assert(
  1170. input.layout().is_contiguous() &&
  1171. input.raw_ptr() == m_kern_param[0].input.raw_ptr() &&
  1172. dest.raw_ptr() == m_kern_param.back().output.raw_ptr());
  1173. for (auto&& i : m_kern_param) {
  1174. opr->param() = i.KernParam::kparam;
  1175. opr->exec(i.input, i.output, i.workspace);
  1176. }
  1177. }
  1178. class Reduce::OutTensorShapeExtender {
  1179. public:
  1180. OutTensorShapeExtender(const TensorShape& ishp, const TensorShape& oshp)
  1181. : m_oshp(oshp) {
  1182. mgb_assert(
  1183. oshp.ndim <= ishp.ndim,
  1184. "output ndim should be less and equal than input ndim for "
  1185. "reduction: "
  1186. "ishp=%s oshp=%s",
  1187. ishp.to_string().c_str(), oshp.to_string().c_str());
  1188. // Ex. ishp = (a, b, c, d), oshp = (c, d)
  1189. if (!oshp.is_scalar() && ishp.ndim != oshp.ndim) {
  1190. size_t ndim_diff = ishp.ndim - oshp.ndim;
  1191. auto&& canonized_oshp = m_canonized_oshp_storage.emplace(oshp);
  1192. for (size_t i = 0; i < ishp.ndim; ++i)
  1193. if (i < ndim_diff)
  1194. canonized_oshp[i] = 1;
  1195. else
  1196. canonized_oshp[i] = oshp[i - ndim_diff];
  1197. canonized_oshp.ndim = ishp.ndim;
  1198. }
  1199. }
  1200. const TensorShape& get() const {
  1201. return m_canonized_oshp_storage.valid() ? m_canonized_oshp_storage.val()
  1202. : m_oshp;
  1203. }
  1204. private:
  1205. Maybe<TensorShape> m_canonized_oshp_storage;
  1206. const TensorShape& m_oshp;
  1207. };
  1208. MGB_DYN_TYPE_OBJ_FINAL_IMPL(Reduce);
  1209. Reduce::Reduce(
  1210. VarNode* inp, VarNode* target_shape, const Param& param,
  1211. const OperatorNodeConfig& config)
  1212. : Super{inp->owner_graph(),
  1213. config,
  1214. ssprintf("reduce%d", static_cast<int>(param.mode)),
  1215. {inp}},
  1216. m_param{param},
  1217. m_kern_scheduler{std::make_unique<KernScheduler>()} {
  1218. add_input({inp});
  1219. if (inp->dtype().enumv() == DTypeEnum::Quantized8Asymm &&
  1220. inp->dtype().category() == DTypeCategory::QUANTIZED) {
  1221. mgb_assert(
  1222. param.mode != Param::Mode::PRODUCT,
  1223. "Reduce does not support PRODUCT mode on quantized input");
  1224. mgb_assert(
  1225. param.mode != Param::Mode::SUM_SQR,
  1226. "Reduce does not support SUM_SQR mode on quantized input");
  1227. mgb_assert(
  1228. param.mode != Param::Mode::SUM,
  1229. "Reduce does not support SUM mode on quantized input");
  1230. }
  1231. DType out_dtype;
  1232. switch (param.data_type) {
  1233. case Param::DataType::DEFAULT:
  1234. out_dtype = inp->dtype();
  1235. break;
  1236. #if !MEGDNN_DISABLE_FLOAT16
  1237. case Param::DataType::FLOAT_O16xC32:
  1238. out_dtype = dtype::Float16();
  1239. break;
  1240. case Param::DataType::FLOAT_IO16xC32:
  1241. mgb_assert(false);
  1242. #endif
  1243. case Param::DataType::FLOAT_O32xC32:
  1244. out_dtype = dtype::Float32();
  1245. break;
  1246. case Param::DataType::QUINT_I8xO32:
  1247. out_dtype = dtype::QuantizedS32(
  1248. inp->dtype().param<dtype::Quantized8Asymm>().scale);
  1249. break;
  1250. case Param::DataType::QINT_I8xO32:
  1251. out_dtype =
  1252. dtype::QuantizedS32(inp->dtype().param<dtype::QuantizedS8>().scale);
  1253. break;
  1254. default:
  1255. mgb_throw(GraphError, "invalid param data_type: %d", int(param.data_type));
  1256. }
  1257. add_output(None)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE).dtype(out_dtype);
  1258. cg::add_workspace_output(this);
  1259. add_equivalence_component<PODHash<Param>>(&m_param);
  1260. if (param.axis >= -MEGDNN_MAX_NDIM && param.axis < MEGDNN_MAX_NDIM) {
  1261. mgb_throw_if(
  1262. target_shape, GraphError,
  1263. "could not specify both axis and target shape");
  1264. m_is_symtshp = false;
  1265. } else {
  1266. mgb_throw_if(
  1267. !target_shape, GraphError, "neither axis or target_shape specified");
  1268. add_input({target_shape});
  1269. m_is_symtshp = true;
  1270. outshape_by_symvar_enable(0, 1);
  1271. }
  1272. }
  1273. Reduce::~Reduce() = default;
  1274. SymbolVar Reduce::make(
  1275. SymbolVar src, Param param, SymbolVar target_shape,
  1276. const OperatorNodeConfig& config) {
  1277. if (param.data_type == Param::DataType::FLOAT_IO16xC32) {
  1278. mgb_log_warn(
  1279. "DataType FLOAT_IO16xC32 has been deprecated "
  1280. "use FLOAT_O16xC32 instead");
  1281. param.data_type = Param::DataType::FLOAT_O16xC32;
  1282. }
  1283. if (param.mode == Mode::SUM && src.node()->owner_opr()->same_type<Elemwise>()) {
  1284. // replace sum(x^2) by sum_sqr(x)
  1285. auto&& opr = src.node()->owner_opr()->cast_final<Elemwise>();
  1286. if (opr.param().mode == Elemwise::Mode::POW) {
  1287. mgb_assert(opr.input().size() == 2);
  1288. auto pow = SymbolVar{opr.input(1)}.as_immutable_scalar();
  1289. if (pow.valid() && pow->get_cast<float>() == 2) {
  1290. src = opr.input(0);
  1291. param.mode = Mode::SUM_SQR;
  1292. }
  1293. }
  1294. }
  1295. return src.insert_single_output_opr<Reduce>(
  1296. src.node(), target_shape.node(), param, config);
  1297. }
  1298. void Reduce::outshape_by_symvar_do_get_output_shape(
  1299. TensorShape& dest, const ShapeInferInfo& shpinfo) {
  1300. cg::copy_tensor_value_to_shape(dest, *shpinfo.shpval_inp_val.at(0));
  1301. }
  1302. void Reduce::init_output_static_infer_desc() {
  1303. using namespace cg::static_infer;
  1304. auto&& mgr = owner_graph()->static_infer_manager();
  1305. // infer output shape
  1306. if (m_is_symtshp) {
  1307. // reduce to target shape
  1308. Super::init_output_static_infer_desc();
  1309. } else {
  1310. // reduce along axis
  1311. auto infer_shape = [this](TensorShape& dest, const InpVal& inp) {
  1312. dest = inp.val.at(0).shape();
  1313. mgb_assert(
  1314. m_param.axis < static_cast<int>(dest.ndim) &&
  1315. m_param.axis >= -static_cast<int>(dest.ndim),
  1316. "invalid axis for reduction: shape=%s axis=%d",
  1317. dest.to_string().c_str(), m_param.axis);
  1318. int real_axis = m_param.axis;
  1319. if (real_axis < 0)
  1320. real_axis += dest.ndim;
  1321. dest.shape[real_axis] = 1;
  1322. return true;
  1323. };
  1324. mgr.register_shape_infer(
  1325. output(0),
  1326. {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_shape});
  1327. }
  1328. // infer workspace
  1329. auto infer_workspace = [this](TensorShape& dest, const InpVal& inp) {
  1330. init_kern_sched_shape(inp.val[0].shape(), inp.val[1].shape());
  1331. dest.ndim = 1;
  1332. dest.shape[0] = m_kern_scheduler->workspace_size();
  1333. return true;
  1334. };
  1335. mgr.register_shape_infer(
  1336. output(1), {SourceType::DEP,
  1337. {{input(0), DepType::SHAPE}, {output(0), DepType::SHAPE}},
  1338. infer_workspace});
  1339. // infer value
  1340. static StaticInferOpr<megdnn::Reduce> static_infer_opr;
  1341. auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
  1342. DeviceTensorND workspace;
  1343. auto sopr = static_infer_opr.lock();
  1344. perform(m_param.mode, dest, workspace, inp.val[0].value(), output(0)->dtype(),
  1345. inp.val.at(1).shape(), sopr(), m_param.data_type);
  1346. return true;
  1347. };
  1348. mgr.register_value_infer(
  1349. output(0), {SourceType::DEP,
  1350. {{input(0), DepType::VALUE}, {output(0), DepType::SHAPE}},
  1351. infer_value});
  1352. }
  1353. void Reduce::init_kern_sched_shape(const TensorShape& ishp, const TensorShape& oshp) {
  1354. OutTensorShapeExtender extender(ishp, oshp);
  1355. auto&& canonized_oshp = extender.get();
  1356. m_kern_scheduler->init_shapes(
  1357. static_cast<megdnn::Reduce*>(megdnn_opr()), comp_node(), input(0)->dtype(),
  1358. m_param.mode, ishp, canonized_oshp, m_param.data_type);
  1359. }
  1360. cg::OperatorNodeBase::OprEventCallback Reduce::get_opr_event_callback() {
  1361. auto on_mem_status_changed = [this]() {
  1362. auto&& ishp = input(0)->shape();
  1363. auto&& oshp = output(0)->shape();
  1364. OutTensorShapeExtender extender(ishp, oshp);
  1365. auto&& canonized_oshp = extender.get();
  1366. m_kern_scheduler->check_shapes(input(0)->shape(), canonized_oshp);
  1367. m_kern_scheduler->update_ptr(
  1368. input(0)->dev_tensor(), output(0)->dev_tensor(),
  1369. output(1)->shape()[0] ? output(1)->dev_tensor() : DeviceTensorND{});
  1370. };
  1371. return {on_mem_status_changed};
  1372. }
  1373. void Reduce::mem_plan_fwd_in2out_readonly() {
  1374. init_kern_sched_shape(input(0)->shape(), output(0)->shape());
  1375. if (!m_kern_scheduler->has_actual_computing()) {
  1376. // forward memory if no actual computing needed
  1377. if (!output(0)->mem_plan().valid()) {
  1378. // output(0) is dynamic but current is staic alloc phase (for
  1379. // workspace)
  1380. return;
  1381. }
  1382. auto&& ily = input(0)->layout();
  1383. auto&& oly = output(0)->layout();
  1384. const TensorLayout* fwd_spec = nullptr;
  1385. Maybe<TensorLayout> ily_modified_storage;
  1386. if (!ily.eq_shape(oly)) {
  1387. auto&& ily_modified = ily_modified_storage.emplace(ily);
  1388. mgb_assert(ily.ndim > oly.ndim);
  1389. for (size_t i = 0; i < ily.ndim - oly.ndim; ++i)
  1390. mgb_assert(ily.shape[i] == 1);
  1391. ily_modified = ily_modified.reshape(oly);
  1392. fwd_spec = &ily_modified;
  1393. } else {
  1394. fwd_spec = &ily;
  1395. }
  1396. m_mem_fwd_success = output(0)->set_fwd_in2out_readonly(
  1397. input(0), SubTensorSpec::make_from_layout(*fwd_spec));
  1398. }
  1399. }
  1400. void Reduce::add_input_layout_constraint() {
  1401. if (!cg::is_static_var_shape(output(0))) {
  1402. // output shape can not be inferred; require contiguous to be safe
  1403. input(0)->add_layout_constraint_contiguous();
  1404. } else {
  1405. auto check = [this](const TensorLayout& ily) {
  1406. auto&& mgr = owner_graph()->static_infer_manager();
  1407. auto oshp = mgr.infer_shape(output(0));
  1408. init_kern_sched_shape(ily, oshp);
  1409. if (m_kern_scheduler->has_actual_computing())
  1410. return ily.is_contiguous();
  1411. return true;
  1412. };
  1413. input(0)->add_layout_constraint(check);
  1414. }
  1415. }
  1416. void Reduce::scn_do_execute() {
  1417. auto&& inp = input(0)->dev_tensor();
  1418. auto&& out = output(0)->dev_tensor();
  1419. auto&& ishp = input(0)->shape();
  1420. auto&& oshp = output(0)->shape();
  1421. const DeviceTensorND* out_ptr;
  1422. Maybe<DeviceTensorND> canonized_storage;
  1423. OutTensorShapeExtender extender(ishp, oshp);
  1424. auto&& canonized_oshp = extender.get();
  1425. if (canonized_oshp.ndim != out.shape().ndim) {
  1426. auto&& canonized_out = canonized_storage.emplace(out);
  1427. canonized_out.reset(
  1428. canonized_out.storage(),
  1429. canonized_out.layout().reshape(canonized_oshp));
  1430. out_ptr = &canonized_out;
  1431. } else {
  1432. out_ptr = &out;
  1433. }
  1434. // shape initialized either in deducing workspace,
  1435. // mem_plan_fwd_in2out_readonly, or check input layout
  1436. m_kern_scheduler->check_shapes(inp.shape(), out_ptr->shape());
  1437. if (m_kern_scheduler->has_actual_computing()) {
  1438. m_kern_scheduler->update_ptr(
  1439. inp, *out_ptr,
  1440. output(1)->shape()[0] ? output(1)->dev_tensor() : DeviceTensorND{});
  1441. m_kern_scheduler->execute(
  1442. static_cast<megdnn::Reduce*>(megdnn_opr()), inp, *out_ptr);
  1443. } else {
  1444. // no reduction needed, just forward
  1445. if (m_mem_fwd_success) {
  1446. mgb_assert(
  1447. inp.raw_ptr() == out_ptr->raw_ptr() &&
  1448. out_ptr->layout().total_nr_elems() ==
  1449. inp.layout().total_nr_elems());
  1450. } else {
  1451. if (!out_ptr->shape().eq_shape(inp.shape())) {
  1452. mgb_assert(
  1453. out_ptr->shape().is_scalar() &&
  1454. inp.shape().total_nr_elems() == 1);
  1455. out_ptr->sub(SubTensorSpec::make_from_layout(inp.layout()))
  1456. .copy_from_fixlayout(inp);
  1457. } else {
  1458. out_ptr->copy_from_fixlayout(inp);
  1459. }
  1460. }
  1461. }
  1462. }
  1463. void Reduce::perform(
  1464. Mode mode, DeviceTensorND& dest, DeviceTensorND& workspace,
  1465. const DeviceTensorND& input, const DType& target_dtype,
  1466. const TensorShape& target_shape, intl::UniqPtrWithCN<megdnn::Reduce>& opr,
  1467. const Param::DataType data_type) {
  1468. mgb_assert(
  1469. !dest.storage().comp_node_valid() || opr.comp_node() == dest.comp_node());
  1470. KernScheduler ksched;
  1471. OutTensorShapeExtender extender(input.shape(), target_shape);
  1472. auto&& canonized_oshp = extender.get();
  1473. ksched.init_shapes(
  1474. opr.get(), opr.comp_node(), input.layout().dtype, mode, input.shape(),
  1475. canonized_oshp, data_type);
  1476. if (!ksched.has_actual_computing()) {
  1477. mgb_assert(target_shape.total_nr_elems() == input.layout().total_nr_elems());
  1478. dest.copy_from(input);
  1479. dest.reset(dest.storage(), {target_shape, dest.dtype()});
  1480. return;
  1481. }
  1482. workspace.comp_node(opr.comp_node()).dtype(dtype::Byte());
  1483. size_t workspace_size = ksched.workspace_size();
  1484. DeviceTensorND input_contig_storage;
  1485. const DeviceTensorND* input_contig = &input;
  1486. if (!input.layout().is_contiguous()) {
  1487. auto offset = get_aligned_power2(
  1488. workspace_size, opr.comp_node().get_mem_addr_alignment());
  1489. workspace_size = offset + input.dtype().size(input.shape().total_nr_elems());
  1490. workspace.resize({workspace_size});
  1491. input_contig_storage
  1492. .reset(workspace.storage().sub(offset), {input.shape(), input.dtype()})
  1493. .copy_from(input);
  1494. input_contig = &input_contig_storage;
  1495. } else {
  1496. workspace.resize({workspace_size});
  1497. }
  1498. opr.comp_node().activate();
  1499. dest.comp_node(opr.comp_node()).dtype(target_dtype).resize(target_shape);
  1500. ksched.update_ptr(*input_contig, dest, workspace);
  1501. ksched.execute(opr.get(), *input_contig, dest);
  1502. }
  1503. Reduce::NodeProp* Reduce::do_make_node_prop() const {
  1504. auto ret = Super::do_make_node_prop();
  1505. ret->add_dep_type_existing_var(input(0), NodeProp::DepType::VALUE_ALLOW_EMPTY);
  1506. return ret;
  1507. }
  1508. void Reduce::create_megdnn_opr() {
  1509. set_megdnn_opr(
  1510. intl::get_megdnn_handle(comp_node())->create_operator<megdnn::Reduce>());
  1511. }
  1512. #if MGB_ENABLE_GRAD
  1513. MGB_IMPL_OPR_GRAD(Reduce) {
  1514. for (size_t i = 1; i < opr.output().size(); ++i)
  1515. mgb_assert(!out_grad[i]);
  1516. if (wrt_idx || opr.input(0)->dtype().category() != DTypeCategory::FLOAT)
  1517. return InvalidGrad::make(opr, wrt_idx);
  1518. SymbolVar og{out_grad[0]}, iv{opr.input(0)}, ov{opr.output(0)};
  1519. constexpr auto cmv = Elemwise::Mode::COND_LEQ_MOV;
  1520. using Mode = Reduce::Mode;
  1521. SymbolVar grad = [&]() {
  1522. switch (opr.param().mode) {
  1523. case Mode::SUM:
  1524. return Broadcast::make(og, GetVarShape::make(iv));
  1525. case Mode::SUM_SQR:
  1526. return (og * og.make_scalar_dt(2) * iv);
  1527. case Mode::PRODUCT:
  1528. return ((og * ov) / iv);
  1529. case Mode::MIN:
  1530. return Elemwise::make({iv, ov, og}, cmv);
  1531. case Mode::MAX:
  1532. return Elemwise::make({ov, iv, og}, cmv);
  1533. case Mode::MEAN: {
  1534. auto og_shape = opr::GetVarShape::make(og),
  1535. iv_shape = opr::GetVarShape::make(iv),
  1536. scale =
  1537. div(opr::reduce_prod(og_shape, og_shape.make_scalar(1)),
  1538. opr::reduce_prod(iv_shape, iv_shape.make_scalar(1)));
  1539. return scale * Broadcast::make(og, GetVarShape::make(iv));
  1540. }
  1541. default:
  1542. mgb_throw(MegBrainError, "bad reduce mode");
  1543. }
  1544. }();
  1545. grad = TypeCvt::make(grad, iv.dtype());
  1546. return grad.node();
  1547. }
  1548. #endif
  1549. void Reduce::record_execute_deps(ExecDependencyArray& deps) {
  1550. record_megdnn_opr(deps);
  1551. m_kern_scheduler->record_execute_deps(deps);
  1552. }
  1553. /* =========================== PowC =========================== */
  1554. MGB_DYN_TYPE_OBJ_FINAL_IMPL(PowC);
  1555. PowC::PowC(VarNode* i0, const Param& param, const OperatorNodeConfig& config)
  1556. : Super(OperatorNodeBaseCtorParam{
  1557. i0->owner_graph(), config, ssprintf("powc_%g", param.exp), {i0}}) {
  1558. init_megdnn_opr(*this, param);
  1559. add_input({i0});
  1560. output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
  1561. intl::MegDNNOprInitPostCtor<PowC>::apply(*this);
  1562. }
  1563. SymbolVar PowC::make(
  1564. SymbolVar x, const Param& param, const OperatorNodeConfig& config) {
  1565. if (almost_equal(param.exp, 1.f)) {
  1566. return x;
  1567. }
  1568. if (almost_equal(param.exp, 0.f)) {
  1569. return x.make_scalar_dt(1).broadcast(x.symshape());
  1570. }
  1571. return x.insert_single_output_opr<PowC>(x.node(), param, config);
  1572. }
  1573. void PowC::add_input_layout_constraint() {
  1574. input(0)->add_layout_constraint_monotone();
  1575. }
  1576. void PowC::mem_plan_fwd_in2out_writable() {
  1577. output(0)->set_fwd_in2out_writable(input(0));
  1578. }
  1579. void PowC::init_output_static_infer_desc() {
  1580. Super::init_output_static_infer_desc();
  1581. static StaticInferOpr<megdnn::PowC> static_infer_opr;
  1582. using namespace cg::static_infer;
  1583. auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
  1584. auto infer_opr_lock = static_infer_opr.lock();
  1585. auto&& infer_opr = infer_opr_lock();
  1586. infer_opr->param() = this->param();
  1587. auto&& ival = inp.val[0].value().as_megdnn();
  1588. infer_opr->exec(ival, dest.resize(ival.layout).as_megdnn());
  1589. return true;
  1590. };
  1591. owner_graph()->static_infer_manager().register_value_infer(
  1592. output(0), {SourceType::DEP, {{input(0), DepType::VALUE}}, infer_value});
  1593. }
  1594. void PowC::scn_do_execute() {
  1595. if (input(0)->dev_tensor().empty()) {
  1596. mgb_assert(output(0)->dev_tensor().empty());
  1597. return;
  1598. }
  1599. mgb_assert(!output(0)->dev_tensor().empty());
  1600. Super::scn_do_execute();
  1601. }
  1602. PowC::NodeProp* PowC::do_make_node_prop() const {
  1603. auto ret = Super::do_make_node_prop();
  1604. ret->add_dep_type_existing_var(input(0), NodeProp::DepType::VALUE_ALLOW_EMPTY);
  1605. return ret;
  1606. }
  1607. #if MGB_ENABLE_GRAD
  1608. MGB_IMPL_OPR_GRAD(PowC) {
  1609. auto exp = opr.param().exp;
  1610. return (exp * SymbolVar{out_grad[0]} *
  1611. PowC::make(opr.input(0), exp - 1, opr.config()))
  1612. .node();
  1613. }
  1614. #endif
  1615. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}