You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_tensor.py 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import os
  10. import platform
  11. import numpy as np
  12. import pytest
  13. from utils import make_tensor, opr_test
  14. import megengine.functional as F
  15. from megengine import tensor
  16. from megengine.core._trace_option import use_symbolic_shape
  17. from megengine.core.tensor import megbrain_graph as G
  18. from megengine.core.tensor.utils import astensor1d
  19. from megengine.distributed.helper import get_device_count_by_fork
  20. from megengine.utils.network import Network, set_symbolic_shape
  21. from megengine.utils.network_node import VarNode
  22. def test_eye():
  23. dtype = np.float32
  24. cases = [{"input": [10, 20]}, {"input": [30]}]
  25. for case in cases:
  26. np.testing.assert_allclose(
  27. F.eye(case["input"], dtype=dtype).numpy(),
  28. np.eye(*case["input"]).astype(dtype),
  29. )
  30. np.testing.assert_allclose(
  31. F.eye(*case["input"], dtype=dtype).numpy(),
  32. np.eye(*case["input"]).astype(dtype),
  33. )
  34. np.testing.assert_allclose(
  35. F.eye(tensor(case["input"]), dtype=dtype).numpy(),
  36. np.eye(*case["input"]).astype(dtype),
  37. )
  38. @pytest.mark.parametrize("is_varnode", [True, False])
  39. def test_concat(is_varnode):
  40. if is_varnode:
  41. network = Network()
  42. else:
  43. network = None
  44. def get_data_shape(length: int):
  45. return (length, 2, 3)
  46. data1 = np.random.random(get_data_shape(5)).astype("float32")
  47. data2 = np.random.random(get_data_shape(6)).astype("float32")
  48. data3 = np.random.random(get_data_shape(7)).astype("float32")
  49. def run(data1, data2):
  50. return F.concat([data1, data2])
  51. cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
  52. opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]), network=network)
  53. @pytest.mark.parametrize("is_varnode", [True, False])
  54. def test_condtake(is_varnode):
  55. if is_varnode:
  56. network = Network()
  57. else:
  58. network = None
  59. x = np.array([[1, 2, 3], [4, 5, 6]]).astype("float32")
  60. y = np.array([[True, False, True], [False, True, True]])
  61. xx = make_tensor(x, network)
  62. yy = make_tensor(y, network)
  63. val, idx = F.cond_take(yy, xx)
  64. np.testing.assert_equal(val.numpy(), x[y])
  65. np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
  66. @pytest.mark.parametrize("is_varnode", [True, False])
  67. def test_concat_device(is_varnode):
  68. if is_varnode:
  69. network = Network()
  70. else:
  71. network = None
  72. data1 = make_tensor(np.random.random((3, 2, 2)).astype("float32"), network, "cpu0")
  73. data2 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu1")
  74. out = F.concat([data1, data2], device="cpu0")
  75. assert str(out.device).split(":")[0] == "cpu0"
  76. @pytest.mark.parametrize("is_varnode", [True, False])
  77. def test_stack(is_varnode):
  78. if is_varnode:
  79. network = Network()
  80. else:
  81. network = None
  82. data1 = np.random.random((3, 2, 2)).astype("float32")
  83. data2 = np.random.random((3, 2, 2)).astype("float32")
  84. data3 = np.random.random((3, 2, 2)).astype("float32")
  85. cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
  86. for ai in range(3):
  87. def run(data1, data2):
  88. return F.stack([data1, data2], axis=ai)
  89. opr_test(
  90. cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai), network=network
  91. )
  92. @pytest.mark.parametrize("is_varnode", [True, False])
  93. def test_split(is_varnode):
  94. if is_varnode:
  95. network = Network()
  96. saved_symbolic_shape = set_symbolic_shape(False)
  97. else:
  98. network = None
  99. data = np.random.random((2, 3, 4, 5)).astype(np.float32)
  100. inp = make_tensor(data, network)
  101. mge_out0 = F.split(inp, 2, axis=3)
  102. mge_out1 = F.split(inp, [3], axis=3)
  103. np_out = np.split(data, [3, 5], axis=3)
  104. assert len(mge_out0) == 2
  105. assert len(mge_out1) == 2
  106. np.testing.assert_equal(mge_out0[0].numpy(), np_out[0])
  107. np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])
  108. np.testing.assert_equal(mge_out0[1].numpy(), np_out[1])
  109. np.testing.assert_equal(mge_out1[1].numpy(), np_out[1])
  110. try:
  111. F.split(inp, 4)
  112. assert False
  113. except ValueError as e:
  114. pass
  115. try:
  116. F.split(inp, [3, 3, 5], axis=3)
  117. assert False
  118. except ValueError as e:
  119. assert str(e) == "Invalid nsplits_or_secions: [3, 3, 5]"
  120. if is_varnode:
  121. set_symbolic_shape(saved_symbolic_shape)
  122. @pytest.mark.parametrize("is_varnode", [True, False])
  123. def test_reshape(is_varnode):
  124. if is_varnode:
  125. network = Network()
  126. else:
  127. network = None
  128. x = np.arange(6, dtype="float32")
  129. xx = make_tensor(x, network)
  130. y = x.reshape(1, 2, 3)
  131. for shape in [
  132. (1, 2, 3),
  133. (1, -1, 3),
  134. (1, make_tensor(-1, network), 3),
  135. np.array([1, -1, 3], dtype="int32"),
  136. make_tensor([1, -1, 3], network),
  137. ]:
  138. yy = F.reshape(xx, shape)
  139. np.testing.assert_equal(yy.numpy(), y)
  140. @pytest.mark.parametrize("is_varnode", [True, False])
  141. def test_reshape_shape_inference(is_varnode):
  142. if is_varnode:
  143. network = Network()
  144. saved_symbolic_shape = set_symbolic_shape(False)
  145. else:
  146. network = None
  147. x_shape_known = make_tensor([1, 2, 3, 4], network)
  148. x_shape_unknown = F.broadcast_to(
  149. make_tensor([1.0], network), shape=make_tensor([1, 1, 1, 1], network).sum()
  150. )
  151. tshp_unknown = astensor1d(
  152. (make_tensor([2], network), make_tensor([2], network)), x_shape_known
  153. )
  154. tshp_known = astensor1d((2, 2), x_shape_known)
  155. tshp_known_unspec = astensor1d((2, -1), x_shape_known)
  156. def check_shape(output, target):
  157. source = output.shape
  158. if isinstance(source, tensor):
  159. source = source.numpy()
  160. np.testing.assert_equal(source, target)
  161. def func(x, target_shape):
  162. return x.reshape(target_shape)
  163. cases = [
  164. {"input": [x_shape_known, tshp_unknown], "output": [(2, 2),]},
  165. {"input": [x_shape_unknown, tshp_unknown], "output": [(2, 2),]},
  166. {"input": [x_shape_known, tshp_known], "output": [(2, 2),]},
  167. {"input": [x_shape_known, tshp_known_unspec], "output": [(2, 2),]},
  168. {"input": [x_shape_unknown, tshp_known], "output": [(2, 2),]},
  169. {"input": [x_shape_unknown, tshp_known_unspec], "output": [(2, 2),]},
  170. ]
  171. opr_test(cases, func, compare_fn=check_shape, test_trace=True, network=network)
  172. if is_varnode:
  173. set_symbolic_shape(saved_symbolic_shape)
  174. @pytest.mark.parametrize("is_varnode", [True, False])
  175. def test_squeeze(is_varnode):
  176. if is_varnode:
  177. network = Network()
  178. saved_symbolic_shape = set_symbolic_shape(False)
  179. else:
  180. network = None
  181. x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
  182. xx = make_tensor(x, network)
  183. for axis in [None, 3, -4, (3, -4)]:
  184. y = np.squeeze(x, axis)
  185. yy = F.squeeze(xx, axis)
  186. np.testing.assert_equal(y, yy.numpy())
  187. if is_varnode:
  188. set_symbolic_shape(saved_symbolic_shape)
  189. @pytest.mark.parametrize("is_varnode", [True, False])
  190. def test_expand_dims(is_varnode):
  191. if is_varnode:
  192. network = Network()
  193. else:
  194. network = None
  195. x = np.arange(6, dtype="float32").reshape(2, 3)
  196. xx = make_tensor(x, network)
  197. for axis in [2, -3, (3, -4), (1, -4)]:
  198. y = np.expand_dims(x, axis)
  199. yy = F.expand_dims(xx, axis)
  200. np.testing.assert_equal(y, yy.numpy())
  201. def test_expand_dims_for_scalar():
  202. x = np.array(1, dtype="float32")
  203. xx = make_tensor(x, None)
  204. for axis in [0, -1, (0, 1), (-1, -2), (0, -1)]:
  205. y = np.expand_dims(x, axis)
  206. yy = F.expand_dims(xx, axis)
  207. np.testing.assert_equal(y, yy.numpy())
  208. for axis in [1, -2, (1, 2), (-2, -3)]:
  209. np.testing.assert_raises(np.AxisError, np.expand_dims, x, axis)
  210. np.testing.assert_raises(AssertionError, F.expand_dims, xx, axis)
  211. @pytest.mark.parametrize("is_varnode", [True, False])
  212. def test_elemwise_dtype_promotion(is_varnode):
  213. if is_varnode:
  214. network = Network()
  215. else:
  216. network = None
  217. x = np.random.rand(2, 3).astype("float32")
  218. y = np.random.rand(1, 3).astype("float16")
  219. xx = make_tensor(x, network)
  220. yy = make_tensor(y, network)
  221. z = xx * yy
  222. np.testing.assert_equal(z.numpy(), x * y)
  223. z = xx + y
  224. np.testing.assert_equal(z.numpy(), x + y)
  225. z = x - yy
  226. np.testing.assert_equal(z.numpy(), x - y)
  227. @pytest.mark.parametrize("is_varnode", [True, False])
  228. def test_linspace(is_varnode):
  229. if is_varnode:
  230. network = Network()
  231. else:
  232. network = None
  233. cases = [
  234. {"input": [1, 9, 9]},
  235. {"input": [3, 10, 8]},
  236. ]
  237. opr_test(
  238. cases,
  239. F.linspace,
  240. ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
  241. network=network,
  242. )
  243. cases = [
  244. {"input": [9, 1, 9]},
  245. {"input": [10, 3, 8]},
  246. ]
  247. opr_test(
  248. cases,
  249. F.linspace,
  250. ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
  251. network=network,
  252. )
  253. cases = [
  254. {"input": [1, make_tensor(9, network), 9]},
  255. {"input": [make_tensor(1, network), 9, make_tensor(9, network)]},
  256. ]
  257. opr_test(
  258. cases,
  259. F.linspace,
  260. ref_fn=lambda start, end, step: np.linspace(1, 9, 9, dtype=np.float32),
  261. network=network,
  262. )
  263. @pytest.mark.parametrize("is_varnode", [True, False])
  264. def test_arange(is_varnode):
  265. if is_varnode:
  266. network = Network()
  267. else:
  268. network = None
  269. cases = [
  270. {"input": [1, 9, 1]},
  271. {"input": [2, 10, 2]},
  272. ]
  273. opr_test(
  274. cases,
  275. F.arange,
  276. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  277. network=network,
  278. )
  279. cases = [
  280. {"input": [9, 1, -1]},
  281. {"input": [10, 2, -2]},
  282. ]
  283. opr_test(
  284. cases,
  285. F.arange,
  286. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  287. network=network,
  288. )
  289. cases = [
  290. {"input": [9.3, 1.2, -0.5]},
  291. {"input": [10.3, 2.1, -1.7]},
  292. ]
  293. opr_test(
  294. cases,
  295. F.arange,
  296. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  297. network=network,
  298. )
  299. @pytest.mark.parametrize("is_varnode", [True, False])
  300. def test_round(is_varnode):
  301. if is_varnode:
  302. network = Network()
  303. else:
  304. network = None
  305. data1_shape = (15,)
  306. data2_shape = (25,)
  307. data1 = np.random.random(data1_shape).astype(np.float32)
  308. data2 = np.random.random(data2_shape).astype(np.float32)
  309. cases = [{"input": data1}, {"input": data2}]
  310. opr_test(cases, F.round, ref_fn=np.round, network=network)
  311. @pytest.mark.parametrize("is_varnode", [True, False])
  312. def test_flatten(is_varnode):
  313. if is_varnode:
  314. network = Network()
  315. else:
  316. network = None
  317. data0_shape = (2, 3, 4, 5)
  318. data1_shape = (4, 5, 6, 7)
  319. data0 = np.random.random(data0_shape).astype(np.float32)
  320. data1 = np.random.random(data1_shape).astype(np.float32)
  321. def compare_fn(x, y):
  322. assert x._tuple_shape[0] == y
  323. output0 = (2 * 3 * 4 * 5,)
  324. output1 = (4 * 5 * 6 * 7,)
  325. cases = [
  326. {"input": data0, "output": output0},
  327. {"input": data1, "output": output1},
  328. ]
  329. opr_test(cases, F.flatten, compare_fn=compare_fn, network=network)
  330. output0 = (2, 3 * 4 * 5)
  331. output1 = (4, 5 * 6 * 7)
  332. cases = [
  333. {"input": data0, "output": output0},
  334. {"input": data1, "output": output1},
  335. ]
  336. opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, network=network)
  337. output0 = (2, 3, 4 * 5)
  338. output1 = (4, 5, 6 * 7)
  339. cases = [
  340. {"input": data0, "output": output0},
  341. {"input": data1, "output": output1},
  342. ]
  343. opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2, network=network)
  344. output0 = (2, 3 * 4, 5)
  345. output1 = (4, 5 * 6, 7)
  346. cases = [
  347. {"input": data0, "output": output0},
  348. {"input": data1, "output": output1},
  349. ]
  350. opr_test(
  351. cases,
  352. F.flatten,
  353. compare_fn=compare_fn,
  354. start_axis=1,
  355. end_axis=2,
  356. network=network,
  357. )
  358. @pytest.mark.parametrize("is_varnode", [True, False])
  359. def test_broadcast(is_varnode):
  360. if is_varnode:
  361. network = Network()
  362. else:
  363. network = None
  364. input1_shape = (20, 30)
  365. output1_shape = (30, 20, 30)
  366. data1 = np.random.random(input1_shape).astype(np.float32)
  367. input2_shape = (10, 1)
  368. output2_shape = (20, 10, 20)
  369. data2 = np.random.random(input2_shape).astype(np.float32)
  370. input3_shape = (10, 10)
  371. output3_shape = (10, 10)
  372. data3 = np.random.random(input3_shape).astype(np.float32)
  373. def compare_fn(x, y):
  374. assert x._tuple_shape[0] == y
  375. cases = [
  376. {"input": [data1, output1_shape], "output": output1_shape},
  377. {"input": [data2, output2_shape], "output": output2_shape},
  378. {"input": [data3, output3_shape], "output": output3_shape},
  379. ]
  380. opr_test(cases, F.broadcast_to, compare_fn=compare_fn, network=network)
  381. x = F.ones((2, 1, 3))
  382. with pytest.raises(RuntimeError):
  383. F.broadcast_to(x, (2, 3, 4))
  384. with pytest.raises(RuntimeError):
  385. F.broadcast_to(x, (4, 1, 3))
  386. with pytest.raises(RuntimeError):
  387. F.broadcast_to(x, (1, 3))
  388. @pytest.mark.parametrize("is_varnode", [True, False])
  389. def test_utils_astensor1d(is_varnode):
  390. if is_varnode:
  391. network = Network()
  392. else:
  393. network = None
  394. reference = make_tensor(0, network)
  395. # literal
  396. x = [1, 2, 3]
  397. for dtype in [None, "float32"]:
  398. xx = astensor1d(x, reference, dtype=dtype)
  399. assert isinstance(xx, type(reference))
  400. np.testing.assert_equal(xx.numpy(), x)
  401. # numpy array
  402. x = np.asarray([1, 2, 3], dtype="int32")
  403. for dtype in [None, "float32"]:
  404. xx = astensor1d(x, reference, dtype=dtype)
  405. assert isinstance(xx, type(reference))
  406. np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)
  407. # tensor
  408. x = make_tensor([1, 2, 3], network)
  409. for dtype in [None, "float32"]:
  410. xx = astensor1d(x, reference, dtype=dtype)
  411. assert isinstance(xx, type(reference))
  412. np.testing.assert_equal(xx.numpy(), x.numpy())
  413. # mixed
  414. x = [1, make_tensor(2, network), 3]
  415. for dtype in [None, "float32"]:
  416. xx = astensor1d(x, reference, dtype=dtype)
  417. assert isinstance(xx, type(reference))
  418. np.testing.assert_equal(xx.numpy(), [1, 2, 3])
  419. def test_device():
  420. x = tensor([1, 2, 3], dtype="float32")
  421. y1 = F.eye(x.shape, dtype="float32")
  422. y2 = F.eye(x.shape, dtype="float32", device=None)
  423. np.testing.assert_almost_equal(y1.numpy(), y2.numpy())
  424. y3 = F.eye(x.shape, dtype="float32", device="xpux")
  425. y4 = F.eye(x.shape, dtype="float32", device=x.device)
  426. np.testing.assert_almost_equal(y3.numpy(), y4.numpy())
  427. y5 = F.full((3, 2), 4, device=x.device)
  428. y6 = F.full((3, 2), 4, device="xpux")
  429. np.testing.assert_almost_equal(y5.numpy(), y6.numpy())
  430. @pytest.mark.parametrize("is_varnode", [True, False])
  431. def test_identity(is_varnode):
  432. if is_varnode:
  433. network = Network()
  434. else:
  435. network = None
  436. x = make_tensor(np.random.random((5, 10)).astype(np.float32), network)
  437. y = F.copy(x)
  438. np.testing.assert_equal(y.numpy(), x)
  439. def copy_test(dst, src, network):
  440. data = np.random.random((2, 3)).astype(np.float32)
  441. x = make_tensor(data, device=src, network=network)
  442. y = F.copy(x, dst)
  443. assert np.allclose(data, y.numpy())
  444. if network is None:
  445. z = x.to(dst)
  446. assert np.allclose(data, z.numpy())
  447. @pytest.mark.require_ngpu(1)
  448. @pytest.mark.parametrize("is_varnode", [True, False])
  449. def test_copy_h2d(is_varnode):
  450. if is_varnode:
  451. network = Network()
  452. else:
  453. network = None
  454. copy_test("cpu0", "gpu0", network=network)
  455. @pytest.mark.require_ngpu(1)
  456. @pytest.mark.parametrize("is_varnode", [True, False])
  457. def test_copy_d2h(is_varnode):
  458. if is_varnode:
  459. network = Network()
  460. else:
  461. network = None
  462. copy_test("gpu0", "cpu0", network=network)
  463. @pytest.mark.require_ngpu(2)
  464. @pytest.mark.parametrize("is_varnode", [True, False])
  465. def test_copy_d2d(is_varnode):
  466. if is_varnode:
  467. network = Network()
  468. else:
  469. network = None
  470. copy_test("gpu0", "gpu1", network=network)
  471. copy_test("gpu0:0", "gpu0:1", network=network)
  472. @pytest.mark.parametrize(
  473. "shape, repeats, axis",
  474. [
  475. ((2,), 2, 0),
  476. ((2, 3, 4, 5), 3, 0),
  477. ((2, 3, 4, 5), 4, 3),
  478. ((2,), 2, None),
  479. ((2, 3, 4, 5), 3, None),
  480. ((), 1, None),
  481. ((), 10, None),
  482. ],
  483. )
  484. @pytest.mark.parametrize("is_varnode", [True, False])
  485. def test_repeat(shape, repeats, axis, is_varnode):
  486. if is_varnode:
  487. network = Network()
  488. else:
  489. network = None
  490. def repeat_func(inp):
  491. return F.repeat(inp=inp, repeats=repeats, axis=axis)
  492. if shape != ():
  493. cases = [
  494. {"input": np.random.randn(*shape).astype("float32")},
  495. ]
  496. else:
  497. cases = [{"input": np.array(1.23)}]
  498. opr_test(
  499. cases,
  500. repeat_func,
  501. ref_fn=lambda inp: np.repeat(inp, repeats, axis),
  502. network=network,
  503. )
  504. @pytest.mark.parametrize(
  505. "shape, reps",
  506. [
  507. ((2,), (2,)),
  508. ((2, 3, 4, 5), (1, 1, 1, 1)),
  509. ((2, 3, 4, 5), (1, 2, 3, 4)),
  510. ((2, 3, 4, 5), (2, 2, 2, 2, 2, 2, 2)),
  511. ],
  512. )
  513. @pytest.mark.parametrize("is_varnode", [True])
  514. def test_tile(shape, reps, is_varnode):
  515. if is_varnode:
  516. network = Network()
  517. else:
  518. network = None
  519. def tile_func(inp):
  520. return F.tile(inp=inp, reps=reps)
  521. cases = [{"input": np.random.randn(*shape).astype("float32")}]
  522. opr_test(cases, tile_func, ref_fn=lambda inp: np.tile(inp, reps), network=network)
  523. @pytest.mark.parametrize(
  524. "shape, shifts, axis",
  525. [
  526. ((2, 3), 0, None),
  527. ((2, 3), 1, 0),
  528. ((2, 3, 4, 5), (-1, 1), (0, 1)),
  529. ((2, 3, 4, 5), (-2, 1, 2), (1, 2, 3)),
  530. ],
  531. )
  532. @pytest.mark.parametrize("is_varnode", [True, False])
  533. def test_roll(shape, shifts, axis, is_varnode):
  534. if is_varnode:
  535. network = Network()
  536. else:
  537. network = None
  538. inp = np.random.randn(*shape).astype("float32")
  539. def func(inp):
  540. return F.roll(inp, shifts, axis)
  541. cases = [
  542. {"input": inp},
  543. ]
  544. opr_test(
  545. cases, func, ref_fn=lambda inp: np.roll(inp, shifts, axis), network=network
  546. )

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台