You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

inference.cpp 113 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852
  1. /**
  2. * \file src/gopt/test/inference.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "megbrain/opr/dnn/local.h"
  12. #include "megbrain/test/helper.h"
  13. #include "megbrain/gopt/inference.h"
  14. #include "megbrain/gopt/basic_arith.h"
  15. #include "megbrain/gopt/gtrans.h"
  16. #include "megbrain/opr/io.h"
  17. #include "megbrain/opr/basic_arith_wrapper.h"
  18. #include "megbrain/opr/tensor_manip.h"
  19. #include "megbrain/opr/dnn/batch_norm.h"
  20. #include "megbrain/opr/dnn/convolution.h"
  21. #include "megbrain/opr/utility.h"
  22. #include "megbrain/opr/imgproc.h"
  23. #include "megbrain/opr/tensor_manip.h"
  24. #include "megbrain/opr/nn_int.h"
  25. #include "megbrain/opr/imgproc.h"
  26. #include "megbrain/opr/dnn/pooling.h"
  27. #include "megbrain/opr/tensor_gen.h"
  28. #include "megbrain/opr/blas.h"
  29. #include "megbrain/comp_node_env.h"
  30. #include "./helper.h"
  31. #include "megdnn/tensor_format.h"
  32. #include <random>
  33. using namespace mgb;
  34. namespace {
  35. //! find first the operator of specific type; raise exception if not found
  36. template <typename T>
  37. T& find_opr(SymbolVar endpoint) {
  38. T* found = nullptr;
  39. auto cb = [&found](cg::OperatorNodeBase* opr) {
  40. if (!found && opr->same_type<T>()) {
  41. found = &opr->cast_final_safe<T>();
  42. }
  43. };
  44. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  45. mgb_assert(found);
  46. return *found;
  47. }
  48. template <typename T>
  49. size_t find_opr_num(SymbolVar endpoint) {
  50. size_t opr_num = 0;
  51. auto cb = [&opr_num](cg::OperatorNodeBase* opr) {
  52. if (opr->same_type<T>()) {
  53. opr_num++;
  54. }
  55. };
  56. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  57. return opr_num;
  58. }
  59. class NaiveMegDNNHandleScope {
  60. int m_orig_level;
  61. public:
  62. NaiveMegDNNHandleScope()
  63. : m_orig_level{MegDNNHandle::exchange_default_dbg_level(2)} {
  64. CompNode::finalize();
  65. }
  66. ~NaiveMegDNNHandleScope() {
  67. auto set = MegDNNHandle::exchange_default_dbg_level(m_orig_level);
  68. mgb_assert(set == 2);
  69. CompNode::finalize();
  70. }
  71. };
  72. #if MGB_CUDA
  73. //! this function is only used in TestGoptInference.EnableCHWN4...
  74. void warp_perspective_mat_gen(HostTensorND& mat, size_t N, size_t INP_H,
  75. size_t INP_W) {
  76. static std::mt19937 rng(next_rand_seed());
  77. auto rand_real = [&](double lo, double hi) {
  78. return rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo;
  79. };
  80. auto rand_real2 = [&](double range) { return rand_real(-range, range); };
  81. auto ptr = mat.ptr<float>();
  82. for (size_t i = 0; i < N; ++i) {
  83. auto rot = rand_real(0, M_PI * 2), scale = rand_real(0.8, 1.2),
  84. sheer = rand_real(0.9, 1.1), dy = rand_real2(INP_H * 0.5),
  85. dx = rand_real2(INP_W * 0.5), ky = rand_real2(0.1 / INP_H),
  86. kx = rand_real2(0.1 / INP_W), kb = rand_real2(0.1) + 1;
  87. ptr[0] = ptr[4] = cos(rot) * scale;
  88. ptr[1] = -(ptr[3] = sin(rot) * scale);
  89. ptr[3] *= sheer;
  90. ptr[4] *= sheer;
  91. ptr[2] = dx;
  92. ptr[5] = dy;
  93. ptr[6] = kx;
  94. ptr[7] = ky;
  95. ptr[8] = kb;
  96. ptr += 9;
  97. }
  98. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  99. }
  100. #endif
  101. } // namespace
  102. TEST(TestGoptInference, ParamFuseConstEndPoint) {
  103. constexpr size_t SIZE = 23;
  104. HostTensorGenerator<> gen;
  105. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  106. auto graph = ComputingGraph::make();
  107. graph->options().graph_opt_level = 0;
  108. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  109. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  110. p = opr::Host2DeviceCopy::make(*graph, host_p),
  111. q = p + x,
  112. a = y + 3,
  113. z0 = a + q,
  114. z1 = a + 4;
  115. HostTensorND host_z0, host_z1;
  116. SymbolVar z0_1, z1_1;
  117. unpack_vector(
  118. gopt::GraphOptimizer{}.
  119. add_pass<gopt::ParamFusePass>().
  120. apply({{z1, z0}}).endpoint_vars(),
  121. z1_1, z0_1);
  122. auto func = graph->compile({make_callback_copy(z0_1, host_z0),
  123. make_callback_copy(z1_1, host_z1)});
  124. func->to_json()->writeto_fpath(
  125. output_file("TestGoptInference.ParamFuseEndPoint.json"));
  126. func->execute();
  127. int nr_opr = 0;
  128. func->iter_opr_seq([&](cg::OperatorNodeBase*) {++ nr_opr; return true; });
  129. ASSERT_EQ(8, nr_opr);
  130. auto px = host_x->ptr<float>(), pz0 = host_z0.ptr<float>();
  131. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0],
  132. pz1 = host_z1.ptr<float>()[0];
  133. for (size_t i = 0; i < SIZE; ++ i) {
  134. MGB_ASSERT_FLOAT_EQ(px[i] + yv + 3 + pv, pz0[i]);
  135. }
  136. MGB_ASSERT_FLOAT_EQ(yv + 7, pz1);
  137. }
  138. TEST(TestGoptInference, ParamFuse) {
  139. constexpr size_t SIZE = 23;
  140. HostTensorGenerator<> gen;
  141. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  142. auto graph = ComputingGraph::make();
  143. graph->options().graph_opt_level = 0;
  144. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  145. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  146. p = opr::Host2DeviceCopy::make(*graph, host_p),
  147. z = x + y, // endpoint
  148. q = x * y + p; // middle point
  149. SymbolVar z1, q1;
  150. unpack_vector(
  151. gopt::GraphOptimizer{}.
  152. add_pass<gopt::ParamFusePass>().
  153. apply({{z, q}}).endpoint_vars(),
  154. z1, q1);
  155. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  156. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  157. ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
  158. q.node()->owner_opr()->dyn_typeinfo());
  159. HostTensorND host_z, host_q;
  160. auto func = graph->compile(
  161. {make_callback_copy(z1, host_z),
  162. make_callback_copy(q1, host_q)});
  163. func->execute();
  164. int nr_opr = 0;
  165. func->iter_opr_seq([&](cg::OperatorNodeBase*) {++ nr_opr; return true; });
  166. ASSERT_EQ(6, nr_opr);
  167. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
  168. pq = host_q.ptr<float>();
  169. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  170. for (size_t i = 0; i < SIZE; ++ i) {
  171. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  172. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  173. }
  174. }
  175. TEST(TestGoptInference, ParamFuseMultiDeviceTensorHolder) {
  176. constexpr size_t SIZE = 23;
  177. HostTensorGenerator<> gen;
  178. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  179. auto graph = ComputingGraph::make();
  180. graph->options().graph_opt_level = 0;
  181. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  182. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  183. p = opr::Host2DeviceCopy::make(*graph, host_p),
  184. z = x + y, // endpoint
  185. q = x * y + p; // middle point
  186. SymbolVar z1, q1;
  187. unpack_vector(gopt::GraphOptimizer{}
  188. .add_pass<gopt::ParamMergePass>()
  189. .apply({{z}})
  190. .endpoint_vars(),
  191. z1);
  192. ASSERT_TRUE(z1.node()
  193. ->owner_opr()->input(0)->owner_opr()
  194. ->same_type<opr::MultipleDeviceTensorHolder>());
  195. unpack_vector(
  196. gopt::GraphOptimizer{}.
  197. add_pass<gopt::ParamMergePass>().
  198. add_pass<gopt::ParamFusePass>().
  199. apply({{z, q}}).endpoint_vars(),
  200. z1, q1);
  201. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  202. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  203. ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
  204. q.node()->owner_opr()->dyn_typeinfo());
  205. HostTensorND host_z, host_q;
  206. auto func = graph->compile(
  207. {make_callback_copy(z1, host_z),
  208. make_callback_copy(q1, host_q)});
  209. func->execute();
  210. int nr_opr = 0;
  211. func->iter_opr_seq([&](cg::OperatorNodeBase*op) {++ nr_opr; return true; });
  212. ASSERT_EQ(6, nr_opr);
  213. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
  214. pq = host_q.ptr<float>();
  215. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  216. for (size_t i = 0; i < SIZE; ++ i) {
  217. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  218. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  219. }
  220. }
  221. TEST(TestGoptInference, ParamFuseMultiRead) {
  222. HostTensorGenerator<> gen;
  223. auto graph = ComputingGraph::make();
  224. graph->options().graph_opt_level = 0;
  225. auto mkvar = [&](const char *name, const TensorShape &shp) {
  226. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  227. };
  228. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  229. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  230. };
  231. auto x = mkvar("x", {23}),
  232. p0 = mkcvar("p0", {1}),
  233. p1 = mkcvar("p1", {1}),
  234. z0 = x * (p0 + p1) + x / (p0 + p1);
  235. SymbolVar z1;
  236. unpack_vector(
  237. gopt::GraphOptimizer{}.
  238. add_pass<gopt::ParamFusePass>().
  239. apply({{z0}}).endpoint_vars(),
  240. z1);
  241. ASSERT_NE(z0.node(), z1.node());
  242. ASSERT_TRUE(z1.node()->owner_opr()->input(0)->owner_opr()
  243. ->input(1)->owner_opr()->same_type<opr::SharedDeviceTensor>());
  244. ASSERT_TRUE(z1.node()->owner_opr()->input(1)->owner_opr()
  245. ->input(1)->owner_opr()->same_type<opr::SharedDeviceTensor>());
  246. HostTensorND host_z0, host_z1;
  247. graph->compile({make_callback_copy(z0, host_z0),
  248. make_callback_copy(z1, host_z1)})->execute();
  249. MGB_ASSERT_TENSOR_EQ(host_z0, host_z1);
  250. }
  251. TEST(TestGoptInference, ParamFuseStaticInfer) {
  252. HostTensorGenerator<> gen;
  253. auto graph = ComputingGraph::make();
  254. auto mkvar = [&](const char *name, const TensorShape &shp) {
  255. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  256. };
  257. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  258. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  259. };
  260. auto a = mkvar("x", {4}),
  261. b = a.reshape(opr::GetVarShape::make(mkcvar("tshp", {2, 2})));
  262. SymbolVar b1;
  263. unpack_vector(
  264. gopt::GraphOptimizer{}.
  265. add_pass<gopt::ParamFusePass>().
  266. apply({{b}}).endpoint_vars(),
  267. b1);
  268. ASSERT_EQ(b1, a.reshape({2, 2}));
  269. }
  270. TEST(TestGoptInference, ParamRedistributeConvMul) {
  271. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  272. HostTensorGenerator<> gen;
  273. auto host_x = gen({N, IC, IH, IW}), host_k = gen({IC}),
  274. host_w = gen({OC, IC, KH, KW});
  275. auto graph = ComputingGraph::make();
  276. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  277. k = opr::Dimshuffle::make(
  278. opr::SharedDeviceTensor::make(*graph, *host_k),
  279. {-1, 0, -1, -1}),
  280. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  281. y0 = opr::Convolution::make(x * k, w);
  282. SymbolVar y1;
  283. unpack_vector(
  284. gopt::GraphOptimizer{}.
  285. add_pass<gopt::ParamRedistributePass>().
  286. apply({{y0}}).endpoint_vars(),
  287. y1);
  288. ASSERT_NE(y0.node(), y1.node());
  289. HostTensorND host_y0, host_y1;
  290. auto func = graph->compile(
  291. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  292. func->execute();
  293. MGB_ASSERT_TENSOR_EQ(host_y0, host_y1);
  294. }
  295. TEST(TestGoptInference, ParamRedistributeConvMulUniqReader) {
  296. constexpr size_t N = 4, C = 3, IH = 5, IW = 4, KH = 1, KW = 1;
  297. HostTensorGenerator<> gen;
  298. auto host_x = gen({N, C, IH, IW}), host_k = gen({C}),
  299. host_w = gen({C, C, KH, KW});
  300. auto graph = ComputingGraph::make();
  301. graph->options().graph_opt_level = 0;
  302. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  303. k = opr::Dimshuffle::make(
  304. opr::SharedDeviceTensor::make(*graph, *host_k) + 2,
  305. {-1, 0, -1, -1}),
  306. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  307. // y0 should be replaced
  308. y0 = opr::powf(opr::Convolution::make(x * k, w).rename("y0") + 2, 2),
  309. y0k = (y0 * k).rename("y0k"),
  310. // y0k is accessed twice, so it should not be replaced
  311. y1 = opr::Convolution::make(y0k, w).rename("y1"),
  312. z0 = y1 / y0k;
  313. SymbolVar z1;
  314. unpack_vector(
  315. gopt::GraphOptimizer{}.
  316. add_pass<gopt::ParamRedistributePass>().
  317. apply({{z0}}).endpoint_vars(),
  318. z1);
  319. ASSERT_NE(z0.node(), z1.node());
  320. auto y1_repl = z1.node()->owner_opr()->input(0)->owner_opr();
  321. ASSERT_TRUE(y1_repl->same_type<opr::Convolution>());
  322. ASSERT_EQ(y1_repl->input(0), z1.node()->owner_opr()->input(1));
  323. HostTensorND host_z0, host_z1;
  324. auto func = graph->compile(
  325. {make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)});
  326. func->execute();
  327. MGB_ASSERT_TENSOR_NEAR(host_z0, host_z1, 5e-5);
  328. }
  329. TEST(TestGoptInference, ParamRedistributeMulConvMul) {
  330. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  331. HostTensorGenerator<> gen;
  332. auto host_x = gen({N, IC, IH, IW}),
  333. host_k1 = gen({IC}),
  334. host_k2 = gen({1, OC, 1, 1}),
  335. host_w = gen({OC, IC, KH, KW});
  336. auto graph = ComputingGraph::make();
  337. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  338. k1 = opr::Dimshuffle::make(
  339. opr::SharedDeviceTensor::make(*graph, *host_k1),
  340. {-1, 0, -1, -1}),
  341. k2 = opr::SharedDeviceTensor::make(*graph, *host_k2),
  342. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  343. y0 = opr::Convolution::make(x * k1, w) * k2;
  344. SymbolVar y1;
  345. unpack_vector(
  346. gopt::GraphOptimizer{}.
  347. add_pass<gopt::ParamRedistributePass>().
  348. add_pass<gopt::ParamFusePass>().
  349. apply({{y0}}).endpoint_vars(),
  350. y1);
  351. auto y1opr = y1.node()->owner_opr();
  352. ASSERT_TRUE(y1opr->same_type<opr::Convolution>());
  353. ASSERT_EQ(y1opr->input(0), x.node());
  354. HostTensorND host_y0, host_y1;
  355. auto func = graph->compile(
  356. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  357. func->execute();
  358. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 5e-6);
  359. }
  360. TEST(TestGoptInference, ParamRedistributeConvAdd) {
  361. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  362. HostTensorGenerator<> gen;
  363. auto host_x = gen({N, IC, IH, IW}), host_b = gen({IC}),
  364. host_w = gen({OC, IC, KH, KW});
  365. auto graph = ComputingGraph::make();
  366. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  367. b = opr::Dimshuffle::make(
  368. opr::SharedDeviceTensor::make(*graph, *host_b),
  369. {-1, 0, -1, -1}),
  370. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  371. y0 = opr::Convolution::make(x + b, w);
  372. SymbolVar y1;
  373. unpack_vector(
  374. gopt::GraphOptimizer{}.
  375. add_pass<gopt::ParamRedistributePass>().
  376. add_pass<gopt::ParamFusePass>().
  377. apply({{y0}}).endpoint_vars(),
  378. y1);
  379. ASSERT_NE(y0.node(), y1.node());
  380. HostTensorND host_y0, host_y1;
  381. auto func = graph->compile(
  382. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  383. func->execute();
  384. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  385. }
  386. TEST(TestGoptInference, ParamRedistributeDistThenReasso) {
  387. constexpr size_t N = 4, IC0 = 3, IC1 = 6, IH = 5,
  388. IW = 4, OC = 4, KH = 3, KW = 2;
  389. HostTensorGenerator<> gen;
  390. auto graph = ComputingGraph::make();
  391. auto mkvar = [&](const char *name, const TensorShape &shp) {
  392. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  393. };
  394. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  395. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  396. };
  397. auto x0 = mkvar("x0", {N, IC0, IH, IW}),
  398. x1 = mkvar("x1", {N, IC1, IH, IW}),
  399. k0 = opr::Dimshuffle::make(
  400. mkcvar("x1_", {IC0}), {-1, 0, -1, -1}).rename("x1"),
  401. w0 = mkcvar("w0", {OC, IC0, KH, KW}),
  402. k1 = mkcvar("k1", {1, IC1, 1, 1}),
  403. w1 = mkcvar("w1", {OC, IC1, KH, KW}),
  404. b0 = mkvar("b0", {1, OC, 1, 1}),
  405. b1 = mkcvar("b1", {1}),
  406. k2 = mkcvar("k2", {1}),
  407. y0 = (
  408. opr::Convolution::make(x0 * k0, w0) +
  409. opr::Convolution::make(x1 + k1, w1) +
  410. b0 + b1) * k2;
  411. SymbolVar y1;
  412. unpack_vector(
  413. gopt::GraphOptimizer{}.
  414. add_pass<gopt::ParamRedistributePass>().
  415. add_pass<gopt::ReorderArithChainPass>(
  416. gopt::ConstVarType::IMMUTABLE_AND_PARAM).
  417. add_pass<gopt::ParamFusePass>().
  418. apply({{y0}}).endpoint_vars(),
  419. y1);
  420. ASSERT_NE(y0.node(), y1.node());
  421. HostTensorND host_y0, host_y1;
  422. auto func = graph->compile(
  423. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  424. func->execute();
  425. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  426. auto chain = gopt::extract_opr_leaves(y1.node(),
  427. [](cg::OperatorNodeBase*opr){
  428. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  429. });
  430. size_t nr_conv = 0;
  431. for (auto i: chain) {
  432. auto opr = i->owner_opr();
  433. if (opr->same_type<opr::Convolution>()) {
  434. ++ nr_conv;
  435. ASSERT_TRUE(opr->input(0)->owner_opr()
  436. ->same_type<opr::Host2DeviceCopy>());
  437. ASSERT_TRUE(opr->input(1)->owner_opr()
  438. ->same_type<opr::SharedDeviceTensor>());
  439. }
  440. }
  441. ASSERT_EQ(2u, nr_conv);
  442. ASSERT_EQ(4u, chain.size());
  443. }
  444. TEST(TestGoptInference, ParamRedistributeMultiChange) {
  445. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  446. HostTensorGenerator<> gen;
  447. auto graph = ComputingGraph::make();
  448. graph->options().graph_opt_level = 0;
  449. auto mkvar = [&](const char *name, const TensorShape &shp) {
  450. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  451. };
  452. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  453. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  454. };
  455. auto x = mkvar("x", {N, IC, IH, IW}),
  456. k0 = mkcvar("k0", {1, IC, 1, 1}),
  457. b0 = mkcvar("b0", {1, IC, 1, 1}),
  458. k1 = mkcvar("k0", {1}),
  459. b1 = mkcvar("b0", {1}),
  460. w = mkcvar("w", {OC, IC, KH, KW}),
  461. y0 = (opr::Convolution::make(x * k0 + b0, w) + b1) * k1;
  462. SymbolVar y1;
  463. unpack_vector(
  464. gopt::GraphOptimizer{}.
  465. add_pass<gopt::ParamRedistributePass>().
  466. add_pass<gopt::ParamFusePass>().
  467. apply({{y0}}).endpoint_vars(),
  468. y1);
  469. ASSERT_NE(y0.node(), y1.node());
  470. HostTensorND host_y0, host_y1;
  471. auto func = graph->compile(
  472. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  473. func->execute();
  474. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  475. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  476. ASSERT_TRUE(y1elem);
  477. auto yconv = y1elem->input(0)->owner_opr();
  478. if (!yconv->same_type<opr::Convolution>())
  479. yconv = y1elem->input(1)->owner_opr();
  480. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  481. ASSERT_EQ(x.node(), yconv->input(0));
  482. }
  483. TEST(TestGoptInference, ParamRedistributeMultiReader) {
  484. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  485. HostTensorGenerator<> gen;
  486. auto graph = ComputingGraph::make();
  487. graph->options().graph_opt_level = 0;
  488. auto mkvar = [&](const char *name, const TensorShape &shp) {
  489. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  490. };
  491. auto mkcvar = [&](const char *name, const TensorShape &shp) {
  492. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  493. };
  494. auto x = mkvar("x", {N, IC, IH, IW}),
  495. k = mkcvar("k", {1, OC, 1, 1}),
  496. w = mkcvar("w", {OC, IC, KH, KW});
  497. auto conv = opr::Convolution::make(x, w);
  498. auto t = conv * k;
  499. auto y0 = t * 4.2f + t * 2.4f;
  500. SymbolVar y1;
  501. unpack_vector(
  502. gopt::GraphOptimizer{}.
  503. add_pass<gopt::ParamRedistributePass>().
  504. add_pass<gopt::ParamFusePass>().
  505. apply({{y0}}).endpoint_vars(),
  506. y1);
  507. ASSERT_NE(y0.node(), y1.node());
  508. HostTensorND host_y0, host_y1;
  509. auto func = graph->compile(
  510. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  511. func->execute();
  512. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  513. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  514. ASSERT_TRUE(y1elem);
  515. auto ymul0 = gopt::as_elem_opr(y1elem->input(0), opr::Elemwise::Mode::MUL),
  516. ymul1 = gopt::as_elem_opr(y1elem->input(1), opr::Elemwise::Mode::MUL);
  517. ASSERT_TRUE(ymul0);
  518. ASSERT_TRUE(ymul1);
  519. auto yconv = ymul0->input(0)->owner_opr();
  520. if (!yconv->same_type<opr::Convolution>())
  521. {
  522. yconv = ymul0->input(1)->owner_opr();
  523. }
  524. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  525. if (ymul1->input(0) != yconv->output(0))
  526. {
  527. ASSERT_EQ(yconv->output(0), ymul1->input(1));
  528. }
  529. ASSERT_EQ(x.node(), yconv->input(0));
  530. }
  531. TEST(TestGoptInference, ParamFuseBiasMerge) {
  532. HostTensorGenerator<> gen;
  533. auto graph = ComputingGraph::make();
  534. graph->options().graph_opt_level = 0;
  535. auto mkvar = [&](const char* name, const TensorShape& shp) {
  536. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  537. };
  538. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  539. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  540. };
  541. auto x = mkvar("x", {6, 3, 8, 8}), w1 = mkcvar("w1", {4, 3, 3, 3}),
  542. w2 = mkcvar("w2", {4, 3, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  543. b2 = mkcvar("b2", {1, 4, 1, 1}),
  544. y1 = opr::Convolution::make(x, w1) + b1,
  545. y2 = opr::Convolution::make(x, w2) + b2, y = y1 + y2;
  546. SymbolVar y_opt;
  547. unpack_vector(gopt::optimize_for_inference({y}), y_opt);
  548. HostTensorND host_y, host_y_opt;
  549. auto func = graph->compile({make_callback_copy(y, host_y),
  550. make_callback_copy(y_opt, host_y_opt)});
  551. func->execute();
  552. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  553. graph->compile({{y_opt, {}}})
  554. ->to_json()
  555. ->writeto_fpath(
  556. output_file("TestGoptInference.ParamFuseConvMerge.json"));
  557. auto chain = gopt::extract_opr_leaves(
  558. y_opt.node(), [](cg::OperatorNodeBase* opr) {
  559. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  560. });
  561. ASSERT_EQ(3u, chain.size());
  562. }
  563. TEST(TestGoptInference, Float16IOFloat32Compute) {
  564. constexpr size_t INP_H = 10, INP_W = 10;
  565. HostTensorGenerator<> gen;
  566. auto graph = ComputingGraph::make();
  567. auto mkvar = [&](const char* name, const TensorShape& shp) {
  568. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  569. };
  570. graph->options().graph_opt_level = 0;
  571. auto a = mkvar("a", {1, 4, INP_H, INP_W}),
  572. s0 = mkvar("s0", {20, 3, INP_H, INP_W}),
  573. s1 = mkvar("s1", {4, 3, 1, 1});
  574. auto b = opr::Convolution::make(s0, s1, {}, {});
  575. auto y = a + b;
  576. y = opr::Concat::make({y, -y}, 0);
  577. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  578. SymbolVar y_opt;
  579. auto options = gopt::OptimizeForInferenceOptions{};
  580. options.enable_f16_io_f32_comp();
  581. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  582. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  583. HostTensorND host_y, host_y_opt;
  584. auto func = graph->compile({make_callback_copy(y, host_y),
  585. make_callback_copy(y_opt, host_y_opt)});
  586. func->execute();
  587. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  588. }
  589. TEST(TestGoptInference, Float16IOFloat32ComputeWarpPerspective) {
  590. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  591. HostTensorGenerator<> gen;
  592. auto graph = ComputingGraph::make();
  593. auto mkvar = [&](const char* name, const TensorShape& shp) {
  594. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  595. };
  596. graph->options().graph_opt_level = 0;
  597. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  598. float value1 = M_PI, value2 = 0.6;
  599. auto gen_mat = [&](HostTensorND& mat) {
  600. auto ptr = mat.ptr<float>();
  601. for (size_t i = 0; i < N; ++i) {
  602. auto rot = value1, scale = value2, sheer = value1, dy = value2,
  603. dx = value2, ky = value2, kx = value2, kb = value2;
  604. ptr[0] = ptr[4] = cos(rot) * scale;
  605. ptr[1] = -(ptr[3] = sin(rot) * scale);
  606. ptr[3] *= sheer;
  607. ptr[4] *= sheer;
  608. ptr[2] = dx;
  609. ptr[5] = dy;
  610. ptr[6] = kx;
  611. ptr[7] = ky;
  612. ptr[8] = kb;
  613. ptr += 9;
  614. }
  615. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  616. };
  617. auto mat_host = std::make_shared<HostTensorND>(
  618. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  619. gen_mat(*mat_host);
  620. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  621. TensorShape out_shp{20, 20};
  622. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  623. SymbolVar y_opt;
  624. auto options = gopt::OptimizeForInferenceOptions{};
  625. options.enable_f16_io_f32_comp();
  626. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  627. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  628. HostTensorND host_y, host_y_opt;
  629. auto func = graph->compile({make_callback_copy(y, host_y),
  630. make_callback_copy(y_opt, host_y_opt)});
  631. func->execute();
  632. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  633. }
  634. TEST(TestGoptInference, Float16IOFloat32ComputeRemap) {
  635. auto cn = CompNode::load("cpu1");
  636. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  637. HostTensorGenerator<> gen;
  638. auto graph = ComputingGraph::make();
  639. auto mkvar = [&](const char* name, const TensorShape& shp) {
  640. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  641. };
  642. graph->options().graph_opt_level = 0;
  643. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  644. auto gen_map = [&](HostTensorND& mat) {
  645. auto ptr = mat.ptr<float>();
  646. for(size_t n = 0; n < N; ++n){
  647. for(int h = 0; h < 5; ++h){
  648. for(int w = 0; w < 5; ++w){
  649. *ptr++ = (h * 5 * 2) + 5 * 2 + 0;
  650. *ptr++ = (h * 5 * 2) + 5 * 2 + 1;
  651. }
  652. }
  653. }
  654. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  655. };
  656. auto map_host = std::make_shared<HostTensorND>(
  657. a.node()->comp_node(), TensorShape{N, 5, 5, 2}, dtype::Float32());
  658. gen_map(*map_host);
  659. auto map = opr::Host2DeviceCopy::make(*graph, map_host).rename("map");
  660. auto y = opr::Remap::make(a, map);
  661. SymbolVar y_opt;
  662. auto options = gopt::OptimizeForInferenceOptions{};
  663. options.enable_f16_io_f32_comp();
  664. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  665. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  666. HostTensorND host_y, host_y_opt;
  667. auto func = graph->compile({make_callback_copy(y, host_y),
  668. make_callback_copy(y_opt, host_y_opt)});
  669. func->execute();
  670. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  671. }
  672. TEST(TestGoptInference, Uint8IOFloat16ComputeWarpPerspective) {
  673. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  674. HostTensorGenerator<dtype::Uint8> gen_uint8;
  675. auto graph = ComputingGraph::make();
  676. auto mkvar = [&](const char* name, const TensorShape& shp) {
  677. return opr::Host2DeviceCopy::make(*graph, gen_uint8(shp)).rename(name);
  678. };
  679. graph->options().graph_opt_level = 0;
  680. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  681. float value1 = M_PI, value2 = 0.6;
  682. auto gen_mat = [&](HostTensorND& mat) {
  683. auto ptr = mat.ptr<float>();
  684. for (size_t i = 0; i < N; ++i) {
  685. auto rot = value1, scale = value2, sheer = value1, dy = value2,
  686. dx = value2, ky = value2, kx = value2, kb = value2;
  687. ptr[0] = ptr[4] = cos(rot) * scale;
  688. ptr[1] = -(ptr[3] = sin(rot) * scale);
  689. ptr[3] *= sheer;
  690. ptr[4] *= sheer;
  691. ptr[2] = dx;
  692. ptr[5] = dy;
  693. ptr[6] = kx;
  694. ptr[7] = ky;
  695. ptr[8] = kb;
  696. ptr += 9;
  697. }
  698. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  699. };
  700. auto mat_host = std::make_shared<HostTensorND>(
  701. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  702. gen_mat(*mat_host);
  703. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  704. TensorShape out_shp{20, 20};
  705. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  706. SymbolVar y_opt;
  707. auto options = gopt::OptimizeForInferenceOptions{};
  708. options.enable_f16_io_comp();
  709. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  710. ASSERT_EQ(y_opt.dtype(), dtype::Uint8());
  711. HostTensorND host_y, host_y_opt;
  712. auto func = graph->compile({make_callback_copy(y, host_y),
  713. make_callback_copy(y_opt, host_y_opt)});
  714. func->execute();
  715. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  716. }
  717. TEST(TestGoptInference, Float32TOFloat16) {
  718. CompNode cn = CompNode::load("cpu0");
  719. HostTensorGenerator<> gen(0, 1, 0);
  720. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  721. host_x2 = gen({4, 3, 1, 1}, cn);
  722. auto graph = ComputingGraph::make();
  723. auto make_f32_to_f16_graph = [&]() {
  724. graph->options().graph_opt_level = 0;
  725. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  726. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  727. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  728. auto b = opr::Convolution::make(d1, d2, {}, {});
  729. auto y = d0 + b;
  730. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  731. SymbolVar y_opt;
  732. auto options = gopt::OptimizeForInferenceOptions{};
  733. options.enable_f16_io_comp();
  734. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  735. return y_opt;
  736. };
  737. auto make_f16_graph = [&]() {
  738. auto d0 = opr::TypeCvt::make(
  739. opr::Host2DeviceCopy::make(*graph, host_x0),
  740. dtype::Float16{}),
  741. d1 = opr::TypeCvt::make(
  742. opr::Host2DeviceCopy::make(*graph, host_x1),
  743. dtype::Float16{}),
  744. d2 = opr::TypeCvt::make(
  745. opr::SharedDeviceTensor::make(*graph, *host_x2),
  746. dtype::Float16{});
  747. auto b = opr::Convolution::make(d1, d2, {}, {});
  748. SymbolVar y = d0 + b;
  749. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  750. y = opr::TypeCvt::make(y, dtype::Float32{});
  751. return y;
  752. };
  753. auto y_opt = make_f32_to_f16_graph();
  754. auto y = make_f16_graph();
  755. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  756. ASSERT_EQ(y.dtype(), dtype::Float32{});
  757. HostTensorND host_y_opt, host_y;
  758. auto func = graph->compile({make_callback_copy(y, host_y),
  759. make_callback_copy(y_opt, host_y_opt)});
  760. func->execute();
  761. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  762. }
  763. TEST(TestGoptInference, Float32TOFloat16EndpointElemwise) {
  764. CompNode cn = CompNode::load("cpu0");
  765. HostTensorGenerator<> gen(0, 1, 0);
  766. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  767. host_x2 = gen({4, 3, 1, 1}, cn);
  768. auto graph = ComputingGraph::make();
  769. auto make_f32_to_f16_graph = [&]() {
  770. graph->options().graph_opt_level = 0;
  771. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  772. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  773. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  774. auto b = opr::Convolution::make(d1, d2, {}, {});
  775. auto y = d0 + b;
  776. SymbolVar y_opt;
  777. auto options = gopt::OptimizeForInferenceOptions{};
  778. options.enable_f16_io_comp();
  779. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  780. return y_opt;
  781. };
  782. auto make_f16_graph = [&]() {
  783. auto d0 = opr::TypeCvt::make(
  784. opr::Host2DeviceCopy::make(*graph, host_x0),
  785. dtype::Float16{}),
  786. d1 = opr::TypeCvt::make(
  787. opr::Host2DeviceCopy::make(*graph, host_x1),
  788. dtype::Float16{}),
  789. d2 = opr::TypeCvt::make(
  790. opr::SharedDeviceTensor::make(*graph, *host_x2),
  791. dtype::Float16{});
  792. auto b = opr::Convolution::make(d1, d2, {}, {});
  793. SymbolVar y = d0 + b;
  794. y = opr::TypeCvt::make(y, dtype::Float32{});
  795. return y;
  796. };
  797. auto y_opt = make_f32_to_f16_graph();
  798. auto y = make_f16_graph();
  799. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  800. ASSERT_EQ(y.dtype(), dtype::Float32{});
  801. HostTensorND host_y_opt, host_y;
  802. auto func = graph->compile({make_callback_copy(y, host_y),
  803. make_callback_copy(y_opt, host_y_opt)});
  804. func->execute();
  805. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  806. }
  807. TEST(TestGoptInference, Float32TOFloat16Linspace) {
  808. CompNode cn = CompNode::load("cpu0");
  809. HostTensorGenerator<> gen(0, 1, 0);
  810. auto host_x = gen({3, 1}, cn);
  811. auto graph = ComputingGraph::make();
  812. auto make_f32_to_f16_graph = [&]() {
  813. graph->options().graph_opt_level = 0;
  814. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  815. auto xshp = opr::GetVarShape::make(x);
  816. auto cv = [&x](int v) { return x.make_scalar(v); };
  817. auto sub = [&xshp, &cv](int idx) {
  818. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  819. };
  820. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  821. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  822. auto y = opr::Reshape::make(lin, shp);
  823. auto mm = opr::MatrixMul::make(x, y);
  824. SymbolVar mm_opt;
  825. auto options = gopt::OptimizeForInferenceOptions{};
  826. options.enable_f16_io_comp();
  827. unpack_vector(gopt::optimize_for_inference({mm}, options), mm_opt);
  828. return mm_opt;
  829. };
  830. auto make_f16_graph = [&]() {
  831. auto x = opr::TypeCvt::make(opr::Host2DeviceCopy::make(*graph, host_x),
  832. dtype::Float16());
  833. auto xshp = opr::GetVarShape::make(x);
  834. auto cv = [&x](int v) { return x.make_scalar(v); };
  835. auto sub = [&xshp, &cv](int idx) {
  836. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  837. };
  838. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  839. lin = opr::TypeCvt::make(lin, dtype::Float16());
  840. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  841. auto y = opr::Reshape::make(lin, shp);
  842. auto mm = opr::MatrixMul::make(x, y);
  843. mm = opr::TypeCvt::make(mm, dtype::Float32{});
  844. return mm;
  845. };
  846. auto y_opt = make_f32_to_f16_graph();
  847. auto y = make_f16_graph();
  848. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  849. ASSERT_EQ(y.dtype(), dtype::Float32{});
  850. HostTensorND host_y_opt, host_y;
  851. auto func = graph->compile({make_callback_copy(y, host_y),
  852. make_callback_copy(y_opt, host_y_opt)});
  853. func->execute();
  854. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  855. }
  856. TEST(TestGoptInference, ConvertFormatNHWCD4) {
  857. // hwcd4 is only supported in naive handle
  858. NaiveMegDNNHandleScope naive_megdnn_handle;
  859. HostTensorGenerator<> gen;
  860. auto cn = CompNode::load("cpu0");
  861. auto graph = ComputingGraph::make();
  862. graph->options().graph_opt_level = 0;
  863. auto mkvar = [&](const char* name, const TensorShape& shp) {
  864. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  865. };
  866. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  867. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  868. .rename(name);
  869. };
  870. auto host_x = gen({8, 8, 8, 8}, cn);
  871. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  872. opr::Convolution::Param param;
  873. param.pad_h = param.pad_w = 0;
  874. auto w1 = mkcvar("w1", {4, 8, 3, 3}),
  875. conv = opr::Convolution::make(x, w1, param);
  876. auto shape_of = opr::GetVarShape::make(conv);
  877. auto subtensor = opr::Subtensor::make(
  878. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  879. 0, x.make_scalar(2), None, x.make_scalar(1))});
  880. opr::Resize::Param param_resize;
  881. param_resize.format = opr::Resize::Param::Format::NCHW;
  882. auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
  883. auto mat = mkcvar("mat", {8, 3, 3}),
  884. warp = opr::WarpPerspectiveForward::make(
  885. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  886. auto b = mkvar("b", {1, 4, 1, 1}),
  887. elem = opr::Elemwise::make({warp + b},
  888. opr::Elemwise::Param::Mode::RELU);
  889. param.pad_h = param.pad_w = 1;
  890. auto w2 = mkcvar("w2", {4, 4, 3, 3}),
  891. y = opr::Convolution::make(elem, w2, param);
  892. SymbolVar y_opt;
  893. auto options = gopt::OptimizeForInferenceOptions{};
  894. options.enable_nhwcd4();
  895. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  896. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  897. find_opr<opr::Convolution>(y_opt).param().format);
  898. graph->compile({{y_opt, {}}})
  899. ->to_json()
  900. ->writeto_fpath(
  901. output_file("TestGoptInference.ConvertFormatNHWCD4.json"));
  902. HostTensorND host_y_opt, host_y;
  903. auto func = graph->compile({make_callback_copy(y, host_y),
  904. make_callback_copy(y_opt, host_y_opt)});
  905. func->execute();
  906. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  907. *host_x = *gen({8, 8, 16, 16}, cn);
  908. func->execute();
  909. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  910. }
  911. TEST(TestGoptInference, ConvertFormatNHWCD4LOCAL) {
  912. // hwcd4 is only supported in naive handle
  913. NaiveMegDNNHandleScope naive_megdnn_handle;
  914. HostTensorGenerator<> gen;
  915. auto cn = CompNode::load("cpu0");
  916. auto graph = ComputingGraph::make();
  917. graph->options().graph_opt_level = 0;
  918. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  919. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  920. .rename(name);
  921. };
  922. auto host_x = gen({2, 8, 8, 16}, cn);
  923. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  924. opr::Convolution::Param param;
  925. param.pad_h = param.pad_w = 1;
  926. auto w1 = mkcvar("w1", {4, 8, 3, 3}),
  927. conv1 = opr::Convolution::make(x, w1, param);
  928. auto w2 = mkcvar("w2", {8, 16, 4, 3, 3, 4}),
  929. local = opr::Local::make(conv1, w2, param);
  930. auto w3 = mkcvar("w3", {4, 4, 3, 3}),
  931. conv2 = opr::Convolution::make(local, w3, param);
  932. opr::GroupLocal::Param param_group_local;
  933. param_group_local.pad_h = param_group_local.pad_w = 1;
  934. auto w4 = mkcvar("w4", {2, 8, 16, 2, 3, 3, 2}),
  935. group_local = opr::GroupLocal::make(conv2, w4, param_group_local);
  936. auto w5 = mkcvar("w5", {4, 4, 3, 3}),
  937. y = opr::Convolution::make(group_local, w5, param);
  938. SymbolVar y_opt;
  939. auto options = gopt::OptimizeForInferenceOptions{};
  940. options.enable_nhwcd4();
  941. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  942. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  943. find_opr<opr::Convolution>(y_opt).param().format);
  944. ASSERT_EQ(opr::Local::Param::Format::NCHW,
  945. find_opr<opr::Local>(y_opt).param().format);
  946. ASSERT_EQ(opr::GroupLocal::Param::Format::NCHW,
  947. find_opr<opr::GroupLocal>(y_opt).param().format);
  948. graph->compile({{y_opt, {}}})
  949. ->to_json()
  950. ->writeto_fpath(output_file(
  951. "TestGoptInference.ConvertFormatNHWCD4LOCAL.json"));
  952. HostTensorND host_y_opt, host_y;
  953. auto func = graph->compile({make_callback_copy(y, host_y),
  954. make_callback_copy(y_opt, host_y_opt)});
  955. func->execute();
  956. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  957. }
  958. TEST(TestGoptInference, ConvertFormatNHWCD4Deconv) {
  959. // hwcd4 is only supported in naive handle
  960. NaiveMegDNNHandleScope naive_megdnn_handle;
  961. HostTensorGenerator<> gen;
  962. auto cn = CompNode::load("cpu0");
  963. auto graph = ComputingGraph::make();
  964. graph->options().graph_opt_level = 0;
  965. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  966. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  967. .rename(name);
  968. };
  969. auto host_x = gen({8, 8, 8, 8}, cn);
  970. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  971. opr::Convolution::Param param;
  972. param.pad_h = param.pad_w = 0;
  973. auto w0 = mkcvar("w1", {4, 8, 2, 2}),
  974. conv = opr::Convolution::make(x, w0, param);
  975. auto w1 = mkcvar("w1", {4, 1, 2, 2}),
  976. y = opr::ConvolutionBackwardData::make(w1, conv, param, {}, {});
  977. SymbolVar y_opt;
  978. auto options = gopt::OptimizeForInferenceOptions{};
  979. options.enable_nhwcd4();
  980. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  981. ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
  982. find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
  983. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  984. find_opr<opr::Convolution>(y_opt).param().format);
  985. HostTensorND host_y_opt, host_y;
  986. auto func = graph->compile({make_callback_copy(y, host_y),
  987. make_callback_copy(y_opt, host_y_opt)});
  988. func->execute();
  989. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  990. }
  991. TEST(TestGoptInference, ConvertFormatNHWCD4Qint8) {
  992. // hwcd4 is only supported in naive handle
  993. NaiveMegDNNHandleScope naive_megdnn_handle;
  994. HostTensorGenerator<> gen;
  995. auto cn = CompNode::load("cpu0");
  996. auto graph = ComputingGraph::make();
  997. graph->options().graph_opt_level = 0;
  998. auto mkcvar = [&](const char* name, const TensorShape& shp,
  999. const DType& dtype) {
  1000. return opr::TypeCvt::make(
  1001. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1002. .rename(name),
  1003. dtype);
  1004. };
  1005. auto host_x = gen({8, 8, 8, 8}, cn);
  1006. auto _x = opr::Host2DeviceCopy::make(*graph, host_x),
  1007. x = opr::TypeCvt::make(_x, dtype::QuantizedS8(0.2f));
  1008. opr::ConvBias::Param param;
  1009. param.pad_h = param.pad_w = 0;
  1010. auto w = mkcvar("w", {4, 8, 3, 3}, dtype::QuantizedS8(0.1f)),
  1011. b = mkcvar("b", {1, 4, 1, 1}, dtype::QuantizedS32(0.02f)),
  1012. y = opr::ConvBias::make(
  1013. x, w, b, param, {},
  1014. OperatorNodeConfig{dtype::QuantizedS8(0.2f)});
  1015. SymbolVar y_opt;
  1016. auto options = gopt::OptimizeForInferenceOptions{};
  1017. options.enable_nhwcd4();
  1018. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1019. ASSERT_EQ(opr::ConvBias::Param::Format::NHWCD4,
  1020. find_opr<opr::ConvBias>(y_opt).param().format);
  1021. graph->compile({{y_opt, {}}})
  1022. ->to_json()
  1023. ->writeto_fpath(output_file(
  1024. "TestGoptInference.ConvertFormatNHWCD4Qint8.json"));
  1025. auto float_y = opr::TypeCvt::make(y, dtype::Float32()),
  1026. float_y_opt = opr::TypeCvt::make(y_opt, dtype::Float32());
  1027. HostTensorND host_y_opt, host_y;
  1028. auto func = graph->compile({make_callback_copy(float_y, host_y),
  1029. make_callback_copy(float_y_opt, host_y_opt)});
  1030. func->execute();
  1031. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1032. }
  1033. TEST(TestGoptInference, ConvertFormatPadIC) {
  1034. // hwcd4 is only supported in naive handle
  1035. NaiveMegDNNHandleScope naive_megdnn_handle;
  1036. HostTensorGenerator<> gen;
  1037. auto cn = CompNode::load("cpu0");
  1038. auto graph = ComputingGraph::make();
  1039. graph->options().graph_opt_level = 0;
  1040. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1041. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1042. .rename(name);
  1043. };
  1044. auto host_inp1 = gen({1, 6, 128, 128}, cn),
  1045. host_inp2 = gen({1, 6, 256, 256}, cn);
  1046. auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
  1047. inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);
  1048. auto shape_tmp = mkcvar("tmp", {256, 256});
  1049. auto shape_of = opr::GetVarShape::make(shape_tmp);
  1050. opr::Resize::Param param_resize;
  1051. param_resize.format = opr::Resize::Param::Format::NCHW;
  1052. auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);
  1053. auto concat = opr::Concat::make({inp2, resize}, 1);
  1054. opr::Convolution::Param param;
  1055. param.pad_h = param.pad_w = 1;
  1056. param.sparse = opr::Convolution::Param::Sparse::DENSE;
  1057. auto w1 = mkcvar("w1", {12, 12, 3, 3});
  1058. auto y = opr::Convolution::make(concat, w1, param);
  1059. SymbolVar y_opt;
  1060. auto options = gopt::OptimizeForInferenceOptions{};
  1061. options.enable_nhwcd4();
  1062. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1063. HostTensorND host_y_opt, host_y;
  1064. auto func = graph->compile({make_callback_copy(y, host_y),
  1065. make_callback_copy(y_opt, host_y_opt)});
  1066. func->execute();
  1067. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1068. }
  1069. TEST(TestGoptInference, ConvertBatchNormPass) {
  1070. auto cn = CompNode::load("cpu0");
  1071. HostTensorGenerator<> gen(0, 1, 0);
  1072. auto graph = ComputingGraph::make();
  1073. graph->options().graph_opt_level = 0;
  1074. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1075. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1076. };
  1077. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1078. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1079. .rename(name);
  1080. };
  1081. using Param = opr::BatchNorm::Param;
  1082. Param param(Param::ParamDim::DIM_1C11, Param::FwdMode::INFERENCE);
  1083. TensorShape shp = {1, 3, 1, 1};
  1084. auto x = mkvar("x", {2, 3, 16, 24}), scale = mkcvar("scale", shp),
  1085. bias = mkcvar("bias", shp), mean = mkcvar("mean", shp);
  1086. auto host_variance = gen(shp, cn);
  1087. for (size_t i = 0; i < shp.total_nr_elems(); ++i) {
  1088. host_variance->ptr<float>()[i] =
  1089. std::abs(host_variance->ptr<float>()[i]);
  1090. }
  1091. auto variance = opr::SharedDeviceTensor::make(*graph, *host_variance)
  1092. .rename("variance");
  1093. auto y = opr::BatchNorm::make(x, scale, bias, mean, variance, param)[4];
  1094. SymbolVar y_opt;
  1095. unpack_vector(gopt::optimize_for_inference(
  1096. {y}, gopt::OptimizeForInferenceOptions{}),
  1097. y_opt);
  1098. ASSERT_EQ(0u, find_opr_num<opr::BatchNorm>(y_opt));
  1099. graph->compile({{y_opt, {}}})
  1100. ->to_json()
  1101. ->writeto_fpath(
  1102. output_file("TestGoptInference.ConvertBatchNormPass.json"));
  1103. HostTensorND host_y, host_y_opt;
  1104. auto func = graph->compile({make_callback_copy(y, host_y),
  1105. make_callback_copy(y_opt, host_y_opt)});
  1106. func->execute();
  1107. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-2);
  1108. }
  1109. TEST(TestGoptInference, ConvBiasNonlinearityFusePass) {
  1110. // hwcd4 is only supported in naive handle
  1111. NaiveMegDNNHandleScope naive_megdnn_handle;
  1112. auto cn = CompNode::load("cpu0");
  1113. HostTensorGenerator<> gen;
  1114. auto graph = ComputingGraph::make();
  1115. graph->options().graph_opt_level = 0;
  1116. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1117. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1118. };
  1119. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1120. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1121. .rename(name);
  1122. };
  1123. opr::Convolution::Param param;
  1124. auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
  1125. w2 = mkcvar("w2", {4, 4, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  1126. b2 = mkcvar("b2", {1, 4, 1, 1}), w3 = mkcvar("w3", {8, 4, 1, 1}),
  1127. y_cut = opr::Convolution::make(x, w1, param),
  1128. y1 = opr::Elemwise::make({y_cut + b1},
  1129. opr::Elemwise::Param::Mode::RELU);
  1130. param.pad_w = param.pad_h = 1;
  1131. auto y2 = opr::Elemwise::make({opr::Convolution::make(y1, w2, param) + b2},
  1132. opr::Elemwise::Param::Mode::SIGMOID);
  1133. param.pad_w = param.pad_h = 0;
  1134. auto y3 = opr::Convolution::make(y2, w3, param), y_tmp = y3 + x,
  1135. y_expand =
  1136. opr::Elemwise::make({y_cut}, opr::Elemwise::Param::Mode::RELU),
  1137. y_y = opr::Convolution::make(y_expand, w3, param), y = y_y + y_tmp;
  1138. SymbolVar y_opt;
  1139. auto options = gopt::OptimizeForInferenceOptions{};
  1140. options.enable_nhwcd4().enable_fuse_conv_bias_nonlinearity();
  1141. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1142. ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
  1143. graph->compile({{y_opt, {}}})
  1144. ->to_json()
  1145. ->writeto_fpath(output_file(
  1146. "TestGoptInference.FuseConvBiasNonlinPass.json"));
  1147. HostTensorND host_y, host_y_opt;
  1148. auto func = graph->compile({make_callback_copy(y, host_y),
  1149. make_callback_copy(y_opt, host_y_opt)});
  1150. func->execute();
  1151. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1152. }
  1153. TEST(TestGoptInference, ParamMerge) {
  1154. auto cns = load_multiple_xpus(2);
  1155. HostTensorGenerator<> gen;
  1156. auto graph = ComputingGraph::make();
  1157. auto var0 = opr::SharedDeviceTensor::make(*graph, *gen({2, 3}, cns[0])),
  1158. var1 = opr::SharedDeviceTensor::make(*graph, *gen({1, 3}, cns[1])),
  1159. y = var0 + opr::Copy::make(var1, {cns[0]});
  1160. HostTensorND y_expected_val;
  1161. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1162. SymbolVar y_opt;
  1163. unpack_vector(gopt::GraphOptimizer{}
  1164. .add_pass<gopt::ParamMergePass>()
  1165. .apply({{y}})
  1166. .endpoint_vars(),
  1167. y_opt);
  1168. auto opr = y_opt.node()->owner_opr();
  1169. ASSERT_EQ(2u, opr->input().size());
  1170. ASSERT_EQ(2u,
  1171. find_opr<opr::MultipleDeviceTensorHolder>(y_opt).output().size());
  1172. HostTensorND y_got_val;
  1173. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1174. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1175. }
  1176. TEST(TestGoptInference, ParamMergeFormat) {
  1177. auto cns = load_multiple_xpus(2);
  1178. auto make_dv = [](const HostTensorND& hv) {
  1179. TensorLayout layout{hv.layout(), hv.layout().dtype,
  1180. megdnn::Image2DPack4TensorFormat::make_raw(1, 64)};
  1181. auto ret = std::make_shared<DeviceTensorND>(hv.comp_node(), layout);
  1182. ret->copy_from_fixlayout(hv).sync();
  1183. return ret;
  1184. };
  1185. HostTensorGenerator<> gen;
  1186. auto graph = ComputingGraph::make();
  1187. auto var0 = opr::SharedDeviceTensorWithFormat::make(
  1188. *graph, make_dv(*gen({2, 32}, cns[0]))),
  1189. var1 = opr::SharedDeviceTensorWithFormat::make(
  1190. *graph, make_dv(*gen({1, 32}, cns[1]))),
  1191. y = var0 + opr::Copy::make(var1, {cns[0]});
  1192. HostTensorND y_expected_val;
  1193. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1194. SymbolVar y_opt;
  1195. unpack_vector(gopt::GraphOptimizer{}
  1196. .add_pass<gopt::ParamMergePass>()
  1197. .apply({{y}})
  1198. .endpoint_vars(),
  1199. y_opt);
  1200. auto opr = y_opt.node()->owner_opr();
  1201. ASSERT_EQ(2u, opr->input().size());
  1202. ASSERT_EQ(2u, find_opr<opr::MultipleDeviceTensorWithFormatHolder>(y_opt)
  1203. .output()
  1204. .size());
  1205. HostTensorND y_got_val;
  1206. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1207. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1208. }
  1209. #if MGB_ENABLE_FASTRUN
  1210. TEST(TestGoptInference, AlgoProfile) {
  1211. HostTensorGenerator<> gen;
  1212. auto graph = ComputingGraph::make();
  1213. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1214. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1215. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1216. z = opr::Convolution::make(x, y);
  1217. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1218. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1219. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1220. gopt::enable_opr_algo_profiling_inplace({z + 2.3f});
  1221. ASSERT_EQ(S::PROFILE, conv.execution_policy().strategy);
  1222. }
  1223. #endif
  1224. TEST(TestGoptInference, ProfileCache) {
  1225. HostTensorGenerator<> gen;
  1226. auto graph = ComputingGraph::make();
  1227. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1228. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1229. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1230. z = opr::Convolution::make(x, y);
  1231. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1232. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1233. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1234. gopt::enable_opr_use_profiling_cache_inplace({z + 2.3f});
  1235. ASSERT_EQ(S::PROFILE_HEURISTIC, conv.execution_policy().strategy);
  1236. }
  1237. TEST(TestGoptInference, AlgoWorkspaceLimit) {
  1238. HostTensorGenerator<> gen;
  1239. auto graph = ComputingGraph::make();
  1240. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1241. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1242. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1243. z = opr::Convolution::make(x, y);
  1244. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1245. ASSERT_EQ(std::numeric_limits<uint64_t>::max(),
  1246. conv.execution_policy_transient().workspace_limit);
  1247. gopt::set_opr_algo_workspace_limit_inplace({z + 2.3f}, 10000u);
  1248. ASSERT_EQ(10000u, conv.execution_policy().workspace_limit);
  1249. }
  1250. TEST_PASS(FuseConvBiasNonlinPass, Basic) {
  1251. auto cn = CompNode::load("xpux");
  1252. HostTensorGenerator<dtype::Int8> gen;
  1253. auto graph = ComputingGraph::make();
  1254. graph->options().graph_opt_level = 0;
  1255. auto mkvar = [&](const char* name, const TensorShape& shp,
  1256. const DType& dtype) {
  1257. return opr::TypeCvt::make(
  1258. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1259. dtype);
  1260. };
  1261. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1262. const DType& dtype) {
  1263. return opr::TypeCvt::make(
  1264. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1265. .rename(name),
  1266. dtype);
  1267. };
  1268. for (auto format : {
  1269. opr::Convolution::Param::Format::NCHW,
  1270. opr::Convolution::Param::Format::NHWC,
  1271. opr::Convolution::Param::Format::NCHW4
  1272. }) {
  1273. opr::Convolution::Param param;
  1274. param.format = format;
  1275. SymbolVar x, w, b;
  1276. if (format == opr::Convolution::Param::Format::NHWC) {
  1277. x = mkvar("x", {20, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1278. w = mkcvar("w1", {24, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1279. b = mkcvar("b", {1, 1, 1, 24}, dtype::QuantizedS32(6.25f));
  1280. } else if (format == opr::Convolution::Param::Format::NCHW) {
  1281. x = mkvar("x", {20, 4, 20, 20}, dtype::QuantizedS8(2.5f)),
  1282. w = mkcvar("w1", {24, 4, 1, 1}, dtype::QuantizedS8(2.5f)),
  1283. b = mkcvar("b", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  1284. } else {
  1285. mgb_assert(format == opr::Convolution::Param::Format::NCHW4);
  1286. x = mkvar("x", {20, 1, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1287. w = mkcvar("w1", {24, 1, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1288. b = mkcvar("b", {1, 6, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1289. }
  1290. auto y = opr::Convolution::make(x, w, param);
  1291. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1292. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1293. opr::ConvBias::Param conv_bias_param;
  1294. conv_bias_param.format = format;
  1295. conv_bias_param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1296. auto concret_y = opr::ConvBias::make(
  1297. x, w, b, conv_bias_param, {},
  1298. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1299. check(concret_y, y);
  1300. }
  1301. }
  1302. #if MGB_CUDA
  1303. TEST(TestEnableTensorCore, SmallInputShape) {
  1304. REQUIRE_GPU(1);
  1305. auto cn = CompNode::load("gpu0");
  1306. cn.activate();
  1307. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1308. auto sm_ver = prop.major * 10 + prop.minor;
  1309. if (sm_ver < 75) {
  1310. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1311. "expected: %d)\n",
  1312. sm_ver, 75);
  1313. return;
  1314. }
  1315. HostTensorGenerator<dtype::Int8> gen;
  1316. auto graph = ComputingGraph::make();
  1317. graph->options().graph_opt_level = 0;
  1318. auto mkvar = [&](const char* name, const TensorShape& shp,
  1319. const DType& dtype) {
  1320. return opr::TypeCvt::make(
  1321. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1322. dtype);
  1323. };
  1324. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1325. const DType& dtype) {
  1326. return opr::TypeCvt::make(
  1327. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1328. .rename(name),
  1329. dtype);
  1330. };
  1331. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  1332. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1333. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1334. z = mkcvar("b1", {32, 16, 2, 4, 4}, dtype::QuantizedS8(2.5f));
  1335. opr::ConvBias::Param param;
  1336. param.format = opr::ConvBias::Param::Format::NCHW4;
  1337. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1338. param.stride_h = param.stride_w = 2;
  1339. param.pad_h = param.pad_w = 1;
  1340. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1341. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1342. y = opr::ConvBias::make(y, w, b, param, {},
  1343. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1344. y = opr::TypeCvt::make(y, dtype::Float32());
  1345. SymbolVar y_opt;
  1346. SymbolVar y_no_tc;
  1347. {
  1348. auto options = gopt::OptimizeForInferenceOptions{};
  1349. options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
  1350. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1351. }
  1352. {
  1353. auto options = gopt::OptimizeForInferenceOptions{};
  1354. options.enable_fuse_conv_bias_nonlinearity();
  1355. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1356. }
  1357. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1358. ASSERT_EQ(2u, nr_dimshuffle);
  1359. HostTensorND host_y, host_y_opt;
  1360. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1361. make_callback_copy(y_opt, host_y_opt)});
  1362. func->execute();
  1363. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1364. }
  1365. TEST(TestEnableTensorCore, ConvBiasWithZ) {
  1366. REQUIRE_GPU(1);
  1367. auto cn = CompNode::load("gpu0");
  1368. cn.activate();
  1369. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1370. auto sm_ver = prop.major * 10 + prop.minor;
  1371. if (sm_ver < 75) {
  1372. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1373. "expected: %d)\n",
  1374. sm_ver, 75);
  1375. return;
  1376. }
  1377. HostTensorGenerator<dtype::Int8> gen;
  1378. auto graph = ComputingGraph::make();
  1379. graph->options().graph_opt_level = 0;
  1380. auto mkvar = [&](const char* name, const TensorShape& shp,
  1381. const DType& dtype) {
  1382. return opr::TypeCvt::make(
  1383. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1384. dtype);
  1385. };
  1386. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1387. const DType& dtype) {
  1388. return opr::TypeCvt::make(
  1389. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1390. .rename(name),
  1391. dtype);
  1392. };
  1393. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1394. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1395. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1396. z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1397. opr::ConvBias::Param param;
  1398. param.format = opr::ConvBias::Param::Format::NCHW4;
  1399. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1400. param.stride_h = param.stride_w = 1;
  1401. param.pad_h = param.pad_w = 1;
  1402. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1403. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1404. y = opr::TypeCvt::make(y, dtype::Float32());
  1405. SymbolVar y_opt;
  1406. SymbolVar y_no_tc;
  1407. {
  1408. auto options = gopt::OptimizeForInferenceOptions{};
  1409. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1410. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1411. }
  1412. {
  1413. auto options = gopt::OptimizeForInferenceOptions{};
  1414. options.enable_fuse_conv_bias_nonlinearity();
  1415. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1416. }
  1417. HostTensorND host_y, host_y_opt;
  1418. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1419. make_callback_copy(y_opt, host_y_opt)});
  1420. func->execute();
  1421. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1422. }
  1423. TEST(TestGoptInference, EnableTensorCore) {
  1424. REQUIRE_GPU(1);
  1425. auto cn = CompNode::load("gpu0");
  1426. cn.activate();
  1427. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1428. auto sm_ver = prop.major * 10 + prop.minor;
  1429. if (sm_ver < 75) {
  1430. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1431. "expected: %d)\n",
  1432. sm_ver, 75);
  1433. return;
  1434. }
  1435. HostTensorGenerator<dtype::Int8> gen;
  1436. auto graph = ComputingGraph::make();
  1437. graph->options().graph_opt_level = 0;
  1438. auto mkvar = [&](const char* name, const TensorShape& shp,
  1439. const DType& dtype) {
  1440. return opr::TypeCvt::make(
  1441. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1442. dtype);
  1443. };
  1444. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1445. const DType& dtype) {
  1446. return opr::TypeCvt::make(
  1447. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1448. .rename(name),
  1449. dtype);
  1450. };
  1451. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1452. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1453. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1454. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1455. opr::Convolution::Param param;
  1456. param.format = opr::Convolution::Param::Format::NCHW4;
  1457. param.stride_h = param.stride_w = 1;
  1458. param.pad_h = param.pad_w = 1;
  1459. auto y = opr::Convolution::make(x, w, param);
  1460. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1461. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1462. auto y1 = y + b1, y2 = opr::Convolution::make(y, w, param),
  1463. y3 = opr::Elemwise::make({y - b1}, opr::Elemwise::Param::Mode::RELU);
  1464. y2 = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU),
  1465. y2 = opr::TypeCvt::make(y2, dtype::QuantizedS8(2.5f));
  1466. auto y4 = y1 + y2 + y3;
  1467. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  1468. SymbolVar y_opt;
  1469. SymbolVar y_no_tc;
  1470. {
  1471. auto options = gopt::OptimizeForInferenceOptions{};
  1472. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1473. unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
  1474. }
  1475. {
  1476. auto options = gopt::OptimizeForInferenceOptions{};
  1477. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1478. unpack_vector(gopt::optimize_for_inference({y4}, options), y_no_tc);
  1479. }
  1480. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1481. ASSERT_EQ(3u, nr_dimshuffle);
  1482. graph->compile({{y_opt, {}}})
  1483. ->to_json()
  1484. ->writeto_fpath(
  1485. output_file("TestGoptInference.EnableTensorCorePass.json"));
  1486. HostTensorND host_y, host_y_opt;
  1487. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1488. make_callback_copy(y_opt, host_y_opt)});
  1489. func->execute();
  1490. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1491. }
  1492. TEST(FuseConvBiasZPass, BlockFuse) {
  1493. REQUIRE_GPU(1);
  1494. auto cn = CompNode::load("gpu0");
  1495. cn.activate();
  1496. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1497. auto sm_ver = prop.major * 10 + prop.minor;
  1498. if (sm_ver < 61) {
  1499. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1500. "expected: %d)\n",
  1501. sm_ver, 61);
  1502. return;
  1503. }
  1504. HostTensorGenerator<dtype::Int8> gen;
  1505. auto graph = ComputingGraph::make();
  1506. graph->options().graph_opt_level = 0;
  1507. auto mkvar = [&](const char* name, const TensorShape& shp,
  1508. const DType& dtype) {
  1509. return opr::TypeCvt::make(
  1510. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1511. dtype);
  1512. };
  1513. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1514. const DType& dtype) {
  1515. return opr::TypeCvt::make(
  1516. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1517. .rename(name),
  1518. dtype);
  1519. };
  1520. using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
  1521. using NonlineMode = opr::ConvBias::Param::NonlineMode;
  1522. for (auto mode :
  1523. {ElemMultiMode::QFUSE_ADD_RELU, ElemMultiMode::QFUSE_ADD_H_SWISH}) {
  1524. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1525. w1 = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1526. b1 = mkcvar("b1", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1527. w2 = mkcvar("w2", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1528. b2 = mkcvar("b2", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1529. w3 = mkcvar("w3", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1530. b3 = mkcvar("b3", {1, 16, 1, 1, 4}, dtype::QuantizedS32(3.0f));
  1531. NonlineMode nonline_mode = NonlineMode::RELU;
  1532. if (mode == ElemMultiMode::QFUSE_ADD_H_SWISH) {
  1533. nonline_mode = NonlineMode::H_SWISH;
  1534. }
  1535. opr::ConvBias::Param param;
  1536. param.format = opr::Convolution::Param::Format::NCHW4;
  1537. param.nonlineMode = nonline_mode;
  1538. param.stride_h = param.stride_w = 1;
  1539. param.pad_h = param.pad_w = 1;
  1540. auto y1 = opr::ConvBias::make(
  1541. x, w1, b1, param, {},
  1542. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1543. param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
  1544. auto y2 = opr::ConvBias::make(
  1545. y1, w2, b2, param, {},
  1546. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1547. y3 = opr::ElemwiseMultiType::make(
  1548. {y1, y2}, {mode},
  1549. OperatorNodeConfig{dtype::QuantizedS8(1.2f)});
  1550. param.nonlineMode = nonline_mode;
  1551. auto y4 = opr::ConvBias::make(
  1552. y3, w3, b3, param, {},
  1553. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1554. z = opr::ElemwiseMultiType::make(
  1555. {y3, y4}, {opr::ElemwiseMultiType::Param::Mode::QADD},
  1556. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1557. z = opr::TypeCvt::make(z, dtype::Float32());
  1558. //! fuse z mannually
  1559. auto z0 = opr::ConvBias::make(
  1560. x, w1, b1, param, {},
  1561. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1562. auto z1 = opr::ConvBias::make(
  1563. z0, w2, b2, z0, param, {},
  1564. OperatorNodeConfig{dtype::QuantizedS8(1.2f)}),
  1565. z2 = opr::ConvBias::make(
  1566. z1, w3, b3, param, {},
  1567. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1568. z4 = opr::ElemwiseMultiType::make(
  1569. {z1, z2}, {opr::ElemwiseMultiType::Mode::QADD},
  1570. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1571. z4 = opr::TypeCvt::make(z4, dtype::Float32());
  1572. SymbolVar z_fuse;
  1573. SymbolVar z_nonfuse;
  1574. {
  1575. auto options = gopt::OptimizeForInferenceOptions{};
  1576. options.enable_fuse_conv_bias_nonlinearity()
  1577. .enable_fuse_conv_bias_with_z();
  1578. unpack_vector(gopt::optimize_for_inference({z}, options), z_fuse);
  1579. }
  1580. {
  1581. auto options = gopt::OptimizeForInferenceOptions{};
  1582. options.enable_fuse_conv_bias_nonlinearity();
  1583. unpack_vector(gopt::optimize_for_inference({z4}, options),
  1584. z_nonfuse);
  1585. }
  1586. auto nr_elem_multi_type =
  1587. find_opr_num<mgb::opr::ElemwiseMultiType>(z_fuse);
  1588. MGB_MARK_USED_VAR(nr_elem_multi_type);
  1589. ASSERT_EQ(1u, nr_elem_multi_type);
  1590. graph->compile({{z_fuse, {}}})
  1591. ->to_json()
  1592. ->writeto_fpath(
  1593. output_file("FuseConvBiasZPass.BlockFuse_fuse.json"));
  1594. graph->compile({{z_nonfuse, {}}})
  1595. ->to_json()
  1596. ->writeto_fpath(output_file(
  1597. "FuseConvBiasZPass.BlockFuse_nonfuse.json"));
  1598. HostTensorND host_z_fuse, host_z_nonfuse;
  1599. auto func =
  1600. graph->compile({make_callback_copy(z_nonfuse, host_z_nonfuse),
  1601. make_callback_copy(z_fuse, host_z_fuse)});
  1602. func->execute();
  1603. MGB_ASSERT_TENSOR_EQ(host_z_fuse, host_z_nonfuse);
  1604. }
  1605. }
  1606. TEST(TestEnableTensorCore, ShuffleMerge) {
  1607. REQUIRE_GPU(1);
  1608. auto cn = CompNode::load("gpu0");
  1609. cn.activate();
  1610. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1611. auto sm_ver = prop.major * 10 + prop.minor;
  1612. if (sm_ver < 75) {
  1613. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1614. "expected: %d)\n",
  1615. sm_ver, 75);
  1616. return;
  1617. }
  1618. HostTensorGenerator<dtype::Int8> gen;
  1619. auto graph = ComputingGraph::make();
  1620. graph->options().graph_opt_level = 0;
  1621. auto mkvar = [&](const char* name, const TensorShape& shp,
  1622. const DType& dtype) {
  1623. return opr::TypeCvt::make(
  1624. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1625. dtype);
  1626. };
  1627. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1628. const DType& dtype) {
  1629. return opr::TypeCvt::make(
  1630. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1631. .rename(name),
  1632. dtype);
  1633. };
  1634. auto nchw2nchw4 = [](SymbolVar x) {
  1635. auto xshp = opr::GetVarShape::make(x);
  1636. auto cv = [&x](int v) { return x.make_scalar(v); };
  1637. auto sub = [&xshp, &cv](int idx) {
  1638. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1639. };
  1640. auto tshp = opr::Concat::make(
  1641. {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  1642. auto y0 = opr::Reshape::make(x, tshp);
  1643. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  1644. return y1;
  1645. };
  1646. auto nchw42nchw = [](SymbolVar x) {
  1647. auto xshp = opr::GetVarShape::make(x);
  1648. auto cv = [&x](int v) { return x.make_scalar(v); };
  1649. auto sub = [&xshp, &cv](int idx) {
  1650. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1651. };
  1652. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  1653. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  1654. auto y1 = opr::Reshape::make(y0, tshp);
  1655. return y1;
  1656. };
  1657. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  1658. w = mkcvar("w1", {64, 64, 3, 3}, dtype::QuantizedS8(2.5f)),
  1659. b = mkcvar("b", {1, 64, 1, 1}, dtype::QuantizedS32(6.25f)),
  1660. z = mkvar("b1", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f));
  1661. x = nchw2nchw4(x), w = nchw2nchw4(w), b = nchw2nchw4(b), z= nchw2nchw4(z);
  1662. opr::ConvBias::Param param;
  1663. param.format = opr::ConvBias::Param::Format::NCHW4;
  1664. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1665. param.stride_h = param.stride_w = 1;
  1666. param.pad_h = param.pad_w = 1;
  1667. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1668. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1669. y = nchw42nchw(y);
  1670. y = opr::TypeCvt::make(y, dtype::Float32());
  1671. SymbolVar y_opt;
  1672. SymbolVar y_no_tc;
  1673. {
  1674. auto options = gopt::OptimizeForInferenceOptions{};
  1675. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1676. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1677. }
  1678. {
  1679. auto options = gopt::OptimizeForInferenceOptions{};
  1680. options.enable_fuse_conv_bias_nonlinearity();
  1681. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1682. }
  1683. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1684. ASSERT_EQ(3u, nr_dimshuffle);
  1685. HostTensorND host_y, host_y_opt;
  1686. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1687. make_callback_copy(y_opt, host_y_opt)});
  1688. func->execute();
  1689. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1690. }
  1691. #endif
  1692. TEST(FuseConvBiasZPass, Basic) {
  1693. REQUIRE_GPU(1);
  1694. auto cn = CompNode::load("gpu0");
  1695. HostTensorGenerator<dtype::Int8> gen;
  1696. auto graph = ComputingGraph::make();
  1697. graph->options().graph_opt_level = 0;
  1698. auto mkvar = [&](const char* name, const TensorShape& shp,
  1699. const DType& dtype) {
  1700. return opr::TypeCvt::make(
  1701. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1702. dtype);
  1703. };
  1704. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1705. const DType& dtype) {
  1706. return opr::TypeCvt::make(
  1707. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1708. .rename(name),
  1709. dtype);
  1710. };
  1711. auto format = opr::Convolution::Param::Format::NCHW4;
  1712. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1713. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1714. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1715. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1716. b2 = mkvar("b2", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1717. opr::ConvBias::Param conv_bias_param;
  1718. conv_bias_param.format = format;
  1719. conv_bias_param.stride_h = conv_bias_param.stride_w = 1;
  1720. conv_bias_param.pad_h = conv_bias_param.pad_w = 1;
  1721. auto y = opr::ConvBias::make(x, w, b, conv_bias_param, {},
  1722. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1723. SymbolVar y_opt;
  1724. // check fuse mode
  1725. for (auto mode : {opr::ElemwiseMultiType::Param::Mode::QADD,
  1726. opr::ElemwiseMultiType::Param::Mode::QMUL,
  1727. opr::ElemwiseMultiType::Param::Mode::QFUSE_ADD_RELU}) {
  1728. auto y1 = opr::ElemwiseMultiType::make(
  1729. {y, b1}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1730. {
  1731. auto options = gopt::OptimizeForInferenceOptions{};
  1732. options.enable_fuse_conv_bias_nonlinearity()
  1733. .enable_fuse_conv_bias_with_z()
  1734. .enable_nchw32();
  1735. unpack_vector(gopt::optimize_for_inference({y1}, options), y_opt);
  1736. }
  1737. auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
  1738. if (mode == opr::ElemwiseMultiType::Param::Mode::QMUL) {
  1739. ASSERT_NE(0u, nr_elemwisemultitype);
  1740. } else
  1741. ASSERT_EQ(0u, nr_elemwisemultitype);
  1742. // fuse convbiasz and z
  1743. if (mode == opr::ElemwiseMultiType::Param::Mode::QADD) {
  1744. auto y2 = opr::ElemwiseMultiType::make(
  1745. {y1, b2}, {mode},
  1746. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1747. {
  1748. auto options = gopt::OptimizeForInferenceOptions{};
  1749. options.enable_fuse_conv_bias_nonlinearity()
  1750. .enable_fuse_conv_bias_with_z()
  1751. .enable_nchw32();
  1752. unpack_vector(gopt::optimize_for_inference({y2}, options),
  1753. y_opt);
  1754. }
  1755. auto nr_elemwisemultitype =
  1756. find_opr_num<opr::ElemwiseMultiType>(y_opt);
  1757. ASSERT_NE(0u, nr_elemwisemultitype);
  1758. }
  1759. }
  1760. }
  1761. #if MGB_CUDA
  1762. TEST(TestGoptInference, EnableCHWN4) {
  1763. REQUIRE_GPU(1);
  1764. auto cn = CompNode::load("gpu0");
  1765. cn.activate();
  1766. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1767. auto sm_ver = prop.major * 10 + prop.minor;
  1768. if (sm_ver < 61) {
  1769. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1770. "expected: %d)\n",
  1771. sm_ver, 61);
  1772. return;
  1773. }
  1774. HostTensorGenerator<dtype::Int8> gen;
  1775. auto graph = ComputingGraph::make();
  1776. graph->options().graph_opt_level = 0;
  1777. auto mkvar = [&](const char* name, const TensorShape& shp,
  1778. const DType& dtype) {
  1779. return opr::TypeCvt::make(
  1780. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1781. dtype);
  1782. };
  1783. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1784. const DType& dtype) {
  1785. return opr::TypeCvt::make(
  1786. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1787. .rename(name),
  1788. dtype);
  1789. };
  1790. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1791. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1792. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1793. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1794. opr::ConvBias::Param param;
  1795. param.format = opr::ConvBias::Param::Format::NCHW4;
  1796. param.stride_h = param.stride_w = 1;
  1797. param.pad_h = param.pad_w = 1;
  1798. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1799. auto y = opr::ConvBiasForward::make(
  1800. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1801. auto y1 = opr::ElemwiseMultiType::make(
  1802. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  1803. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1804. auto y2 = opr::ConvBiasForward::make(
  1805. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1806. auto y3 = opr::ElemwiseMultiType::make(
  1807. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  1808. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1809. auto y4 = opr::ElemwiseMultiType::make(
  1810. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  1811. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1812. y4 = opr::ElemwiseMultiType::make(
  1813. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  1814. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1815. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  1816. SymbolVar y_opt;
  1817. SymbolVar y_cudnn;
  1818. {
  1819. auto options = gopt::OptimizeForInferenceOptions{};
  1820. options.enable_chwn4();
  1821. unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
  1822. }
  1823. unpack_vector(gopt::GraphOptimizer{}
  1824. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1825. .add_pass<gopt::FuseConvBiasZPass>()
  1826. .apply({{y4}})
  1827. .endpoint_vars(),
  1828. y_cudnn);
  1829. HostTensorND host_y, host_y_opt;
  1830. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  1831. make_callback_copy(y_opt, host_y_opt)});
  1832. func->execute();
  1833. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1834. }
  1835. TEST(TestGoptInference, EnableCHWN4WarpPespective) {
  1836. REQUIRE_GPU(1);
  1837. auto cn = CompNode::load("gpu0");
  1838. cn.activate();
  1839. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1840. auto sm_ver = prop.major * 10 + prop.minor;
  1841. if (sm_ver < 61) {
  1842. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1843. "expected: %d)\n",
  1844. sm_ver, 61);
  1845. return;
  1846. }
  1847. HostTensorGenerator<dtype::Int8> gen;
  1848. auto graph = ComputingGraph::make();
  1849. graph->options().graph_opt_level = 0;
  1850. auto mkvar = [&](const char* name, const TensorShape& shp,
  1851. const DType& dtype) {
  1852. return opr::TypeCvt::make(
  1853. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1854. dtype);
  1855. };
  1856. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1857. const DType& dtype) {
  1858. return opr::TypeCvt::make(
  1859. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1860. .rename(name),
  1861. dtype);
  1862. };
  1863. std::shared_ptr<HostTensorND> mat = std::make_shared<HostTensorND>(
  1864. cn, TensorShape{32, 3, 3}, dtype::Float32());
  1865. warp_perspective_mat_gen(*mat, 32, 16, 16);
  1866. auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
  1867. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1868. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1869. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1870. opr::ConvBias::Param param;
  1871. param.format = opr::ConvBias::Param::Format::NCHW4;
  1872. param.stride_h = param.stride_w = 1;
  1873. param.pad_h = param.pad_w = 1;
  1874. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1875. auto y = opr::ConvBiasForward::make(
  1876. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1877. opr::WarpPerspective::Param warp_param;
  1878. warp_param.format = opr::WarpPerspective::Param::Format::NCHW4;
  1879. auto y1 = opr::WarpPerspective::make(y, mat_var, TensorShape{16, 16}, warp_param);
  1880. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  1881. auto nchw42nchw = [](SymbolVar x) {
  1882. auto xshp = opr::GetVarShape::make(x);
  1883. auto cv = [&x](int v) { return x.make_scalar(v); };
  1884. auto sub = [&xshp, &cv](int idx) {
  1885. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1886. };
  1887. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  1888. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  1889. auto y1 = opr::Reshape::make(y0, tshp);
  1890. return y1;
  1891. };
  1892. y1 = nchw42nchw(y1);
  1893. warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
  1894. auto y2 = opr::WarpPerspective::make(y1, mat_var, TensorShape{16, 16}, warp_param);
  1895. SymbolVar y_opt;
  1896. SymbolVar y_cudnn;
  1897. {
  1898. auto options = gopt::OptimizeForInferenceOptions{};
  1899. options.enable_chwn4();
  1900. unpack_vector(gopt::optimize_for_inference({y2}, options), y_opt);
  1901. }
  1902. unpack_vector(gopt::GraphOptimizer{}
  1903. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1904. .add_pass<gopt::FuseConvBiasZPass>()
  1905. .apply({{y2}})
  1906. .endpoint_vars(),
  1907. y_cudnn);
  1908. HostTensorND host_y, host_y_opt;
  1909. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  1910. make_callback_copy(y_opt, host_y_opt)});
  1911. func->execute();
  1912. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1913. }
  1914. TEST(TestGoptInference, EnableCHWN4Pooling) {
  1915. REQUIRE_GPU(1);
  1916. auto cn = CompNode::load("gpu0");
  1917. cn.activate();
  1918. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1919. auto sm_ver = prop.major * 10 + prop.minor;
  1920. if (sm_ver < 61) {
  1921. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1922. "expected: %d)\n",
  1923. sm_ver, 61);
  1924. return;
  1925. }
  1926. HostTensorGenerator<dtype::Int8> gen;
  1927. auto graph = ComputingGraph::make();
  1928. graph->options().graph_opt_level = 0;
  1929. auto mkvar = [&](const char* name, const TensorShape& shp,
  1930. const DType& dtype) {
  1931. return opr::TypeCvt::make(
  1932. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1933. dtype);
  1934. };
  1935. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1936. const DType& dtype) {
  1937. return opr::TypeCvt::make(
  1938. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1939. .rename(name),
  1940. dtype);
  1941. };
  1942. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1943. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1944. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1945. opr::ConvBias::Param param;
  1946. param.format = opr::ConvBias::Param::Format::NCHW4;
  1947. param.stride_h = param.stride_w = 1;
  1948. param.pad_h = param.pad_w = 1;
  1949. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1950. auto y = opr::ConvBiasForward::make(
  1951. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  1952. opr::Pooling::Param pool_param;
  1953. pool_param.format = opr::Pooling::Param::Format::NCHW4;
  1954. y = opr::Pooling::make(y, pool_param);
  1955. y = opr::TypeCvt::make(y, dtype::Float32());
  1956. auto nchw42nchw = [](SymbolVar x) {
  1957. auto xshp = opr::GetVarShape::make(x);
  1958. auto cv = [&x](int v) { return x.make_scalar(v); };
  1959. auto sub = [&xshp, &cv](int idx) {
  1960. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  1961. };
  1962. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  1963. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  1964. auto y1 = opr::Reshape::make(y0, tshp);
  1965. return y1;
  1966. };
  1967. y = nchw42nchw(y);
  1968. pool_param.format = opr::Pooling::Param::Format::NCHW;
  1969. auto y1 = opr::Pooling::make(y, pool_param);
  1970. SymbolVar y_opt;
  1971. SymbolVar y_cudnn;
  1972. unpack_vector(
  1973. gopt::GraphOptimizer{}
  1974. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1975. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  1976. .add_pass<gopt::FuseConvBiasZPass>()
  1977. .apply({{y1}})
  1978. .endpoint_vars(),
  1979. y_opt);
  1980. unpack_vector(gopt::GraphOptimizer{}
  1981. .add_pass<gopt::FuseConvBiasNonlinPass>()
  1982. .add_pass<gopt::FuseConvBiasZPass>()
  1983. .apply({{y1}})
  1984. .endpoint_vars(),
  1985. y_cudnn);
  1986. HostTensorND host_y, host_y_opt;
  1987. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  1988. make_callback_copy(y_opt, host_y_opt)});
  1989. func->execute();
  1990. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1991. }
  1992. TEST(TestGoptInference, EnableCHWN4ShuffleRemove) {
  1993. REQUIRE_GPU(1);
  1994. auto cn = CompNode::load("gpu0");
  1995. cn.activate();
  1996. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1997. auto sm_ver = prop.major * 10 + prop.minor;
  1998. if (sm_ver < 61) {
  1999. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2000. "expected: %d)\n",
  2001. sm_ver, 61);
  2002. return;
  2003. }
  2004. HostTensorGenerator<dtype::Int8> gen;
  2005. auto graph = ComputingGraph::make();
  2006. graph->options().graph_opt_level = 0;
  2007. auto mkvar = [&](const char* name, const TensorShape& shp,
  2008. const DType& dtype) {
  2009. return opr::TypeCvt::make(
  2010. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2011. dtype);
  2012. };
  2013. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2014. const DType& dtype) {
  2015. return opr::TypeCvt::make(
  2016. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2017. .rename(name),
  2018. dtype);
  2019. };
  2020. auto nchw2nchw4 = [](SymbolVar x) {
  2021. auto xshp = opr::GetVarShape::make(x);
  2022. auto cv = [&x](int v) { return x.make_scalar(v); };
  2023. auto sub = [&xshp, &cv](int idx) {
  2024. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2025. };
  2026. auto tshp = opr::Concat::make(
  2027. {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  2028. auto y0 = opr::Reshape::make(x, tshp);
  2029. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  2030. return y1;
  2031. };
  2032. auto nchw42nchw = [](SymbolVar x) {
  2033. auto xshp = opr::GetVarShape::make(x);
  2034. auto cv = [&x](int v) { return x.make_scalar(v); };
  2035. auto sub = [&xshp, &cv](int idx) {
  2036. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2037. };
  2038. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2039. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2040. auto y1 = opr::Reshape::make(y0, tshp);
  2041. return y1;
  2042. };
  2043. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  2044. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2045. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2046. b1 = mkcvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8{2.5f});
  2047. x = nchw2nchw4(x);
  2048. opr::ConvBias::Param param;
  2049. param.format = opr::ConvBias::Param::Format::NCHW4;
  2050. param.stride_h = param.stride_w = 1;
  2051. param.pad_h = param.pad_w = 1;
  2052. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2053. auto y = opr::ConvBiasForward::make(
  2054. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2055. auto y1 = opr::ElemwiseMultiType::make(
  2056. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  2057. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2058. auto y2 = opr::ConvBiasForward::make(
  2059. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2060. auto y3 = opr::ElemwiseMultiType::make(
  2061. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  2062. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2063. auto y4 = opr::ElemwiseMultiType::make(
  2064. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2065. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2066. y4 = opr::ElemwiseMultiType::make(
  2067. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2068. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2069. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  2070. y4 = nchw42nchw(y4);
  2071. SymbolVar y_opt;
  2072. SymbolVar y_cudnn;
  2073. unpack_vector(
  2074. gopt::GraphOptimizer{}
  2075. .add_pass<gopt::ParamRedistributePass>()
  2076. .add_pass<gopt::ParamFusePass>()
  2077. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2078. .add_pass<gopt::FuseConvBiasZPass>()
  2079. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  2080. .add_pass<gopt::ShuffleShuffleRemovePass>()
  2081. .add_pass<gopt::ParamFusePass>()
  2082. .apply({{y4}})
  2083. .endpoint_vars(),
  2084. y_opt);
  2085. graph->compile({{y_opt, {}}})
  2086. ->to_json()
  2087. ->writeto_fpath(output_file(
  2088. "TestGoptInference.EnableCHWN4ShuffleRemove.json"));
  2089. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2090. ASSERT_EQ(2u, nr_dimshuffle);
  2091. auto nr_reformat = find_opr_num<mgb::opr::RelayoutFormat>(y_opt);
  2092. ASSERT_EQ(0u, nr_reformat);
  2093. unpack_vector(gopt::GraphOptimizer{}
  2094. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2095. .add_pass<gopt::FuseConvBiasZPass>()
  2096. .apply({{y4}})
  2097. .endpoint_vars(),
  2098. y_cudnn);
  2099. HostTensorND host_y, host_y_opt;
  2100. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  2101. make_callback_copy(y_opt, host_y_opt)});
  2102. func->execute();
  2103. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2104. }
  2105. TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
  2106. REQUIRE_GPU(1);
  2107. auto cn = CompNode::load("gpu0");
  2108. cn.activate();
  2109. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2110. auto sm_ver = prop.major * 10 + prop.minor;
  2111. if (sm_ver < 61) {
  2112. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2113. "expected: %d)\n",
  2114. sm_ver, 61);
  2115. return;
  2116. }
  2117. HostTensorGenerator<dtype::Int8> gen;
  2118. auto graph = ComputingGraph::make();
  2119. graph->options().graph_opt_level = 0;
  2120. auto mkvar = [&](const char* name, const TensorShape& shp,
  2121. const DType& dtype) {
  2122. return opr::TypeCvt::make(
  2123. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2124. dtype);
  2125. };
  2126. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2127. const DType& dtype) {
  2128. return opr::TypeCvt::make(
  2129. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2130. .rename(name),
  2131. dtype);
  2132. };
  2133. auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
  2134. opr::ConvBias::Param param_conv_bias;
  2135. param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
  2136. param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
  2137. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2138. param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2139. // dense
  2140. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2141. auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2142. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2143. auto conv1 = opr::ConvBiasForward::make(
  2144. x, w1, b1, param_conv_bias, {},
  2145. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2146. // group
  2147. // icpg != 1 && ocpg != 1
  2148. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2149. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2150. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2151. auto conv2 = opr::ConvBiasForward::make(
  2152. conv1, w2, b2, param_conv_bias, {},
  2153. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2154. auto y = opr::TypeCvt::make(conv2, dtype::Float32());
  2155. SymbolVar y_opt;
  2156. {
  2157. auto options = gopt::OptimizeForInferenceOptions{};
  2158. options.enable_nchw4();
  2159. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2160. }
  2161. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
  2162. find_opr<opr::ConvBias>(y_opt).param().format);
  2163. auto nr_reshape = find_opr_num<mgb::opr::Reshape>(y_opt);
  2164. ASSERT_EQ(2u, nr_reshape);
  2165. graph->compile({{y_opt, {}}})
  2166. ->to_json()
  2167. ->writeto_fpath(output_file(
  2168. "TestGoptInference.ConvertFormatNCHW4GPU.json"));
  2169. HostTensorND host_y, host_y_opt;
  2170. auto func = graph->compile({make_callback_copy(y, host_y),
  2171. make_callback_copy(y_opt, host_y_opt)});
  2172. func->execute();
  2173. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2174. }
  2175. #endif
  2176. TEST(TestGoptInference, ConvertFormatNCHW4NonConvOpr) {
  2177. auto cn = CompNode::load("xpu0");
  2178. HostTensorGenerator<dtype::Int8> gen;
  2179. auto graph = ComputingGraph::make();
  2180. graph->options().graph_opt_level = 0;
  2181. auto mkvar = [&](const char* name, const TensorShape& shp,
  2182. const DType& dtype) {
  2183. return opr::TypeCvt::make(
  2184. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2185. dtype);
  2186. };
  2187. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2188. const DType& dtype) {
  2189. return opr::TypeCvt::make(
  2190. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2191. .rename(name),
  2192. dtype);
  2193. };
  2194. auto mkcvarf32 = [&](const char* name, const TensorShape& shp) {
  2195. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2196. .rename(name);
  2197. };
  2198. auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
  2199. opr::ConvBias::Param param_conv_bias;
  2200. param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
  2201. param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
  2202. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2203. param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2204. // dense
  2205. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2206. auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2207. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2208. auto conv1 = opr::ConvBiasForward::make(
  2209. x, w1, b1, param_conv_bias, {},
  2210. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2211. // test Resize
  2212. auto shape_of = opr::GetVarShape::make(x);
  2213. auto subtensor = opr::Subtensor::make(
  2214. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2215. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2216. opr::Resize::Param param_resize;
  2217. param_resize.format = opr::Resize::Param::Format::NCHW;
  2218. auto resize = opr::ResizeForward::make(conv1, subtensor * 2, param_resize);
  2219. // test WarpPerspective
  2220. auto mat = mkcvarf32("mat", {2, 3, 3}),
  2221. warp = opr::WarpPerspectiveForward::make(
  2222. resize, mat, nullptr, cg::var_from_tensor_shape(x, {32, 32}));
  2223. opr::Pooling::Param pool_param;
  2224. pool_param.format = opr::Pooling::Param::Format::NCHW;
  2225. // test Pooling
  2226. auto pool = opr::Pooling::make(warp, pool_param);
  2227. // group
  2228. // icpg != 1 && ocpg != 1
  2229. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2230. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2231. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2232. auto conv2 = opr::ConvBiasForward::make(
  2233. pool, w2, b2, param_conv_bias, {},
  2234. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2235. auto add = opr::ElemwiseMultiType::make(
  2236. {conv1, conv2}, {opr::ElemwiseMultiType::Param::Mode::QADD},
  2237. OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
  2238. auto y = opr::TypeCvt::make(add, dtype::Float32());
  2239. SymbolVar y_opt;
  2240. {
  2241. auto options = gopt::OptimizeForInferenceOptions{};
  2242. options.enable_nchw4();
  2243. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2244. }
  2245. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2246. ASSERT_EQ(2u, nr_dimshuffle);
  2247. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
  2248. find_opr<opr::ConvBias>(y_opt).param().format);
  2249. ASSERT_EQ(opr::ResizeForward::Param::Format::NCHW4,
  2250. find_opr<opr::ResizeForward>(y_opt).param().format);
  2251. ASSERT_EQ(opr::WarpPerspectiveForward::Param::Format::NCHW4,
  2252. find_opr<opr::WarpPerspectiveForward>(y_opt).param().format);
  2253. ASSERT_EQ(opr::PoolingForward::Param::Format::NCHW4,
  2254. find_opr<opr::PoolingForward>(y_opt).param().format);
  2255. }
  2256. TEST(TestGoptInference, ConvertFormatNCHW4) {
  2257. HostTensorGenerator<> gen;
  2258. auto cn = CompNode::load("cpu0");
  2259. auto graph = ComputingGraph::make();
  2260. graph->options().graph_opt_level = 0;
  2261. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2262. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2263. };
  2264. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2265. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2266. .rename(name);
  2267. };
  2268. auto x = mkvar("x", {2, 4, 16, 16});
  2269. // ConvBias test dense
  2270. opr::ConvBias::Param param_conv_bias;
  2271. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2272. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2273. auto w1 = mkcvar("w1", {8, 4, 3, 3}), b1 = mkcvar("b1", {1, 8, 1, 1});
  2274. auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
  2275. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2276. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1});
  2277. auto conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  2278. // Convolution
  2279. opr::Convolution::Param param_conv;
  2280. param_conv.pad_h = param_conv.pad_w = 1;
  2281. param_conv.sparse = opr::Convolution::Param::Sparse::DENSE;
  2282. auto w3 = mkcvar("w3", {8, 8, 3, 3});
  2283. auto y = opr::Convolution::make(conv2, w3, param_conv);
  2284. SymbolVar y_opt;
  2285. {
  2286. auto options = gopt::OptimizeForInferenceOptions{};
  2287. options.enable_nchw4();
  2288. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2289. }
  2290. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
  2291. find_opr<opr::ConvBias>(y_opt).param().format);
  2292. graph->compile({{y_opt, {}}})
  2293. ->to_json()
  2294. ->writeto_fpath(
  2295. output_file("TestGoptInference.ConvertFormatNCHW4.json"));
  2296. HostTensorND host_y_opt, host_y;
  2297. auto func = graph->compile({make_callback_copy(y, host_y),
  2298. make_callback_copy(y_opt, host_y_opt)});
  2299. func->execute();
  2300. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  2301. }
  2302. TEST(TestGoptInference, ConvertFormatNCHW88) {
  2303. HostTensorGenerator<> gen;
  2304. auto cn = CompNode::load("cpu0");
  2305. auto graph = ComputingGraph::make();
  2306. graph->options().graph_opt_level = 0;
  2307. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2308. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2309. };
  2310. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2311. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2312. .rename(name);
  2313. };
  2314. auto host_x = gen({2, 3, 16, 16}, cn);
  2315. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  2316. //!Hybrid nchw88 mode
  2317. opr::Convolution::Param param_conv;
  2318. param_conv.pad_h = param_conv.pad_w = 1;
  2319. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  2320. conv1 = opr::Convolution::make(x, w1, param_conv);
  2321. //!channel wise
  2322. opr::ConvBias::Param param_conv_bias;
  2323. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2324. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2325. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  2326. conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  2327. //! group
  2328. auto w3 = mkcvar("w3", {1, 8, 8, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  2329. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  2330. auto shape_of = opr::GetVarShape::make(conv3);
  2331. auto subtensor = opr::Subtensor::make(
  2332. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2333. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2334. opr::Resize::Param param_resize;
  2335. param_resize.format = opr::Resize::Param::Format::NCHW;
  2336. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  2337. auto mat = mkcvar("mat", {2, 3, 3}),
  2338. warp = opr::WarpPerspectiveForward::make(
  2339. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  2340. auto b = mkvar("b", {1, 8, 1, 1}),
  2341. elem = opr::Elemwise::make({warp + b},
  2342. opr::Elemwise::Param::Mode::RELU);
  2343. //! Dense
  2344. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2345. auto w4 = mkcvar("w4", {2, 6, 4, 3, 3}), b4 = mkcvar("b4", {1, 12, 1, 1}),
  2346. conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
  2347. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2348. auto w5 = mkcvar("w5", {8, 12, 3, 3}), b5 = mkcvar("b5", {1, 8, 1, 1}),
  2349. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
  2350. auto w6 = mkcvar("w6", {8, 8, 3, 3}), b6 = mkcvar("b6", {1, 8, 1, 1}),
  2351. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
  2352. SymbolVar y_opt;
  2353. {
  2354. auto options = gopt::OptimizeForInferenceOptions{};
  2355. options.enable_nchw88();
  2356. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2357. }
  2358. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW88,
  2359. find_opr<opr::ConvBias>(y_opt).param().format);
  2360. graph->compile({{y_opt, {}}})
  2361. ->to_json()
  2362. ->writeto_fpath(
  2363. output_file("TestGoptInference.ConvertFormatNCHW88.json"));
  2364. HostTensorND host_y_opt, host_y;
  2365. auto func = graph->compile({make_callback_copy(y, host_y),
  2366. make_callback_copy(y_opt, host_y_opt)});
  2367. func->execute();
  2368. //! meybe go to winograd in x86-32, so set error 1e-1
  2369. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2370. *host_x = *gen({2, 3, 32, 32}, cn);
  2371. func->execute();
  2372. //! meybe go to winograd in x86-32, so set error 1e-1
  2373. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2374. }
  2375. TEST(TestGoptInference, ConvertFormatNCHW44) {
  2376. HostTensorGenerator<> gen;
  2377. auto cn = CompNode::load("cpu0");
  2378. auto graph = ComputingGraph::make();
  2379. graph->options().graph_opt_level = 0;
  2380. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2381. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2382. };
  2383. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2384. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2385. .rename(name);
  2386. };
  2387. auto host_x = gen({2, 3, 16, 16}, cn);
  2388. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  2389. //!Hybrid nchw88 mode
  2390. opr::Convolution::Param param_conv;
  2391. param_conv.pad_h = param_conv.pad_w = 1;
  2392. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  2393. conv1 = opr::Convolution::make(x, w1, param_conv);
  2394. //!channel wise
  2395. opr::ConvBias::Param param_conv_bias;
  2396. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2397. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2398. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  2399. conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  2400. //! group
  2401. auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  2402. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  2403. auto shape_of = opr::GetVarShape::make(conv3);
  2404. auto subtensor = opr::Subtensor::make(
  2405. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2406. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2407. opr::Resize::Param param_resize;
  2408. param_resize.format = opr::Resize::Param::Format::NCHW;
  2409. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  2410. auto mat = mkcvar("mat", {2, 3, 3}),
  2411. warp = opr::WarpPerspectiveForward::make(
  2412. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  2413. auto b = mkvar("b", {1, 8, 1, 1}),
  2414. elem = opr::Elemwise::make({warp + b},
  2415. opr::Elemwise::Param::Mode::RELU);
  2416. //! Dense
  2417. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2418. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2419. auto w4 = mkcvar("w4", {4, 8, 3, 3}), b4 = mkcvar("b4", {1, 4, 1, 1}),
  2420. conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
  2421. auto w5 = mkcvar("w5", {6, 4, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
  2422. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
  2423. auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
  2424. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
  2425. SymbolVar y_opt;
  2426. auto options = gopt::OptimizeForInferenceOptions{};
  2427. options.enable_nchw44();
  2428. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2429. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW44,
  2430. find_opr<opr::ConvBias>(y_opt).param().format);
  2431. graph->compile({{y_opt, {}}})
  2432. ->to_json()
  2433. ->writeto_fpath(
  2434. output_file("TestGoptInference.ConvertFormatNCHW44.json"));
  2435. HostTensorND host_y_opt, host_y;
  2436. auto func = graph->compile({make_callback_copy(y, host_y),
  2437. make_callback_copy(y_opt, host_y_opt)});
  2438. func->execute();
  2439. //! meybe go to winograd in x86-32, so set error 1e-1
  2440. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2441. *host_x = *gen({2, 3, 32, 32}, cn);
  2442. func->execute();
  2443. //! meybe go to winograd in x86-32, so set error 1e-1
  2444. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2445. }
  2446. TEST(TestGoptInference, ConvertFormatNCHW44_DOT) {
  2447. HostTensorGenerator<> gen;
  2448. auto cn = CompNode::load("cpu0");
  2449. auto graph = ComputingGraph::make();
  2450. graph->options().graph_opt_level = 0;
  2451. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2452. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2453. };
  2454. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2455. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2456. .rename(name);
  2457. };
  2458. auto host_x = gen({2, 3, 16, 16}, cn);
  2459. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  2460. //!Hybrid nchw88 mode
  2461. opr::Convolution::Param param_conv;
  2462. param_conv.pad_h = param_conv.pad_w = 1;
  2463. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  2464. conv1 = opr::Convolution::make(x, w1, param_conv);
  2465. //!channel wise
  2466. opr::ConvBias::Param param_conv_bias;
  2467. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2468. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2469. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  2470. conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  2471. //! group
  2472. auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  2473. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  2474. auto shape_of = opr::GetVarShape::make(conv3);
  2475. auto subtensor = opr::Subtensor::make(
  2476. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2477. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2478. opr::Resize::Param param_resize;
  2479. param_resize.format = opr::Resize::Param::Format::NCHW;
  2480. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  2481. auto mat = mkcvar("mat", {2, 3, 3}),
  2482. warp = opr::WarpPerspectiveForward::make(
  2483. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  2484. auto b = mkvar("b", {1, 8, 1, 1}),
  2485. elem = opr::Elemwise::make({warp + b},
  2486. opr::Elemwise::Param::Mode::RELU);
  2487. //! Dense
  2488. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2489. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2490. auto w4 = mkcvar("w4", {4, 8, 3, 3}), b4 = mkcvar("b4", {1, 4, 1, 1}),
  2491. conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
  2492. auto w5 = mkcvar("w5", {6, 4, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
  2493. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
  2494. auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
  2495. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
  2496. SymbolVar y_opt;
  2497. auto options = gopt::OptimizeForInferenceOptions{};
  2498. options.enable_nchw44_dot();
  2499. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2500. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW44_DOT,
  2501. find_opr<opr::Convolution>(y_opt).param().format);
  2502. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  2503. find_opr<opr::ConvBias>(y_opt).param().format);
  2504. graph->compile({{y_opt, {}}})
  2505. ->to_json()
  2506. ->writeto_fpath(
  2507. output_file("TestGoptInference.ConvertFormatNCHW44.json"));
  2508. HostTensorND host_y_opt, host_y;
  2509. auto func = graph->compile({make_callback_copy(y, host_y),
  2510. make_callback_copy(y_opt, host_y_opt)});
  2511. func->execute();
  2512. //! meybe go to winograd in x86-32, so set error 1e-1
  2513. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2514. *host_x = *gen({2, 3, 32, 32}, cn);
  2515. func->execute();
  2516. //! meybe go to winograd in x86-32, so set error 1e-1
  2517. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2518. }
  2519. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台