You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

conv_bias_multi_thread.cpp 63 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526
  1. /**
  2. * \file dnn/test/arm_common/conv_bias_multi_thread.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #include "test/arm_common/fixture.h"
  13. #include "test/common/benchmarker.h"
  14. #include "test/common/conv_bias.h"
  15. using namespace megdnn;
  16. using namespace test;
  17. using namespace conv_bias;
  18. std::vector<conv_bias::TestArg> get_int8_quint8_conv_bias_args(
  19. std::vector<size_t> kernel, size_t stride, bool no_pad, bool no_bias,
  20. bool no_nonlinemode) {
  21. using namespace conv_bias;
  22. using Param = param::ConvBias;
  23. using NLMode = param::ConvBias::NonlineMode;
  24. std::vector<TestArg> args;
  25. auto pack = [&](size_t n, size_t oc, size_t ic, size_t w, size_t h,
  26. size_t kernel, size_t stride, NLMode nlmode) {
  27. Param param;
  28. param.stride_h = stride;
  29. param.stride_w = stride;
  30. if (!no_pad) {
  31. param.pad_h = kernel / 2;
  32. param.pad_w = kernel / 2;
  33. } else {
  34. param.pad_h = 0;
  35. param.pad_w = 0;
  36. }
  37. param.nonlineMode = nlmode;
  38. args.emplace_back(param, TensorShape{n, ic, h, w},
  39. TensorShape{oc, ic, kernel, kernel}, TensorShape{});
  40. if (!no_bias) {
  41. args.emplace_back(param, TensorShape{n, ic, h, w},
  42. TensorShape{oc, ic, kernel, kernel},
  43. TensorShape{1, oc, 1, 1});
  44. }
  45. };
  46. std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
  47. if (!no_nonlinemode) {
  48. nonlinemode.emplace_back(NLMode::RELU);
  49. nonlinemode.emplace_back(NLMode::H_SWISH);
  50. }
  51. for (size_t n : {1, 2}) {
  52. for (auto nlmode : nonlinemode) {
  53. for (size_t ic : {1, 3, 7}) {
  54. for (size_t oc : {1, 3, 7}) {
  55. for (size_t size : {4, 6, 8, 14, 16, 18}) {
  56. for (size_t kern : kernel) {
  57. pack(n, oc, ic, size, size, kern, stride, nlmode);
  58. }
  59. }
  60. }
  61. }
  62. }
  63. }
  64. return args;
  65. }
  66. std::vector<conv_bias::TestArg> get_nchw44_conv_bias_args(
  67. std::vector<size_t> kernel_vec, size_t stride, bool no_pad = false,
  68. bool no_bias = false, bool no_nonlinemode = false,
  69. bool is_input_nchw = false, bool support_full_bias = false,
  70. bool support_sigmoid = false) {
  71. using namespace conv_bias;
  72. using NLMode = param::ConvBias::NonlineMode;
  73. std::vector<TestArg> args;
  74. auto pack = [&](size_t n, size_t oc, size_t ic, size_t h, size_t w,
  75. size_t kernel, size_t stride, size_t group, NLMode nlmode,
  76. megdnn::BiasMode bias_mode, int any_pad = -1) {
  77. constexpr int pack_c = 4;
  78. const size_t pad = any_pad >= 0 ? any_pad : kernel / 2;
  79. auto oc_per_group = oc / group;
  80. auto ic_per_group = ic / group;
  81. bool ok_group = (oc % group == 0 && ic % group == 0) &&
  82. oc_per_group % pack_c == 0 && oc_per_group > 0 &&
  83. ic_per_group > 0;
  84. bool nchw_disable = group > 1 || ic_per_group >= 4;
  85. bool nchw44_disable = ic_per_group % pack_c != 0;
  86. bool invalid_pad = (w + 2 * pad < kernel) || (h + 2 * pad < kernel);
  87. if (!(ok_group) || invalid_pad) {
  88. return;
  89. }
  90. if ((is_input_nchw && nchw_disable) ||
  91. (!is_input_nchw && nchw44_disable)) {
  92. return;
  93. }
  94. size_t kernel_h = kernel;
  95. size_t kernel_w = kernel;
  96. param::ConvBias param;
  97. param.format = param::ConvBias::Format::NCHW44;
  98. param.stride_h = stride;
  99. param.stride_w = stride;
  100. param.pad_h = pad;
  101. param.pad_w = pad;
  102. param.nonlineMode = nlmode;
  103. auto src_tensor_shape = TensorShape{n, ic / pack_c, h, w, pack_c};
  104. auto weight_tensor_shape = TensorShape{
  105. oc / pack_c, ic / pack_c, kernel_h, kernel_w, pack_c, pack_c};
  106. auto bias_tensor_shape = TensorShape{};
  107. if (bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
  108. bias_tensor_shape = {1, oc / pack_c, 1, 1, pack_c};
  109. } else if (bias_mode == megdnn::BiasMode::BIAS) {
  110. bias_tensor_shape = {n, oc / pack_c,
  111. (h + 2 * pad - kernel) / stride + 1,
  112. (w + 2 * pad - kernel) / stride + 1, pack_c};
  113. }
  114. if (group == 1) {
  115. param.sparse = param::ConvBias::Sparse::DENSE;
  116. } else if (group > 1 && ic / group == 1 && oc / group == 1) {
  117. megdnn_assert(0, "not support channel wise");
  118. param.sparse = param::ConvBias::Sparse::GROUP;
  119. weight_tensor_shape = TensorShape{group / pack_c, 1, 1,
  120. kernel_h, kernel_w, pack_c};
  121. } else if (group > 1 && oc_per_group % pack_c == 0 && oc / group > 0 &&
  122. ic_per_group % pack_c == 0 && ic / group > 0) {
  123. param.sparse = param::ConvBias::Sparse::GROUP;
  124. weight_tensor_shape = TensorShape{group,
  125. oc_per_group / pack_c,
  126. ic_per_group / pack_c,
  127. kernel_h,
  128. kernel_w,
  129. pack_c,
  130. pack_c};
  131. }
  132. if (is_input_nchw) {
  133. src_tensor_shape = TensorShape{n, ic, h, w};
  134. weight_tensor_shape =
  135. TensorShape{oc / pack_c, kernel_h, kernel_w, ic, pack_c};
  136. }
  137. args.emplace_back(param, src_tensor_shape, weight_tensor_shape,
  138. bias_tensor_shape);
  139. };
  140. std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
  141. if (!no_nonlinemode) {
  142. nonlinemode.emplace_back(NLMode::RELU);
  143. nonlinemode.emplace_back(NLMode::H_SWISH);
  144. }
  145. if (support_sigmoid) {
  146. nonlinemode.emplace_back(NLMode::SIGMOID);
  147. }
  148. std::vector<megdnn::BiasMode> bias_mode = {
  149. megdnn::BiasMode::BROADCAST_CHANNEL_BIAS};
  150. if (no_bias) {
  151. bias_mode.emplace_back(megdnn::BiasMode::NO_BIAS);
  152. }
  153. if (support_full_bias) {
  154. bias_mode.emplace_back(megdnn::BiasMode::BIAS);
  155. }
  156. for (auto bias : bias_mode)
  157. for (auto nlmode : nonlinemode)
  158. for (size_t n : {1, 2})
  159. for (size_t kernel : kernel_vec)
  160. for (size_t oc : {4, 12, 32})
  161. for (size_t ic : {1, 3, 4, 12, 32})
  162. for (size_t h : {3, 5, 12})
  163. for (size_t w : {7, 16, 23}) {
  164. for (size_t group = 1;
  165. group <= std::min(oc, ic); ++group) {
  166. pack(n, oc, ic, h, w, kernel, stride,
  167. group, nlmode, bias);
  168. }
  169. }
  170. return args;
  171. }
  172. std::vector<conv_bias::TestArg> get_int8_quint8_nchw44_channel_wise_args(
  173. std::vector<size_t> kernel, size_t stride, bool no_bias,
  174. bool no_nonlinemode) {
  175. using namespace conv_bias;
  176. using Param = param::ConvBias;
  177. using NLMode = param::ConvBias::NonlineMode;
  178. std::vector<TestArg> args;
  179. auto pack = [&](size_t n, size_t group, size_t w, size_t h, size_t kernel,
  180. size_t stride, NLMode nlmode, bool pad) {
  181. Param param;
  182. param.stride_h = stride;
  183. param.stride_w = stride;
  184. if (pad) {
  185. param.pad_h = kernel / 2;
  186. param.pad_w = kernel / 2;
  187. } else {
  188. param.pad_h = 0;
  189. param.pad_w = 0;
  190. }
  191. param.nonlineMode = nlmode;
  192. param.format = param::ConvBias::Format::NCHW44;
  193. param.sparse = param::ConvBias::Sparse::GROUP;
  194. args.emplace_back(param, TensorShape{n, group, h, w, 4},
  195. TensorShape{group, 1, 1, kernel, kernel, 4},
  196. TensorShape{});
  197. if (!no_bias) {
  198. args.emplace_back(param, TensorShape{n, group, h, w, 4},
  199. TensorShape{group, 1, 1, kernel, kernel, 4},
  200. TensorShape{1, group, 1, 1, 4});
  201. }
  202. };
  203. std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
  204. if (!no_nonlinemode) {
  205. nonlinemode.emplace_back(NLMode::RELU);
  206. nonlinemode.emplace_back(NLMode::H_SWISH);
  207. }
  208. for (size_t n : {1, 2}) {
  209. for (auto nlmode : nonlinemode) {
  210. for (bool pad : {true}) {
  211. for (size_t group : {1, 2, 4, 7, 128}) {
  212. for (size_t size : {4, 5, 6, 7, 8, 9, 10, 15, 40}) {
  213. for (size_t kern : kernel) {
  214. pack(n, group, size, size, kern, stride, nlmode,
  215. pad);
  216. }
  217. }
  218. }
  219. }
  220. for (bool pad : {false}) {
  221. for (size_t group : {1, 2, 7, 128}) {
  222. for (size_t size : {7, 8, 9, 10, 15, 40}) {
  223. for (size_t kern : kernel) {
  224. pack(n, group, size, size, kern, stride, nlmode,
  225. pad);
  226. }
  227. }
  228. }
  229. }
  230. }
  231. }
  232. return args;
  233. }
  234. void checker_conv_bias_qint8x8x8(std::vector<conv_bias::TestArg> args,
  235. Handle* handle, const char* algo_name) {
  236. Checker<ConvBias> checker(handle);
  237. checker.set_before_exec_callback(
  238. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  239. #if MEGDNN_ARMV7
  240. checker.set_epsilon(1);
  241. #endif
  242. UniformIntRNG rng{-50, 50};
  243. checker.set_dtype(0, dtype::QuantizedS8(0.41113496f))
  244. .set_dtype(1, dtype::QuantizedS8(0.01887994f))
  245. .set_dtype(2, dtype::QuantizedS32(0.41113496f * 0.01887994f))
  246. .set_dtype(4, dtype::QuantizedS8(0.49550694f))
  247. .set_rng(0, &rng)
  248. .set_rng(1, &rng)
  249. .set_rng(2, &rng);
  250. for (auto&& arg : args) {
  251. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  252. }
  253. }
  254. void checker_conv_bias_qint8x8x32(std::vector<conv_bias::TestArg> args,
  255. Handle* handle, const char* algo_name) {
  256. Checker<ConvBias> checker(handle);
  257. UniformIntRNG rng{-50, 50};
  258. checker.set_dtype(0, dtype::QuantizedS8(2.5f))
  259. .set_dtype(1, dtype::QuantizedS8(2.5f))
  260. .set_dtype(2, dtype::QuantizedS32(6.25f))
  261. .set_dtype(4, {});
  262. checker.set_before_exec_callback(
  263. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  264. for (auto&& arg : args) {
  265. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  266. }
  267. }
  268. void checker_conv_bias_quint8x8x8(std::vector<conv_bias::TestArg> args,
  269. Handle* handle, const char* algo_name) {
  270. Checker<ConvBias> checker(handle);
  271. checker.set_before_exec_callback(
  272. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  273. UniformIntRNG rng(0, 255);
  274. checker.set_dtype(0, dtype::Quantized8Asymm(0.2f, 100))
  275. .set_dtype(1, dtype::Quantized8Asymm(0.2f, 120))
  276. .set_dtype(2, dtype::QuantizedS32(0.04f))
  277. .set_dtype(4, dtype::Quantized8Asymm(1.4f, 110))
  278. .set_rng(0, &rng)
  279. .set_rng(1, &rng)
  280. .set_rng(2, &rng);
  281. for (auto&& arg : args) {
  282. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  283. }
  284. }
  285. void checker_conv_bias_quint8x8x32(std::vector<conv_bias::TestArg> args,
  286. Handle* handle, const char* algo_name) {
  287. Checker<ConvBias> checker(handle);
  288. checker.set_before_exec_callback(
  289. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  290. NormalRNG rng(128.f);
  291. checker.set_rng(0, &rng).set_rng(1, &rng);
  292. checker.set_dtype(0, dtype::Quantized8Asymm(1.2f, (uint8_t)127))
  293. .set_dtype(1, dtype::Quantized8Asymm(1.3f, (uint8_t)129))
  294. .set_dtype(2, dtype::QuantizedS32(1.2 * 1.3))
  295. .set_dtype(4, {});
  296. for (auto&& arg : args) {
  297. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  298. }
  299. }
  300. void checker_conv_bias_int8x8x32_multi(std::vector<conv_bias::TestArg> args,
  301. Handle* handle, const char* algo_name) {
  302. Checker<ConvBias> checker(handle);
  303. checker.set_before_exec_callback(
  304. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  305. checker.set_dtype(0, dtype::Int8());
  306. checker.set_dtype(1, dtype::Int8());
  307. checker.set_dtype(2, dtype::Int32());
  308. checker.set_dtype(4, dtype::Int32());
  309. for (auto&& arg : args) {
  310. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  311. }
  312. }
  313. /**********************************F32 direct************************/
  314. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_LARGE_GROUP) {
  315. check_conv_bias(
  316. get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
  317. handle(), "F32DIRECT_LARGE_GROUP");
  318. }
  319. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_SMALL_GROUP) {
  320. check_conv_bias(
  321. get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
  322. handle(), "F32DIRECT_SMALL_GROUP");
  323. }
  324. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S1) {
  325. check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false,
  326. false, false, true, true),
  327. handle(), "F32_CONV_NCHW44_DIRECT");
  328. }
  329. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S2) {
  330. check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false,
  331. false, false, true, true),
  332. handle(), "F32_CONV_NCHW44_DIRECT");
  333. }
  334. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR1_LARGE_GROUP) {
  335. check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
  336. handle(), "F32STRD1_LARGE_GROUP");
  337. }
  338. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR1_SMALL_GROUP) {
  339. check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
  340. handle(), "F32STRD1_SMALL_GROUP");
  341. }
  342. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR2_LARGE_GROUP) {
  343. check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
  344. handle(), "F32STRD2_LARGE_GROUP");
  345. }
  346. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR2_SMALL_GROUP) {
  347. check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
  348. handle(), "F32STRD2_SMALL_GROUP");
  349. }
  350. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_NCHW_NCHW44_F32) {
  351. check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false,
  352. false, true),
  353. handle(), "F32_CONV_NCHW_NCHW44");
  354. }
  355. /**********************************F16 direct************************/
  356. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  357. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_LARGE_GROUP) {
  358. NormalRNG rng(1);
  359. checker_conv_bias_f16(
  360. get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
  361. handle(), rng, "F16DIRECT_LARGE_GROUP", 0.03);
  362. }
  363. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_SMALL_GROUP) {
  364. NormalRNG rng(1);
  365. checker_conv_bias_f16(
  366. get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
  367. handle(), rng, "F16DIRECT_SMALL_GROUP", 0.03);
  368. }
  369. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_STR1_LARGE_GROUP) {
  370. NormalRNG rng(1);
  371. checker_conv_bias_f16(get_conv_bias_args({2, 3, 5}, 1, false, false, false),
  372. handle(), rng, "F16STRD1_LARGE_GROUP", 0.03);
  373. }
  374. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_STR1_SMALL_GROUP) {
  375. NormalRNG rng(1);
  376. checker_conv_bias_f16(get_conv_bias_args({2, 3, 5}, 1, false, false, false),
  377. handle(), rng, "F16STRD1_SMALL_GROUP", 0.03);
  378. }
  379. #endif
  380. /**********************************algo 8816 direct************************/
  381. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_DIRECT_LARGE_GROUP) {
  382. checker_conv_bias_int8x8x16(
  383. get_conv_bias_args({2, 3, 5}, 1, false, true, true), handle(),
  384. "I8816DIRECT_LARGE_GROUP");
  385. }
  386. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_DIRECT_SMALL_GROUP) {
  387. checker_conv_bias_int8x8x16(
  388. get_conv_bias_args({2, 3, 5}, 1, false, true, true), handle(),
  389. "I8816DIRECT_SMALL_GROUP");
  390. }
  391. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_STRIDE2_LARGE_GROUP) {
  392. checker_conv_bias_int8x8x16(
  393. get_conv_bias_args({2, 3, 5}, 2, false, true, true), handle(),
  394. "I8816STRD2_LARGE_GROUP");
  395. }
  396. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_STRIDE2_SMALL_GROUP) {
  397. checker_conv_bias_int8x8x16(
  398. get_conv_bias_args({2, 3, 5}, 2, false, true, true), handle(),
  399. "I8816STRD2_SMALL_GROUP");
  400. }
  401. /**********************************algo 8-8-32 direct************************/
  402. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE1_LARGE_GROUP) {
  403. checker_conv_bias_int8x8x32_multi(
  404. get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
  405. "S8STRD1_LARGE_GROUP");
  406. }
  407. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE1_SMALL_GROUP) {
  408. checker_conv_bias_int8x8x32_multi(
  409. get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
  410. "S8STRD1_SMALL_GROUP");
  411. }
  412. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE2_LARGE_GROUP) {
  413. checker_conv_bias_int8x8x32_multi(
  414. get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
  415. "S8STRD2_LARGE_GROUP");
  416. }
  417. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE2_SMALL_GROUP) {
  418. checker_conv_bias_int8x8x32_multi(
  419. get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
  420. "S8STRD2_SMALL_GROUP");
  421. }
  422. TEST_F(ARM_COMMON_MULTI_THREADS,
  423. CONV_BIAS_INT8_INT8_INT32_CHANNEL_WISE_DIRECT1_NCHW44) {
  424. checker_conv_bias_int8x8x32_multi(
  425. get_int8_quint8_nchw44_channel_wise_args({2, 3, 5}, 1, false, true),
  426. handle(), "S8_CHAN_WISE_STRD1_NCHW44");
  427. }
  428. TEST_F(ARM_COMMON_MULTI_THREADS,
  429. CONV_BIAS_INT8_INT8_INT32_CHANNEL_WISE_DIRECT2_NCHW44) {
  430. checker_conv_bias_int8x8x32_multi(
  431. get_int8_quint8_nchw44_channel_wise_args({2, 3, 5}, 2, false, true),
  432. handle(), "S8_CHAN_WISE_STRD2_NCHW44");
  433. }
  434. /********************************qint8 direct******************************/
  435. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_LARGE_GROUP) {
  436. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  437. {2, 3, 5, 7}, 1, false, false, false),
  438. handle(), "S8STRD1_LARGE_GROUP");
  439. }
  440. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_SMALL_GROUP) {
  441. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  442. {2, 3, 5, 7}, 1, false, false, false),
  443. handle(), "S8STRD1_SMALL_GROUP");
  444. }
  445. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_LARGE_GROUP) {
  446. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  447. {2, 3, 5, 7}, 2, false, false, false),
  448. handle(), "S8STRD2_LARGE_GROUP");
  449. }
  450. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_SMALL_GROUP) {
  451. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  452. {2, 3, 5, 7}, 2, false, false, false),
  453. handle(), "S8STRD2_SMALL_GROUP");
  454. }
  455. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_NCHW44) {
  456. checker_conv_bias_qint8x8x8(
  457. get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
  458. handle(), "S8_NCHW44_DIRECT_STRD1");
  459. }
  460. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_NCHW44) {
  461. checker_conv_bias_qint8x8x8(
  462. get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
  463. handle(), "S8_NCHW44_DIRECT_STRD2");
  464. }
  465. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QS8_CHANNEL_WISE_DIRECT1_NCHW44) {
  466. checker_conv_bias_qint8x8x8(get_int8_quint8_nchw44_channel_wise_args(
  467. {2, 3, 5}, 1, false, false),
  468. handle(), "S8_CHAN_WISE_STRD1_NCHW44");
  469. }
  470. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QS8_CHANNEL_WISE_DIRECT2_NCHW44) {
  471. checker_conv_bias_qint8x8x8(get_int8_quint8_nchw44_channel_wise_args(
  472. {2, 3, 5}, 2, false, false),
  473. handle(), "S8_CHAN_WISE_STRD2_NCHW44");
  474. }
  475. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_NCHW_NCHW44) {
  476. checker_conv_bias_qint8x8x8(
  477. get_nchw44_conv_bias_args({3, 5, 7}, 2, false, false, false, true),
  478. handle(), "S8_CONV_NCHW_NCHW44");
  479. }
  480. /*****************************quint8 direct****************************/
  481. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE1_LARGE_GROUP) {
  482. checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
  483. {2, 3, 5, 7}, 1, false, false, false),
  484. handle(), "QU8STRD1_LARGE_GROUP");
  485. }
  486. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE1_SMALL_GROUP) {
  487. checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
  488. {2, 3, 5, 7}, 1, false, false, false),
  489. handle(), "QU8STRD1_SMALL_GROUP");
  490. }
  491. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE2_LARGE_GROUP) {
  492. checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
  493. {2, 3, 5, 7}, 2, false, false, false),
  494. handle(), "QU8STRD2_LARGE_GROUP");
  495. }
  496. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE2_SMALL_GROUP) {
  497. checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
  498. {2, 3, 5, 7}, 2, false, false, false),
  499. handle(), "QU8STRD2_SMALL_GROUP");
  500. }
  501. /****************************dot qint8 direct*************************/
  502. #if __ARM_FEATURE_DOTPROD
  503. TEST_F(ARM_COMMON_MULTI_THREADS,
  504. CONV_BIAS_INT8_STRIDE1_WITHDOTPROD_LARGE_GROUP) {
  505. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  506. {2, 3, 5, 7}, 1, false, false, false),
  507. handle(), "ARMDOTS8STRD1_LARGE_GROUP");
  508. }
  509. TEST_F(ARM_COMMON_MULTI_THREADS,
  510. CONV_BIAS_INT8_STRIDE1_WITHDOTPROD_SMALL_GROUP) {
  511. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  512. {2, 3, 5, 7}, 1, false, false, false),
  513. handle(), "ARMDOTS8STRD1_SMALL_GROUP");
  514. }
  515. TEST_F(ARM_COMMON_MULTI_THREADS,
  516. CONV_BIAS_INT8_STRIDE2_WITHDOTPROD_LARGE_GROUP) {
  517. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  518. {2, 3, 5, 7}, 2, false, false, false),
  519. handle(), "ARMDOTS8STRD2_LARGE_GROUP");
  520. }
  521. TEST_F(ARM_COMMON_MULTI_THREADS,
  522. CONV_BIAS_INT8_STRIDE2_WITHDOTPROD_SMALL_GROUP) {
  523. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  524. {2, 3, 5, 7}, 2, false, false, false),
  525. handle(), "ARMDOTS8STRD2_SMALL_GROUP");
  526. }
  527. /****************************dot 8-8-32 direct*************************/
  528. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD1_WITHDOT_LARGE_GROUP) {
  529. checker_conv_bias_qint8x8x32(
  530. get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
  531. "ARMDOTS8STRD1_LARGE_GROUP");
  532. }
  533. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD1_WITHDOT_SMALL_GROUP) {
  534. checker_conv_bias_qint8x8x32(
  535. get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
  536. "ARMDOTS8STRD1_SMALL_GROUP");
  537. }
  538. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD2_WITHDOT_LARGE_GROUP) {
  539. checker_conv_bias_qint8x8x32(
  540. get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
  541. "ARMDOTS8STRD2_LARGE_GROUP");
  542. }
  543. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD2_WITHDOT_SMALL_GROUP) {
  544. checker_conv_bias_qint8x8x32(
  545. get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
  546. "ARMDOTS8STRD2_SMALL_GROUP");
  547. }
  548. /******************************dot quint8*****************************/
  549. TEST_F(ARM_COMMON_MULTI_THREADS,
  550. CONV_BIAS_QUINT8_STRIDE1_WITHDOTPROD_LARGE_GROUP) {
  551. checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
  552. {2, 3, 5, 7}, 1, false, false, false),
  553. handle(), "ARMDOTU8STRD1_LARGE_GROUP");
  554. }
  555. TEST_F(ARM_COMMON_MULTI_THREADS,
  556. CONV_BIAS_QUINT8_STRIDE1_WITHDOTPROD_SMALL_GROUP) {
  557. checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
  558. {2, 3, 5, 7}, 1, false, false, false),
  559. handle(), "ARMDOTU8STRD1_SMALL_GROUP");
  560. }
  561. TEST_F(ARM_COMMON_MULTI_THREADS,
  562. CONV_BIAS_QUINT8_STRIDE2_WITHDOTPROD_LARGE_GROUP) {
  563. checker_conv_bias_quint8x8x8(
  564. get_int8_quint8_conv_bias_args({2, 5, 7}, 2, false, false, false),
  565. handle(), "ARMDOTU8STRD2_LARGE_GROUP");
  566. }
  567. TEST_F(ARM_COMMON_MULTI_THREADS,
  568. CONV_BIAS_QUINT8_STRIDE2_WITHDOTPROD_SMALL_GROUP) {
  569. checker_conv_bias_quint8x8x8(
  570. get_int8_quint8_conv_bias_args({2, 5, 7}, 2, false, false, false),
  571. handle(), "ARMDOTU8STRD2_SMALL_GROUP");
  572. }
  573. /******************************dot quint8x8x32***********************/
  574. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE1_LARGE_GROUP) {
  575. checker_conv_bias_quint8x8x32(
  576. get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
  577. "ARMDOTU8STRD1_LARGE_GROUP");
  578. }
  579. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE1_SMALL_GROUP) {
  580. checker_conv_bias_quint8x8x32(
  581. get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
  582. "ARMDOTU8STRD1_SMALL_GROUP");
  583. }
  584. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE2_LARGE_GROUP) {
  585. checker_conv_bias_quint8x8x32(
  586. get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
  587. "ARMDOTU8STRD2_LARGE_GROUP");
  588. }
  589. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE2_SMALL_GROUP) {
  590. checker_conv_bias_quint8x8x32(
  591. get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
  592. "ARMDOTU8STRD2_SMALL_GROUP");
  593. }
  594. #endif
  595. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F23_4) {
  596. using namespace conv_bias;
  597. std::vector<TestArg> args = get_winograd_mk_packed_args();
  598. Checker<ConvBiasForward> checker(handle());
  599. check_winograd("4:2:32", checker, args, param::MatrixMul::Format::MK4);
  600. }
  601. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63) {
  602. using namespace conv_bias;
  603. std::vector<TestArg> args = get_winograd_args(3);
  604. Checker<ConvBiasForward> checker(handle());
  605. check_winograd("1:6:32", checker, args);
  606. }
  607. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4) {
  608. using namespace conv_bias;
  609. std::vector<TestArg> args = get_winograd_mk_packed_args();
  610. Checker<ConvBiasForward> checker(handle());
  611. check_winograd("4:6:32", checker, args, param::MatrixMul::Format::MK4);
  612. }
  613. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F54) {
  614. using namespace conv_bias;
  615. std::vector<TestArg> args = get_winograd_args(4);
  616. Checker<ConvBiasForward> checker(handle());
  617. check_winograd("1:5:32", checker, args);
  618. }
  619. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F45) {
  620. using namespace conv_bias;
  621. std::vector<TestArg> args = get_winograd_args(5);
  622. Checker<ConvBiasForward> checker(handle());
  623. check_winograd("1:4:32", checker, args);
  624. }
  625. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD) {
  626. using namespace conv_bias;
  627. std::vector<TestArg> args = get_winograd_args(3);
  628. Checker<ConvBiasForward> checker(handle());
  629. auto extra_impl = [](const TensorNDArray& tensors, uint32_t m,
  630. param::ConvBias param, Handle* handle) {
  631. megdnn_assert(param.format == param::ConvBias::Format::NCHW);
  632. auto winograd_preprocess_opr =
  633. handle->create_operator<WinogradFilterPreprocess>();
  634. winograd_preprocess_opr->param().output_block_size = m;
  635. TensorLayout filter_transform_layout;
  636. winograd_preprocess_opr->deduce_layout(tensors[1].layout,
  637. filter_transform_layout);
  638. size_t winograd_preprocess_workspace_in_bytes =
  639. winograd_preprocess_opr->get_workspace_in_bytes(
  640. tensors[1].layout, filter_transform_layout);
  641. auto conv_bias_opr = handle->create_operator<ConvBias>();
  642. conv_bias_opr->param() = param;
  643. conv_bias_opr->param().format = param::ConvBias::Format::NCHW_WINOGRAD;
  644. conv_bias_opr->param().output_block_size = m;
  645. size_t conv_bias_workspace_in_bytes =
  646. conv_bias_opr->get_workspace_in_bytes(
  647. tensors[0].layout, filter_transform_layout,
  648. tensors[2].layout, tensors[3].layout, tensors[4].layout,
  649. nullptr);
  650. WorkspaceBundle wb(nullptr, {filter_transform_layout.span().dist_byte(),
  651. conv_bias_workspace_in_bytes,
  652. winograd_preprocess_workspace_in_bytes});
  653. wb.set(malloc(wb.total_size_in_bytes()));
  654. TensorND filter_transform_tensor(wb.get(0),
  655. std::move(filter_transform_layout));
  656. winograd_preprocess_opr->exec(tensors[1], filter_transform_tensor,
  657. wb.get_workspace(2));
  658. conv_bias_opr->exec(tensors[0], filter_transform_tensor, tensors[2],
  659. tensors[3], tensors[4], nullptr,
  660. wb.get_workspace(1));
  661. free(wb.ptr());
  662. };
  663. auto run = [&checker, &extra_impl](
  664. Handle* handle, const std::vector<TestArg>& args,
  665. const std::vector<size_t>& out_size, DType A_dtype,
  666. DType B_dtype, DType C_dtype, DType D_dtype,
  667. const float eps) {
  668. for (auto&& arg : args) {
  669. for (uint32_t m : out_size) {
  670. checker.set_extra_opr_impl(std::bind(extra_impl,
  671. std::placeholders::_1, m,
  672. arg.param, handle));
  673. checker.set_dtype(0, A_dtype)
  674. .set_dtype(1, B_dtype)
  675. .set_dtype(2, C_dtype)
  676. .set_dtype(4, D_dtype)
  677. .set_epsilon(eps)
  678. .set_param(arg.param)
  679. .execs({arg.src, arg.filter, arg.bias, {}, {}});
  680. }
  681. }
  682. };
  683. run(handle(), args, {6}, dtype::Float32(), dtype::Float32(),
  684. dtype::Float32(), dtype::Float32(), 1e-3f);
  685. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  686. Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
  687. checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng);
  688. run(handle(), args, {6}, dtype::Float16(), dtype::Float16(),
  689. dtype::Float16(), dtype::Float16(), 0.35f);
  690. #endif
  691. }
  692. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_1) {
  693. using namespace conv_bias;
  694. Checker<ConvBiasForward> checker(handle());
  695. auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
  696. const std::vector<size_t>& out_size, DType A_dtype,
  697. DType B_dtype, DType C_dtype, DType D_dtype,
  698. param::MatrixMul::Format format, float eps) {
  699. for (auto&& arg : args) {
  700. for (uint32_t m : out_size) {
  701. checker.set_extra_opr_impl(std::bind(
  702. winograd_algo_extra_impl, std::placeholders::_1, m,
  703. arg.param, handle, format));
  704. checker.set_dtype(0, A_dtype)
  705. .set_dtype(1, B_dtype)
  706. .set_dtype(2, C_dtype)
  707. .set_dtype(4, D_dtype)
  708. .set_epsilon(eps)
  709. .set_param(arg.param)
  710. .execs({arg.src, arg.filter, arg.bias, {}, {}});
  711. }
  712. }
  713. };
  714. std::vector<TestArg> args = get_winograd_mk_packed_args(8);
  715. std::vector<TestArg> args_first_half(args.begin(),
  716. args.begin() + args.size() / 2);
  717. run(handle(), args_first_half, {2, 6}, dtype::Float32{}, dtype::Float32{},
  718. dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4,
  719. 1e-3f);
  720. }
  721. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_2) {
  722. using namespace conv_bias;
  723. Checker<ConvBiasForward> checker(handle());
  724. auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
  725. const std::vector<size_t>& out_size, DType A_dtype,
  726. DType B_dtype, DType C_dtype, DType D_dtype,
  727. param::MatrixMul::Format format, float eps) {
  728. for (auto&& arg : args) {
  729. for (uint32_t m : out_size) {
  730. checker.set_extra_opr_impl(std::bind(
  731. winograd_algo_extra_impl, std::placeholders::_1, m,
  732. arg.param, handle, format));
  733. checker.set_dtype(0, A_dtype)
  734. .set_dtype(1, B_dtype)
  735. .set_dtype(2, C_dtype)
  736. .set_dtype(4, D_dtype)
  737. .set_epsilon(eps)
  738. .set_param(arg.param)
  739. .execs({arg.src, arg.filter, arg.bias, {}, {}});
  740. }
  741. }
  742. };
  743. std::vector<TestArg> args = get_winograd_mk_packed_args(8);
  744. std::vector<TestArg> args_second_half(args.begin() + args.size() / 2,
  745. args.end());
  746. run(handle(), args_second_half, {2, 6}, dtype::Float32{}, dtype::Float32{},
  747. dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4,
  748. 1e-3f);
  749. }
  750. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  751. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F16) {
  752. using namespace conv_bias;
  753. Checker<ConvBiasForward> checker(handle());
  754. auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
  755. const std::vector<size_t>& out_size, DType A_dtype,
  756. DType B_dtype, DType C_dtype, DType D_dtype,
  757. param::MatrixMul::Format format, float eps) {
  758. for (auto&& arg : args) {
  759. for (uint32_t m : out_size) {
  760. checker.set_extra_opr_impl(std::bind(
  761. winograd_algo_extra_impl, std::placeholders::_1, m,
  762. arg.param, handle, format));
  763. checker.set_dtype(0, A_dtype)
  764. .set_dtype(1, B_dtype)
  765. .set_dtype(2, C_dtype)
  766. .set_dtype(4, D_dtype)
  767. .set_epsilon(eps)
  768. .set_param(arg.param)
  769. .execs({arg.src, arg.filter, arg.bias, {}, {}});
  770. }
  771. }
  772. };
  773. std::vector<TestArg> args = get_winograd_mk_packed_args(8);
  774. Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
  775. checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng);
  776. run(handle(), args, {2}, dtype::Float16{}, dtype::Float16{},
  777. dtype::Float16{}, dtype::Float16{}, param::MatrixMul::Format::MK8,
  778. 0.25);
  779. }
  780. #endif
  781. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_INT8) {
  782. using namespace conv_bias;
  783. Checker<ConvBiasForward> checker(handle());
  784. auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
  785. const std::vector<size_t>& out_size, DType A_dtype,
  786. DType B_dtype, DType C_dtype, DType D_dtype,
  787. param::MatrixMul::Format format, float eps) {
  788. for (auto&& arg : args) {
  789. for (uint32_t m : out_size) {
  790. checker.set_extra_opr_impl(std::bind(
  791. winograd_algo_extra_impl, std::placeholders::_1, m,
  792. arg.param, handle, format));
  793. checker.set_dtype(0, A_dtype)
  794. .set_dtype(1, B_dtype)
  795. .set_dtype(2, C_dtype)
  796. .set_dtype(4, D_dtype)
  797. .set_epsilon(eps)
  798. .set_param(arg.param)
  799. .execs({arg.src, arg.filter, arg.bias, {}, {}});
  800. }
  801. }
  802. };
  803. #if MEGDNN_AARCH64
  804. const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
  805. #else
  806. const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
  807. #endif
  808. checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
  809. ssprintf("WINOGRAD:%s:8:2:32", matmul_name).c_str()));
  810. std::vector<TestArg> args = get_winograd_mk_packed_args(8);
  811. std::vector<TestArg> quantized_args =
  812. get_quantized_winograd_mk_packed_args(8);
  813. UniformIntRNG int_rng{-50, 50};
  814. checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
  815. run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f),
  816. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),
  817. dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3);
  818. }
  819. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  820. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F23) {
  821. using namespace conv_bias;
  822. std::vector<TestArg> args = get_winograd_mk_packed_args();
  823. Checker<ConvBiasForward> checker(handle());
  824. check_winograd_fp16("1:2:32", checker, args, NULL, 0.08);
  825. }
  826. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F45_1) {
  827. using namespace conv_bias;
  828. std::vector<TestArg> args = get_winograd_args(5);
  829. std::vector<TestArg> args_head_half(args.begin(),
  830. args.begin() + args.size() / 2);
  831. Checker<ConvBiasForward> checker(handle());
  832. //! fp16 range -1.0 ~ 1.0
  833. Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
  834. check_winograd_fp16("1:4:32", checker, args_head_half, rng, 0.25);
  835. }
  836. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F45_2) {
  837. using namespace conv_bias;
  838. std::vector<TestArg> args = get_winograd_args(5);
  839. std::vector<TestArg> args_back_half(args.begin() + args.size() / 2,
  840. args.end());
  841. Checker<ConvBiasForward> checker(handle());
  842. //! fp16 range -1.0 ~ 1.0
  843. Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
  844. check_winograd_fp16("1:4:32", checker, args_back_half, rng, 0.25);
  845. }
  846. //! FIXME: This test may be failed if run `ARM_COMMON.CONV_BIAS_WINOGRAD*`, but
  847. //! it will pass when run single testcase
  848. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F63) {
  849. using namespace conv_bias;
  850. std::vector<TestArg> args = get_winograd_args(3);
  851. Checker<ConvBiasForward> checker(handle());
  852. //! fp16 range -1.0 ~ 1.0
  853. Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
  854. check_winograd_fp16("1:6:32", checker, args, rng, 0.3);
  855. }
  856. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_8x8_1) {
  857. using namespace conv_bias;
  858. std::vector<TestArg> args = get_winograd_mk_packed_args(8);
  859. std::vector<TestArg> args_head_half(args.begin(),
  860. args.begin() + args.size() / 2);
  861. Checker<ConvBiasForward> checker(handle());
  862. Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
  863. check_winograd_fp16("8:2:32", checker, args_head_half, rng, 0.25,
  864. param::MatrixMul::Format::MK8);
  865. }
  866. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_8x8_2) {
  867. using namespace conv_bias;
  868. std::vector<TestArg> args = get_winograd_mk_packed_args(8);
  869. std::vector<TestArg> args_back_half(args.begin() + args.size() / 2,
  870. args.end());
  871. Checker<ConvBiasForward> checker(handle());
  872. Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
  873. check_winograd_fp16("8:2:32", checker, args_back_half, rng, 0.25,
  874. param::MatrixMul::Format::MK8);
  875. }
  876. #endif
  877. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_INT8_8X8) {
  878. using namespace conv_bias;
  879. std::vector<TestArg> args = get_quantized_winograd_mk_packed_args(8);
  880. Checker<ConvBiasForward> checker(handle());
  881. UniformIntRNG rng{-50, 50};
  882. checker.set_dtype(0, dtype::QuantizedS8(2.5f))
  883. .set_dtype(1, dtype::QuantizedS8(2.5f))
  884. .set_dtype(2, dtype::QuantizedS32(6.25f))
  885. .set_dtype(4, dtype::QuantizedS8(60.25f))
  886. .set_rng(0, &rng)
  887. .set_rng(1, &rng)
  888. .set_rng(2, &rng);
  889. check_winograd("8:2:32", checker, args, param::MatrixMul::Format::MK8);
  890. }
  891. void checker_conv_bias(std::vector<conv_bias::TestArg> args, Handle* handle,
  892. RNG* rng, float epsilon, DType type0, DType type1,
  893. DType type2, DType type3, const char* algo_name) {
  894. using namespace conv_bias;
  895. Checker<ConvBias> checker(handle);
  896. checker.set_before_exec_callback(
  897. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  898. checker.set_dtype(0, type0);
  899. checker.set_dtype(1, type1);
  900. checker.set_dtype(2, type2);
  901. checker.set_dtype(4, type3);
  902. checker.set_epsilon(epsilon);
  903. if (NULL != rng) {
  904. checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng).set_rng(3, rng);
  905. }
  906. for (auto&& arg : args) {
  907. checker.set_param(arg.param).execs(
  908. {arg.src, arg.filter, arg.bias, {}, {}});
  909. }
  910. }
  911. // clang-format off
  912. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE2) {
  913. #define cb(name) \
  914. check_conv_bias( \
  915. get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 2, false, false, false), \
  916. handle(), name);
  917. #if MEGDNN_AARCH64
  918. cb("IM2COLMATMUL:AARCH64_F32K8X12X1")
  919. cb("IM2COLMATMUL:AARCH64_F32K4X16X1")
  920. cb("IM2COLMATMUL:FB_F32_K8X12X1")
  921. #elif MEGDNN_ARMV7
  922. cb("IM2COLMATMUL:ARMV7_F32")
  923. #endif
  924. #undef cb
  925. }
  926. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE1) {
  927. #define cb(name) \
  928. check_conv_bias( \
  929. get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false), \
  930. handle(), name);
  931. #if MEGDNN_AARCH64
  932. cb("IM2COLMATMUL:AARCH64_F32K8X12X1")
  933. cb("IM2COLMATMUL:AARCH64_F32K4X16X1")
  934. cb("IM2COLMATMUL:FB_F32_K8X12X1")
  935. #elif MEGDNN_ARMV7
  936. cb("IM2COLMATMUL:ARMV7_F32")
  937. cb("IM2COLMATMUL:FB_F32_K8X12X1")
  938. #endif
  939. #undef cb
  940. }
  941. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM) {
  942. UniformIntRNG rng{-50, 50};
  943. #define cb(name) \
  944. checker_conv_bias(get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
  945. false, true, true), \
  946. handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
  947. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
  948. dtype::QuantizedS8(60.25f), name); \
  949. checker_conv_bias( \
  950. get_conv_bias_args({1}, 2, false, false, false, true, true), \
  951. handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
  952. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
  953. dtype::QuantizedS8(60.25f), name);
  954. float epsilon = 0.001;
  955. #if MEGDNN_AARCH64
  956. #if __ARM_FEATURE_DOTPROD
  957. cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD");
  958. #else
  959. cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8");
  960. cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16");
  961. #endif
  962. #elif MEGDNN_ARMV7
  963. epsilon = 1;
  964. cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8");
  965. #endif
  966. #undef cb
  967. }
  968. // clang-format on
  969. #if MEGDNN_AARCH64 || MEGDNN_ARMV7
  970. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDASYM) {
  971. NormalRNG rng(128.f);
  972. #define cb(name) \
  973. checker_conv_bias(get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
  974. false, true, true), \
  975. handle(), &rng, epsilon, \
  976. dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
  977. dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
  978. dtype::QuantizedS32(1.2 * 1.3), \
  979. dtype::Quantized8Asymm(50.3f, (uint8_t)120), name); \
  980. checker_conv_bias( \
  981. get_conv_bias_args({1}, 2, false, false, false, true, true), \
  982. handle(), &rng, epsilon, \
  983. dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
  984. dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
  985. dtype::QuantizedS32(1.2 * 1.3), \
  986. dtype::Quantized8Asymm(50.3f, (uint8_t)120), name);
  987. float epsilon = 0.001;
  988. #if MEGDNN_AARCH64
  989. #if __ARM_FEATURE_DOTPROD
  990. cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD");
  991. #else
  992. cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8");
  993. #endif
  994. #elif MEGDNN_ARMV7
  995. epsilon = 1;
  996. cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8");
  997. #endif
  998. #undef cb
  999. }
  1000. #endif
  1001. #if MEGDNN_AARCH64 || MEGDNN_ARMV7
  1002. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUINT8x8x32) {
  1003. UniformIntRNG rng{-50, 50};
  1004. float epsilon = 0.001;
  1005. #define cb(name) \
  1006. checker_conv_bias( \
  1007. get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \
  1008. handle(), &rng, epsilon, \
  1009. dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
  1010. dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
  1011. dtype::QuantizedS32(1.2 * 1.3), {}, name); \
  1012. checker_conv_bias(get_conv_bias_args({1}, 2, false, true, true), handle(), \
  1013. &rng, epsilon, \
  1014. dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
  1015. dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
  1016. dtype::QuantizedS32(1.2 * 1.3), {}, name);
  1017. #if MEGDNN_AARCH64
  1018. #if __ARM_FEATURE_DOTPROD
  1019. cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD");
  1020. #else
  1021. cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8");
  1022. #endif
  1023. #elif MEGDNN_ARMV7
  1024. #if __ARM_FEATURE_DOTPROD
  1025. cb("IM2COLMATMUL:AARCH32_QUINT8_K4X8X4");
  1026. #endif
  1027. cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8");
  1028. #endif
  1029. #undef cb
  1030. }
  1031. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COLMATMUL_INT8x8x16) {
  1032. UniformIntRNG rng{-50, 50};
  1033. float epsilon = 0.001;
  1034. #define cb(name) \
  1035. checker_conv_bias( \
  1036. get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \
  1037. handle(), &rng, epsilon, dtype::Int8{}, dtype::Int8{}, \
  1038. dtype::Int16{}, dtype::Int16{}, name); \
  1039. checker_conv_bias(get_conv_bias_args({1}, 2, false, true, true), handle(), \
  1040. &rng, epsilon, dtype::Int8{}, dtype::Int8{}, \
  1041. dtype::Int16{}, dtype::Int16{}, name);
  1042. #if MEGDNN_AARCH64
  1043. cb("IM2COLMATMUL:AARCH64_INT8X8X16_K8X8X8");
  1044. cb("IM2COLMATMUL:AARCH64_INT8X8X16_K4X4X16");
  1045. cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16");
  1046. #elif MEGDNN_ARMV7
  1047. cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16");
  1048. cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X8X8");
  1049. cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X2X16");
  1050. #endif
  1051. #undef cb
  1052. }
  1053. #endif
  1054. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  1055. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP16) {
  1056. using namespace conv_bias;
  1057. param::ConvBias cur_param;
  1058. std::vector<conv_bias::TestArg> args =
  1059. get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false);
  1060. std::vector<conv_bias::TestArg> args1 =
  1061. get_conv_bias_args({1}, 2, false, false, false);
  1062. args.insert(args.begin(), args1.begin(), args1.end());
  1063. NormalRNG rng(1);
  1064. #define cb(name) \
  1065. checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{}, \
  1066. dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, \
  1067. name);
  1068. #if MEGDNN_AARCH64
  1069. cb("IM2COLMATMUL:AARCH64_F16_K8X24X1");
  1070. #elif MEGDNN_ARMV7
  1071. cb("IM2COLMATMUL:AARCH32_F16_K4X16X1");
  1072. #endif
  1073. #undef cb
  1074. }
  1075. #endif
  1076. void checker_conv_bias_mul_int8x8x32(std::vector<conv_bias::TestArg> args,
  1077. Handle* handle, const char* algo_name) {
  1078. using namespace conv_bias;
  1079. Checker<ConvBias> checker(handle);
  1080. checker.set_before_exec_callback(
  1081. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  1082. checker.set_dtype(0, dtype::Int8());
  1083. checker.set_dtype(1, dtype::Int8());
  1084. checker.set_dtype(2, dtype::Int32());
  1085. checker.set_dtype(4, dtype::Int32());
  1086. for (auto&& arg : args) {
  1087. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  1088. }
  1089. UniformIntRNG rng{-50, 50};
  1090. for (auto&& arg : args) {
  1091. checker.set_dtype(0, dtype::QuantizedS8(2.5f))
  1092. .set_dtype(1, dtype::QuantizedS8(2.5f))
  1093. .set_dtype(2, dtype::QuantizedS32(6.25f))
  1094. .set_dtype(4, {})
  1095. .set_rng(0, &rng)
  1096. .set_rng(1, &rng)
  1097. .set_rng(2, &rng)
  1098. .set_param(arg.param)
  1099. .execs({arg.src, arg.filter, {}, {}, {}});
  1100. }
  1101. }
  1102. #if MEGDNN_AARCH64 || MEGDNN_ARMV7
  1103. #if !__ARM_FEATURE_DOTPROD
  1104. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S2) {
  1105. using namespace conv_bias;
  1106. std::vector<conv_bias::TestArg> args =
  1107. get_nchw44_conv_bias_args({2, 5, 7}, 2, false, true, true);
  1108. #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
  1109. #if MEGDNN_AARCH64
  1110. cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
  1111. #else
  1112. cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
  1113. #endif
  1114. #undef cb
  1115. }
  1116. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S1) {
  1117. using namespace conv_bias;
  1118. std::vector<conv_bias::TestArg> args =
  1119. get_nchw44_conv_bias_args({3, 4, 6}, 1, false, true, true);
  1120. #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
  1121. #if MEGDNN_AARCH64
  1122. cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
  1123. #else
  1124. cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
  1125. #endif
  1126. #undef cb
  1127. }
  1128. TEST_F(ARM_COMMON_MULTI_THREADS,
  1129. CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S2) {
  1130. UniformIntRNG rng{-50, 50};
  1131. #define cb(name) \
  1132. checker_conv_bias(get_nchw44_conv_bias_args({3, 4, 6}, 2), handle(), &rng, \
  1133. epsilon, dtype::QuantizedS8(2.5f), \
  1134. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
  1135. dtype::QuantizedS8(60.25f), name);
  1136. float epsilon = 0.001;
  1137. #if MEGDNN_AARCH64
  1138. cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
  1139. #else
  1140. cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
  1141. #endif
  1142. #undef cb
  1143. }
  1144. TEST_F(ARM_COMMON_MULTI_THREADS,
  1145. CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S1) {
  1146. UniformIntRNG rng{-50, 50};
  1147. #define cb(name) \
  1148. checker_conv_bias(get_nchw44_conv_bias_args({2, 5, 7}, 1), handle(), &rng, \
  1149. epsilon, dtype::QuantizedS8(2.5f), \
  1150. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
  1151. dtype::QuantizedS8(60.25f), name);
  1152. float epsilon = 0.001;
  1153. #if MEGDNN_AARCH64
  1154. cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
  1155. #else
  1156. cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
  1157. #endif
  1158. #undef cb
  1159. }
  1160. #if MEGDNN_AARCH64
  1161. TEST_F(ARM_COMMON_MULTI_THREADS,
  1162. CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_FUSE) {
  1163. UniformIntRNG rng{-50, 50};
  1164. #define cb(name) \
  1165. checker_conv_bias(get_nchw44_conv_bias_args({3}, 1), handle(), &rng, \
  1166. epsilon, dtype::QuantizedS8(2.5f), \
  1167. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
  1168. dtype::QuantizedS8(60.25f), name);
  1169. float epsilon = 0.001;
  1170. cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
  1171. #undef cb
  1172. }
  1173. #endif
  1174. #endif
  1175. #endif
  1176. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32) {
  1177. using namespace conv_bias;
  1178. std::vector<conv_bias::TestArg> args =
  1179. get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true);
  1180. std::vector<conv_bias::TestArg> args1 =
  1181. get_conv_bias_args({1}, 2, false, true, true);
  1182. args.insert(args.begin(), args1.begin(), args1.end());
  1183. #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
  1184. #if MEGDNN_AARCH64
  1185. #if __ARM_FEATURE_DOTPROD
  1186. cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD");
  1187. #else
  1188. cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8");
  1189. cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16");
  1190. #endif
  1191. #elif MEGDNN_ARMV7
  1192. #if __ARM_FEATURE_DOTPROD
  1193. cb("IM2COLMATMUL:AARCH32_INT8_K6X8X4");
  1194. #endif
  1195. cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8");
  1196. #endif
  1197. #if MEGDNN_ARMV7
  1198. cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X2X16");
  1199. #endif
  1200. #undef cb
  1201. }
  1202. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S1_MK4_PACK_F32) {
  1203. using namespace conv_bias;
  1204. std::vector<conv_bias::TestArg> args =
  1205. get_nchw44_conv_bias_args({2, 4, 7}, 1);
  1206. #if MEGDNN_AARCH64
  1207. check_conv_bias(args, handle(), "IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1");
  1208. #elif MEGDNN_ARMV7
  1209. check_conv_bias(args, handle(), "IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12");
  1210. #endif
  1211. }
  1212. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S2_MK4_PACK_F32) {
  1213. using namespace conv_bias;
  1214. std::vector<conv_bias::TestArg> args =
  1215. get_nchw44_conv_bias_args({3, 5, 6}, 2);
  1216. #if MEGDNN_AARCH64
  1217. check_conv_bias(args, handle(), "IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1");
  1218. #elif MEGDNN_ARMV7
  1219. check_conv_bias(args, handle(), "IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12");
  1220. #endif
  1221. }
  1222. /***************************** Conv1x1 Algo Test ***********************/
  1223. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_F32) {
  1224. using namespace conv_bias;
  1225. std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(false, false);
  1226. #if MEGDNN_AARCH64
  1227. check_conv_bias(args, handle(), "CONV1x1:AARCH64_F32K8X12X1:24");
  1228. #elif MEGDNN_ARMV7
  1229. check_conv_bias(args, handle(), "CONV1x1:ARMV7_F32:48");
  1230. #endif
  1231. }
  1232. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_MK4_PACK_F32) {
  1233. using namespace conv_bias;
  1234. std::vector<conv_bias::TestArg> args =
  1235. get_nchw44_conv_bias_args({1}, 1, true, false, false);
  1236. #if MEGDNN_AARCH64
  1237. check_conv_bias(args, handle(), "CONV1x1:AARCH64_F32_MK4_K8X12X1:24");
  1238. #elif MEGDNN_ARMV7
  1239. check_conv_bias(args, handle(), "CONV1x1:ARMV7_F32_MK4_PACK_4X12:24");
  1240. #endif
  1241. }
  1242. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_MK4_NO_PACK_F32) {
  1243. using namespace conv_bias;
  1244. std::vector<conv_bias::TestArg> args =
  1245. get_nchw44_conv_bias_args({1}, 1, true, false, false);
  1246. std::vector<conv_bias::TestArg> args_of_4;
  1247. for (auto&& arg : args) {
  1248. if (arg.src.shape[2] * arg.src.shape[3] % 4 == 0) {
  1249. args_of_4.push_back(arg);
  1250. }
  1251. }
  1252. #if MEGDNN_AARCH64
  1253. check_conv_bias(args_of_4, handle(), "CONV1x1:AARCH64_F32_MK4_4x16:24");
  1254. #elif MEGDNN_ARMV7
  1255. check_conv_bias(args_of_4, handle(), "CONV1x1:ARMV7_F32_MK4_4x8:48");
  1256. #endif
  1257. }
  1258. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  1259. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_F16) {
  1260. using namespace conv_bias;
  1261. std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(false, false);
  1262. NormalRNG rng(1);
  1263. #if MEGDNN_AARCH64
  1264. checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{},
  1265. dtype::Float16{}, dtype::Float16{}, dtype::Float16{},
  1266. "CONV1x1:AARCH64_F16_K8X24X1:48");
  1267. #elif MEGDNN_ARMV7
  1268. checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{},
  1269. dtype::Float16{}, dtype::Float16{}, dtype::Float16{},
  1270. "CONV1x1:AARCH32_F16_K4X16X1:24");
  1271. #endif
  1272. }
  1273. #endif
  1274. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUANTIZEDSYM) {
  1275. UniformIntRNG rng{-50, 50};
  1276. float epsilon = 0.001;
  1277. #define cb(name) \
  1278. checker_conv_bias(get_conv_bias_1x1_args(false, false, true, true), \
  1279. handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
  1280. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
  1281. dtype::QuantizedS8(60.25f), name);
  1282. #if MEGDNN_AARCH64
  1283. #if __ARM_FEATURE_DOTPROD
  1284. cb("CONV1x1:AARCH64_INT8X8X32_K8X12X4_DOTPROD:24");
  1285. #else
  1286. cb("CONV1x1:AARCH64_INT8X8X32_K8X8X8:24");
  1287. cb("CONV1x1:AARCH64_INT8X8X32_K4X4X16:48");
  1288. #endif
  1289. #elif MEGDNN_ARMV7
  1290. epsilon = 1;
  1291. cb("CONV1x1:ARMV7_INT8X8X32_K4X8X8:48");
  1292. #endif
  1293. #undef cb
  1294. }
  1295. #if MEGDNN_AARCH64 || MEGDNN_ARMV7
  1296. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUANTIZEDASYM) {
  1297. NormalRNG rng(128.f);
  1298. #define cb(name) \
  1299. checker_conv_bias(get_conv_bias_1x1_args(false, false, true, true), \
  1300. handle(), &rng, epsilon, \
  1301. dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
  1302. dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
  1303. dtype::QuantizedS32(1.2 * 1.3), \
  1304. dtype::Quantized8Asymm(50.3f, (uint8_t)120), name);
  1305. float epsilon = 0.001;
  1306. #if MEGDNN_AARCH64
  1307. #if __ARM_FEATURE_DOTPROD
  1308. cb("CONV1x1:AARCH64_QUINT8_K8X8X4_DOTPROD:48");
  1309. #else
  1310. cb("CONV1x1:AARCH64_QUINT8_K8X8X8:24");
  1311. #endif
  1312. #elif MEGDNN_ARMV7
  1313. epsilon = 1;
  1314. cb("CONV1x1:ARMV7_QUINT8_K4X8X8:48");
  1315. #endif
  1316. #undef cb
  1317. }
  1318. #endif
  1319. #if MEGDNN_AARCH64 || MEGDNN_ARMV7
  1320. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUINT8x8x32) {
  1321. UniformIntRNG rng{-50, 50};
  1322. float epsilon = 0.001;
  1323. #define cb(name) \
  1324. checker_conv_bias(get_conv_bias_1x1_args(true, true), handle(), &rng, \
  1325. epsilon, dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
  1326. dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
  1327. dtype::QuantizedS32(1.2 * 1.3), {}, name);
  1328. #if MEGDNN_AARCH64
  1329. #if __ARM_FEATURE_DOTPROD
  1330. cb("CONV1x1:AARCH64_QUINT8_K8X8X4_DOTPROD:24");
  1331. #else
  1332. cb("CONV1x1:AARCH64_QUINT8_K8X8X8:48");
  1333. #endif
  1334. #elif MEGDNN_ARMV7
  1335. #if __ARM_FEATURE_DOTPROD
  1336. cb("CONV1x1:AARCH32_QUINT8_K4X8X4:48");
  1337. #endif
  1338. cb("CONV1x1:ARMV7_QUINT8_K4X8X8:24");
  1339. #endif
  1340. #undef cb
  1341. }
  1342. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_1X1_S1_INT8x8x16) {
  1343. UniformIntRNG rng{-50, 50};
  1344. float epsilon = 0.001;
  1345. #define cb(name) \
  1346. checker_conv_bias(get_conv_bias_1x1_args(true, true), handle(), &rng, \
  1347. epsilon, dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, \
  1348. dtype::Int16{}, name);
  1349. #if MEGDNN_AARCH64
  1350. cb("CONV1x1:AARCH64_INT8X8X16_K8X8X8:24");
  1351. cb("CONV1x1:AARCH64_INT8X8X16_K4X4X16:24");
  1352. #elif MEGDNN_ARMV7
  1353. cb("CONV1x1:ARMV7_INT8X8X16_K4X8X8:24");
  1354. cb("CONV1x1:ARMV7_INT8X8X16_K4X2X16:48");
  1355. #endif
  1356. cb("CONV1x1:ARM_COMMON_INT8X8X16:48");
  1357. #undef cb
  1358. }
  1359. #endif
  1360. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_INT8x8x32) {
  1361. using namespace conv_bias;
  1362. std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(true, true);
  1363. #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
  1364. #if MEGDNN_AARCH64
  1365. #if __ARM_FEATURE_DOTPROD
  1366. cb("CONV1x1:AARCH64_INT8X8X32_K8X12X4_DOTPROD:48");
  1367. #else
  1368. cb("CONV1x1:AARCH64_INT8X8X32_K8X8X8:24");
  1369. cb("CONV1x1:AARCH64_INT8X8X32_K4X4X16:24");
  1370. #endif
  1371. #elif MEGDNN_ARMV7
  1372. #if __ARM_FEATURE_DOTPROD
  1373. cb("CONV1x1:AARCH32_INT8_K6X8X4:48");
  1374. #endif
  1375. cb("CONV1x1:ARMV7_INT8X8X32_K4X8X8:24");
  1376. #endif
  1377. #if MEGDNN_ARMV7
  1378. cb("CONV1x1:ARMV7_INT8X8X32_K4X2X16:48");
  1379. #endif
  1380. #undef cb
  1381. }
  1382. #ifndef __ARM_FEATURE_DOTPROD
  1383. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_INT8x8x32_MK4) {
  1384. using namespace conv_bias;
  1385. std::vector<conv_bias::TestArg> args =
  1386. get_nchw44_conv_bias_args({1}, 1, true, true, true);
  1387. #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
  1388. #if MEGDNN_AARCH64
  1389. cb("CONV1x1:AARCH64_INT8X8X32_MK4_4X4X16:24");
  1390. #elif MEGDNN_ARMV7
  1391. cb("CONV1x1:ARMV7_INT8X8X32_MK4_4X2X16:24");
  1392. #endif
  1393. #undef cb
  1394. UniformIntRNG rng{-50, 50};
  1395. float epsilon = 0.001;
  1396. #define cb(name) \
  1397. checker_conv_bias(get_nchw44_conv_bias_args({1}, 1, true, false, false), \
  1398. handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
  1399. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
  1400. dtype::QuantizedS8(60.25f), name);
  1401. #if MEGDNN_AARCH64
  1402. cb("CONV1x1:AARCH64_INT8X8X32_MK4_4X4X16:24");
  1403. #elif MEGDNN_ARMV7
  1404. cb("CONV1x1:ARMV7_INT8X8X32_MK4_4X2X16:24");
  1405. #endif
  1406. #undef cb
  1407. }
  1408. #endif
  1409. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台