You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pooling.cpp 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558
  1. /**
  2. * \file dnn/test/arm_common/pooling.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "test/arm_common/fixture.h"
  12. #include "test/common/pooling.h"
  13. #include "test/common/checker.h"
  14. #include "test/common/benchmarker.h"
  15. #include "test/common/rng.h"
  16. namespace megdnn {
  17. namespace test {
  18. TEST_F(ARM_COMMON, POOLING)
  19. {
  20. using Param = param::Pooling;
  21. // clang-format off
  22. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  23. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  24. for (size_t p: {1, 2})
  25. {
  26. Param param;
  27. param.mode = Param::Mode::MAX;
  28. param.window_h = param.window_w = 3;
  29. param.stride_h = param.stride_w = 2;
  30. param.pad_h = param.pad_w = p;
  31. Checker<Pooling> checker(handle());
  32. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  33. param.mode = Param::Mode::AVERAGE;
  34. param.window_h = param.window_w = 3;
  35. param.stride_h = param.stride_w = 2;
  36. param.pad_h = param.pad_w = p;
  37. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  38. param.mode = Param::Mode::MAX;
  39. param.window_h = param.window_w = 4;
  40. param.stride_h = param.stride_w = 2;
  41. param.pad_h = param.pad_w = p;
  42. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  43. param.mode = Param::Mode::MAX;
  44. param.window_h = param.window_w = 5;
  45. param.stride_h = param.stride_w = 2;
  46. param.pad_h = param.pad_w = p;
  47. if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
  48. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  49. }
  50. for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  51. for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  52. for (size_t p: {1, 2})
  53. {
  54. Param param;
  55. param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
  56. param.window_h = param.window_w = 3;
  57. param.stride_h = param.stride_w = 1;
  58. param.pad_h = param.pad_w = p;
  59. Checker<Pooling> checker(handle());
  60. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  61. }
  62. // clang-format on
  63. }
  64. TEST_F(ARM_COMMON, POOLING_INT8_W2x2_S2x2)
  65. {
  66. // clang-format off
  67. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  68. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  69. for (size_t ph: {0, 1})
  70. for (size_t pw: {0, 1})
  71. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  72. {
  73. Checker<Pooling> checker(handle());
  74. checker.set_dtype(0, dtype::Int8());
  75. param::Pooling param;
  76. param.mode = param::Pooling::Mode::MAX;
  77. param.pad_h = ph;
  78. param.pad_w = pw;
  79. param.stride_h = param.stride_w = 2;
  80. param.window_h = param.window_w = 2;
  81. checker.set_param(param).exec(TensorShapeArray{{2, 3, ih, iw}, {}});
  82. }
  83. // clang-format on
  84. }
  85. TEST_F(ARM_COMMON, POOLING_INT8_W3x3_S2x2)
  86. {
  87. // clang-format off
  88. for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
  89. for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
  90. for (size_t ph: {0, 1, 2})
  91. for (size_t pw: {0, 1, 2})
  92. if (ih+2*ph >= 3 && iw+2*pw >= 3)
  93. {
  94. Checker<Pooling> checker(handle());
  95. checker.set_dtype(0, dtype::Int8());
  96. param::Pooling param;
  97. param.mode = param::Pooling::Mode::MAX;
  98. param.pad_h = ph;
  99. param.pad_w = pw;
  100. param.stride_h = param.stride_w = 2;
  101. param.window_h = param.window_w = 3;
  102. checker.set_param(param).exec(TensorShapeArray{{2, 3, ih, iw}, {}});
  103. }
  104. // clang-format on
  105. }
  106. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  107. TEST_F(ARM_COMMON, POOLING_FP16) {
  108. Checker<Pooling> checker(handle());
  109. checker.set_dtype(0, dtype::Float16{})
  110. .set_dtype(1, dtype::Float16{})
  111. .set_epsilon(3e-3);
  112. using Param = param::Pooling;
  113. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  114. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
  115. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  116. for (size_t window : {2, 3}) {
  117. Param param;
  118. param.mode = mode;
  119. param.window_h = param.window_w = window;
  120. param.stride_h = param.stride_w = 1;
  121. param.pad_h = param.pad_w = window / 2;
  122. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
  123. //! == 3)
  124. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  125. //! test for SH = SW = 2 && FH = FW = 2
  126. param.stride_h = param.stride_w = 2;
  127. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  128. }
  129. }
  130. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  131. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  132. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  133. for (size_t ph : {0, 1, 2})
  134. for (size_t pw : {0, 1, 2})
  135. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  136. param::Pooling param;
  137. param.mode = param::Pooling::Mode::MAX;
  138. param.pad_h = ph;
  139. param.pad_w = pw;
  140. param.stride_h = param.stride_w = 2;
  141. param.window_h = param.window_w = 3;
  142. checker.set_param(param).exec(
  143. TensorShapeArray{{2, 3, ih, iw}, {}});
  144. }
  145. //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
  146. for (size_t ih :
  147. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  148. for (size_t iw :
  149. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  150. for (size_t p : {1, 2}) {
  151. Param param;
  152. param.mode = Param::Mode::MAX;
  153. param.window_h = param.window_w = 4;
  154. param.stride_h = param.stride_w = 2;
  155. param.pad_h = param.pad_w = p;
  156. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  157. }
  158. //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
  159. for (size_t ih :
  160. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  161. for (size_t iw :
  162. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  163. for (size_t p : {1, 2}) {
  164. Param param;
  165. param.mode = Param::Mode::MAX;
  166. param.window_h = param.window_w = 5;
  167. param.stride_h = param.stride_w = 2;
  168. param.pad_h = param.pad_w = p;
  169. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  170. }
  171. }
  172. #endif
  173. TEST_F(ARM_COMMON, POOLING_QUANTIZED) {
  174. Checker<Pooling> checker(handle());
  175. UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
  176. UniformIntRNG rng2{0, UINT8_MAX >> 1};
  177. using Param = param::Pooling;
  178. for (auto type : std::vector<DType>{
  179. dtype::QuantizedS8(1.1f),
  180. dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
  181. if (type.enumv() == DTypeEnum::QuantizedS8) {
  182. checker.set_rng(0, &rng1);
  183. } else {
  184. megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
  185. checker.set_rng(0, &rng2);
  186. }
  187. for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  188. for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
  189. for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
  190. for (size_t window : {2, 3}) {
  191. Param param;
  192. param.mode = mode;
  193. param.window_h = param.window_w = window;
  194. param.stride_h = param.stride_w = 1;
  195. param.pad_h = param.pad_w = window / 2;
  196. //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
  197. //! FH
  198. //! == 3)
  199. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  200. //! test for SH = SW = 2 && FH = FW = 2
  201. param.stride_h = param.stride_w = 2;
  202. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  203. }
  204. }
  205. //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
  206. for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
  207. for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
  208. for (size_t ph : {0, 1, 2})
  209. for (size_t pw : {0, 1, 2})
  210. if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
  211. param::Pooling param;
  212. param.mode = param::Pooling::Mode::MAX;
  213. param.pad_h = ph;
  214. param.pad_w = pw;
  215. param.window_h = param.window_w = 3;
  216. param.stride_h = param.stride_w = 2;
  217. checker.set_param(param).exec(
  218. TensorShapeArray{{2, 3, ih, iw}, {}});
  219. }
  220. //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
  221. for (size_t ih :
  222. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  223. for (size_t iw :
  224. {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  225. for (size_t p : {1, 2}) {
  226. Param param;
  227. param.mode = Param::Mode::MAX;
  228. param.window_h = param.window_w = 4;
  229. param.stride_h = param.stride_w = 2;
  230. param.pad_h = param.pad_w = p;
  231. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  232. }
  233. //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
  234. for (size_t ih :
  235. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  236. for (size_t iw :
  237. {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
  238. for (size_t p : {1, 2}) {
  239. Param param;
  240. param.mode = Param::Mode::MAX;
  241. param.window_h = param.window_w = 5;
  242. param.stride_h = param.stride_w = 2;
  243. param.pad_h = param.pad_w = p;
  244. checker.set_param(param).exec({{2, 3, ih, iw}, {}});
  245. }
  246. }
  247. }
  248. #if MEGDNN_WITH_BENCHMARK
  249. void benchmark_nchw44_fp32(Handle *handle) {
  250. using Param = param::Pooling;
  251. auto run = [&](size_t n, size_t c, size_t h, size_t w, size_t filter,
  252. size_t stride, size_t pad, Param::Mode mode) {
  253. Param param;
  254. param.window_h = param.window_w = filter;
  255. param.stride_h = param.stride_w = stride;
  256. param.pad_h = param.pad_w = pad;
  257. param.format = Param::Format::NCHW;
  258. param.mode = mode;
  259. TensorShape nchw_shape = {n, c, h, w};
  260. TensorShape nchw44_shape = {n, c / 4, h, w, 4};
  261. TensorLayout dst_layout;
  262. auto opr = handle->create_operator<Pooling>();
  263. opr->param() = param;
  264. opr->deduce_layout({nchw_shape, dtype::Float32()}, dst_layout);
  265. float calc_amount =
  266. dst_layout.total_nr_elems() * param.window_h * param.window_w;
  267. Benchmarker<Pooling> benchmarker_float_nchw(handle);
  268. Benchmarker<Pooling> benchmarker_float_nchw44(handle);
  269. Benchmarker<Pooling> benchmarker_int_nchw44(handle);
  270. size_t RUN = 500;
  271. auto t1 = benchmarker_float_nchw.set_display(false)
  272. .set_times(RUN)
  273. .set_param(param)
  274. .exec({nchw_shape, {}});
  275. param.format = Param::Format::NCHW44;
  276. auto t2 = benchmarker_int_nchw44.set_display(false)
  277. .set_times(RUN)
  278. .set_param(param)
  279. .execl({{nchw44_shape, dtype::QuantizedS8(1.0)},
  280. {{}, dtype::QuantizedS8(1.0)}});
  281. auto t3 = benchmarker_float_nchw44.set_display(false)
  282. .set_times(RUN)
  283. .set_param(param)
  284. .exec({nchw44_shape, {}});
  285. printf("{%zu %zu %zu %zu} filter = %zu, stride = %zu pad = %zu\n"
  286. "nchw_fp32={%.3f ms, %.3f Mflops}, "
  287. "nchw44_int={%.3f ms, %.3f Mflops}, "
  288. "nchw44_fp32={%.3f ms, %.3f Mflops, speed_up %f}\n\n",
  289. n, c, h, w, filter, stride, pad, t1 / RUN,
  290. calc_amount / (t1 / RUN * 1000), t2 / RUN,
  291. calc_amount / (t2 / RUN * 1000), t3 / RUN,
  292. calc_amount / (t3 / RUN * 1000), t1 / t3);
  293. };
  294. // Resnet50
  295. run(1, 64, 112, 112, 3, 2, 1, param::Pooling::Mode::MAX);
  296. run(1, 2048, 7, 7, 7, 1, 0, param::Pooling::Mode::AVERAGE);
  297. // VGG16
  298. run(1, 64, 224, 224, 2, 2, 0, param::Pooling::Mode::MAX);
  299. run(1, 128, 112, 112, 2, 2, 0, param::Pooling::Mode::MAX);
  300. run(1, 256, 56, 56, 2, 2, 0, param::Pooling::Mode::MAX);
  301. run(1, 512, 28, 28, 2, 2, 0, param::Pooling::Mode::MAX);
  302. run(1, 512, 14, 14, 2, 2, 0, param::Pooling::Mode::MAX);
  303. }
  304. TEST_F(ARM_COMMON, BENCHMARK_POOLING_NCHW44_FP32) { benchmark_nchw44_fp32(handle()); }
  305. TEST_F(ARM_COMMON_MULTI_THREADS, BENCHMARK_POOLING_NCHW44_FP32) {
  306. benchmark_nchw44_fp32(handle());
  307. }
  308. TEST_F(ARM_COMMON, BENCHMARK_POOLING_INT8_W3x3_S2x2)
  309. {
  310. using Param = param::Pooling;
  311. auto run = [&](const TensorShapeArray &shapes,
  312. Param param) {
  313. auto handle_naive = create_cpu_handle(2);
  314. TensorLayoutArray layouts;
  315. layouts.emplace_back(shapes[0], dtype::Int8());
  316. layouts.emplace_back(shapes[1], dtype::Int8());
  317. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  318. Benchmarker<Pooling> benchmarker_float(handle());
  319. Benchmarker<Pooling> benchmarker_int(handle());
  320. size_t RUN = 10;
  321. auto t1 = benchmarker_naive.set_display(false).set_times(RUN).
  322. set_param(param).exec(shapes);
  323. auto t2 = benchmarker_float.set_display(false).set_times(RUN).
  324. set_param(param).exec(shapes);
  325. auto t3 = benchmarker_int.set_display(false).set_times(RUN).
  326. set_param(param).execl(layouts);
  327. printf("naive=%.3fms float=%.3fms, int=%.3fms\n",
  328. t1 / RUN, t2 / RUN, t3 / RUN);
  329. auto speedup = t2/t3;
  330. ASSERT_GE(speedup, 2.0);
  331. };
  332. Param param;
  333. param.window_h = param.window_w = 3;
  334. param.stride_h = param.stride_w = 2;
  335. param.pad_h = param.pad_w = 1;
  336. std::cout << "3x3 with 2x2 stride max pooling:" << std::endl;
  337. run({{1, 3, 640, 480}, {}}, param);
  338. }
  339. TEST_F(ARM_COMMON, BENCHMARK_POOLING_W4x4_S2x2)
  340. {
  341. using Param = param::Pooling;
  342. auto run = [&](const TensorShapeArray &shapes,
  343. Param param) {
  344. std::cout << "N:" << shapes[0][0] << " "
  345. << "IC:" << shapes[0][1] << " "
  346. << "IH:" << shapes[0][2] << " "
  347. << "IW:" << shapes[0][3] << std::endl;
  348. auto handle_naive = create_cpu_handle(2);
  349. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  350. Benchmarker<Pooling> benchmarker_float(handle());
  351. size_t RUN = 10;
  352. auto t1 = benchmarker_naive.set_display(false).set_times(RUN).
  353. set_param(param).exec(shapes);
  354. auto t2 = benchmarker_float.set_display(false).set_times(RUN).
  355. set_param(param).exec(shapes);
  356. TensorLayout dst_layout;
  357. auto opr = handle()->create_operator<Pooling>();
  358. opr->param() = param;
  359. opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
  360. float calc_amount = dst_layout.total_nr_elems() *
  361. param.window_h * param.window_w;
  362. printf("naive={%.3fms, %.3fMflops}, neon={%.3fms, %.3fMflops}\n",
  363. t1 / RUN, calc_amount / (t1 / RUN * 1000),
  364. t2 / RUN, calc_amount / (t2 / RUN * 1000));
  365. };
  366. Param param;
  367. param.window_h = param.window_w = 4;
  368. param.stride_h = param.stride_w = 2;
  369. param.pad_h = param.pad_w = 1;
  370. std::cout << "4x4 with 2x2 stride max pooling:" << std::endl;
  371. run({{1, 24, 160, 128}, {}}, param);
  372. run({{1, 4, 240, 135}, {}}, param);
  373. run({{1, 32, 120, 67}, {}}, param);
  374. run({{1, 64, 60, 33}, {}}, param);
  375. }
  376. TEST_F(ARM_COMMON, BENCHMARK_POOLING_W5x5_S2x2)
  377. {
  378. using Param = param::Pooling;
  379. auto run = [&](const TensorShapeArray &shapes,
  380. Param param) {
  381. std::cout << "N:" << shapes[0][0] << " "
  382. << "IC:" << shapes[0][1] << " "
  383. << "IH:" << shapes[0][2] << " "
  384. << "IW:" << shapes[0][3] << std::endl;
  385. auto handle_naive = create_cpu_handle(2);
  386. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  387. Benchmarker<Pooling> benchmarker_float(handle());
  388. size_t RUN = 10;
  389. auto t1 = benchmarker_naive.set_display(false).set_times(RUN).
  390. set_param(param).exec(shapes);
  391. auto t2 = benchmarker_float.set_display(false).set_times(RUN).
  392. set_param(param).exec(shapes);
  393. TensorLayout dst_layout;
  394. auto opr = handle()->create_operator<Pooling>();
  395. opr->param() = param;
  396. opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
  397. float calc_amount = dst_layout.total_nr_elems() *
  398. param.window_h * param.window_w;
  399. printf("naive={%.3fms, %.3fMflops}, neon={%.3fms, %.3fMflops}\n",
  400. t1 / RUN, calc_amount / (t1 / RUN * 1000),
  401. t2 / RUN, calc_amount / (t2 / RUN * 1000));
  402. };
  403. Param param;
  404. param.window_h = param.window_w = 5;
  405. param.stride_h = param.stride_w = 2;
  406. param.pad_h = param.pad_w = 1;
  407. std::cout << "5x5 with 2x2 stride max pooling:" << std::endl;
  408. run({{1, 24, 160, 128}, {}}, param);
  409. run({{1, 4, 240, 135}, {}}, param);
  410. run({{1, 32, 120, 67}, {}}, param);
  411. run({{1, 64, 60, 33}, {}}, param);
  412. }
  413. TEST_F(ARM_COMMON, BENCHMARK_POOLING_FP16) {
  414. using Param = param::Pooling;
  415. auto run = [&](const TensorShapeArray& shapes, Param param) {
  416. TensorLayoutArray layouts;
  417. layouts.emplace_back(shapes[0], dtype::Float16());
  418. layouts.emplace_back(shapes[1], dtype::Float16());
  419. Benchmarker<Pooling> benchmarker_float(handle());
  420. Benchmarker<Pooling> benchmarker_half(handle());
  421. size_t RUN = 10;
  422. auto tf = benchmarker_float.set_display(false)
  423. .set_times(RUN)
  424. .set_param(param)
  425. .exec(shapes) /
  426. RUN;
  427. auto th = benchmarker_half.set_display(false)
  428. .set_times(RUN)
  429. .set_param(param)
  430. .execl(layouts) /
  431. RUN;
  432. TensorLayout dst_layout;
  433. auto opr = handle()->create_operator<Pooling>();
  434. opr->param() = param;
  435. opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
  436. float computations = dst_layout.total_nr_elems() * param.window_h *
  437. param.window_w / (1024.f * 1024 * 1024);
  438. printf("float=%.3fms %f gflops, float16=%.3fms %f gflops speedup: %f\n",
  439. tf, computations / tf * 1e3, th, computations / th * 1e3,
  440. tf / th);
  441. };
  442. Param param;
  443. param.window_h = param.window_w = 2;
  444. param.stride_h = param.stride_w = 1;
  445. param.pad_h = param.pad_w = 1;
  446. printf("2x2 with 1x1 stride max pooling:\n");
  447. run({{1, 3, 640, 480}, {}}, param);
  448. for (size_t oh : {640, 128})
  449. for (size_t ow : {480, 112}) {
  450. param.window_h = param.window_w = 3;
  451. param.stride_h = param.stride_w = 2;
  452. param.pad_h = param.pad_w = 1;
  453. param.mode = Param::Mode::AVERAGE;
  454. printf("3x3 with 2x2 stride average pooling.\n");
  455. run({{1, 3, oh, ow}, {}}, param);
  456. for (size_t pw : {2, 3, 4, 5}) {
  457. param.window_h = param.window_w = pw;
  458. param.stride_h = param.stride_w = 2;
  459. param.pad_h = param.pad_w = 1;
  460. param.mode = Param::Mode::MAX;
  461. printf("%zux%zu with 2x2 stride max pooling:\n", pw, pw);
  462. run({{1, 3, oh, ow}, {}}, param);
  463. }
  464. }
  465. }
  466. TEST_F(ARM_COMMON, BENCHMARK_POOLING_QUANTIZED) {
  467. using Param = param::Pooling;
  468. auto run = [&](const TensorShapeArray& shapes, Param param) {
  469. auto handle_naive = create_cpu_handle(2);
  470. TensorLayoutArray layouts;
  471. layouts.emplace_back(shapes[0], dtype::QuantizedS8(1.1f));
  472. layouts.emplace_back(shapes[1], dtype::QuantizedS8(1.1f));
  473. Benchmarker<Pooling> benchmarker_int(handle());
  474. Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
  475. size_t RUN = 10;
  476. auto time_int = benchmarker_int.set_display(false)
  477. .set_times(RUN)
  478. .set_param(param)
  479. .exec(shapes) /
  480. RUN;
  481. auto time_naive = benchmarker_naive.set_display(false)
  482. .set_times(RUN)
  483. .set_param(param)
  484. .execl(layouts) /
  485. RUN;
  486. TensorLayout dst_layout;
  487. auto opr = handle()->create_operator<Pooling>();
  488. opr->param() = param;
  489. opr->deduce_layout({shapes[0], dtype::QuantizedS8(1.1f)}, dst_layout);
  490. float computations = dst_layout.total_nr_elems() * param.window_h *
  491. param.window_w / (1024.f * 1024 * 1024);
  492. printf("naive=%.3fms %f gflops, int8=%.3fms %f gflops speedup: %f\n",
  493. time_naive, computations / time_naive * 1e3, time_int,
  494. computations / time_int * 1e3, time_naive / time_int);
  495. };
  496. Param param;
  497. param.window_h = param.window_w = 2;
  498. param.stride_h = param.stride_w = 1;
  499. param.pad_h = param.pad_w = 1;
  500. printf("2x2 with 1x1 stride max pooling:\n");
  501. run({{1, 3, 640, 480}, {}}, param);
  502. // clang-format off
  503. for (size_t oh : {640, 128})
  504. for (size_t ow : {480, 112})
  505. for (size_t pw : {2, 3, 4, 5}) {
  506. param.window_h = param.window_w = pw;
  507. param.stride_h = param.stride_w = 2;
  508. param.pad_h = param.pad_w = 1;
  509. printf("%zux%zu with 2x2 stride max pooling:\n", pw, pw);
  510. run({{1, 3, oh, ow}, {}}, param);
  511. }
  512. // clang-format on
  513. }
  514. #endif
  515. } // namespace test
  516. } // namespace megdnn
  517. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台