You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

param_pack.py 2.8 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import numpy as np
  10. from ..functional import param_pack_concat, param_pack_split
  11. from ..functional.distributed import all_reduce_sum
  12. from ..tensor import Tensor
  13. def get_offsets(shapes):
  14. offsets = []
  15. offset = 0
  16. for shape in shapes:
  17. offsets.append(offset)
  18. offset += int(np.prod(shape))
  19. offsets.append(offset)
  20. return offsets
  21. def get_pack_list(param_group, param_pack_thd):
  22. pack_list = dict()
  23. shape_list = dict()
  24. pack_sum = dict()
  25. pack_ret, shape_ret = [], []
  26. ignore_first = 8
  27. ignore_last = 0
  28. orders_len = len(param_group["orders"])
  29. for i, idx in enumerate(param_group["orders"]):
  30. param = param_group["params"][idx]
  31. dtype = str(np.dtype(param.dtype))
  32. dtype_size = np.dtype(param.dtype).itemsize
  33. shape = param.shape
  34. if ignore_first > 0:
  35. ignore_first -= 1
  36. pack_ret.append([idx])
  37. shape_ret.append([shape])
  38. continue
  39. if dtype in pack_list.keys():
  40. pack_list[dtype].append(idx)
  41. shape_list[dtype].append(shape)
  42. pack_sum[dtype] += int(np.prod(shape))
  43. else:
  44. pack_list[dtype] = [idx]
  45. shape_list[dtype] = [shape]
  46. pack_sum[dtype] = int(np.prod(shape))
  47. if (
  48. pack_sum[dtype] * dtype_size > param_pack_thd
  49. or i + ignore_last > orders_len
  50. ):
  51. pack_ret.append(pack_list[dtype])
  52. shape_ret.append(shape_list[dtype])
  53. pack_list[dtype] = []
  54. shape_list[dtype] = []
  55. pack_sum[dtype] = 0
  56. for key in sorted(pack_list.keys()):
  57. if len(pack_list[key]) > 0:
  58. pack_ret.append(pack_list[key])
  59. shape_ret.append(shape_list[key])
  60. return pack_ret, shape_ret
  61. def pack_allreduce_split(group, pack, shapes, reduce_method):
  62. dist_group = group["dist_group"]
  63. grads = [group["grads"][idx] for idx in pack]
  64. offsets_val = get_offsets(shapes)
  65. offsets = Tensor(offsets_val)
  66. packed_grads = param_pack_concat(grads, offsets, offsets_val)
  67. packed_grads = all_reduce_sum(packed_grads, dist_group, dist_group.comp_node)
  68. if reduce_method == "mean":
  69. packed_grads /= dist_group.size
  70. grads = param_pack_split(packed_grads, offsets_val, shapes)
  71. for i, grad in enumerate(grads):
  72. group["grads"][pack[i]] = grad

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台