You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

checker.cpp 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430
  1. /**
  2. * \file dnn/test/common/checker.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "./checker.h"
  12. #include "megdnn/tensor_format.h"
  13. #include "megdnn/tensor_iter.h"
  14. #include "test/common/tensor.h"
  15. #include "test/common/timer.h"
  16. using namespace megdnn;
  17. using namespace test;
  18. namespace {
  19. template <typename ctype, class Iter>
  20. ::testing::AssertionResult assert_tensor_eq_with_iter(
  21. const char* expr0, const char* expr1, Iter it0, Iter it1,
  22. const TensorLayout& layout, float maxerr, float maxerr_avg,
  23. float maxerr_avg_biased, bool allow_invalid) {
  24. auto nr_elem = layout.total_nr_elems();
  25. double error_sum = 0;
  26. double error_sum_biased = 0;
  27. for (size_t i = 0; i < nr_elem; ++i) {
  28. ctype iv0 = *it0, iv1 = *it1;
  29. float err = diff(iv0, iv1);
  30. error_sum += std::abs(err);
  31. error_sum_biased += err;
  32. if (!allow_invalid &&
  33. (!good_float(iv0) || !good_float(iv1) || std::abs(err) > maxerr)) {
  34. Index index(layout, i);
  35. return ::testing::AssertionFailure()
  36. << "Unequal value\n"
  37. << "Value of: " << expr1 << "\n"
  38. << " Actual: " << (iv1 + 0) << "\n"
  39. << "Expected: " << expr0 << "\n"
  40. << "Which is: " << (iv0 + 0) << "\n"
  41. << "At index: " << index.to_string() << "/"
  42. << layout.TensorShape::to_string() << "\n"
  43. << " DType: " << layout.dtype.name() << "\n"
  44. << " error: " << std::abs(err) << "/" << maxerr;
  45. }
  46. ++it0;
  47. ++it1;
  48. }
  49. float error_avg = error_sum / nr_elem;
  50. if (error_avg > maxerr_avg) {
  51. return ::testing::AssertionFailure()
  52. << "Average error exceeds the upper limit\n"
  53. << "Value of: " << expr1 << "\n"
  54. << "Expected: " << expr0 << "\n"
  55. << "Average error: " << error_avg << "/" << maxerr_avg << "\n"
  56. << "Num of elements: " << nr_elem;
  57. }
  58. float error_avg_biased = error_sum_biased / nr_elem;
  59. if (std::abs(error_avg_biased) > maxerr_avg_biased) {
  60. return ::testing::AssertionFailure()
  61. << "Average biased error exceeds the upper limit\n"
  62. << "Value of: " << expr1 << "\n"
  63. << "Expected: " << expr0 << "\n"
  64. << "Average biased error: " << error_avg_biased << "/" << maxerr_avg_biased
  65. << "\n"
  66. << "Num of elements: " << nr_elem;
  67. }
  68. return ::testing::AssertionSuccess();
  69. }
  70. template <typename ctype>
  71. ::testing::AssertionResult assert_tensor_eq_with_dtype(
  72. const char* expr0, const char* expr1, const TensorND& v0, const TensorND& v1,
  73. float maxerr, float maxerr_avg, float maxerr_avg_biased, bool allow_invalid) {
  74. if (!std::is_same<ctype, dt_qint4>::value &&
  75. !std::is_same<ctype, dt_quint4>::value &&
  76. !std::is_same<ctype, dt_qint1>::value) {
  77. if (v0.layout.is_physical_contiguous() && v1.layout.is_physical_contiguous()) {
  78. return assert_tensor_eq_with_iter<ctype>(
  79. expr0, expr1, v0.ptr<ctype>(), v1.ptr<ctype>(), v0.layout, maxerr,
  80. maxerr_avg, maxerr_avg_biased, allow_invalid);
  81. }
  82. }
  83. auto it0 = megdnn::tensor_iter_valonly<ctype>(v0).begin(),
  84. it1 = megdnn::tensor_iter_valonly<ctype>(v1).begin();
  85. return assert_tensor_eq_with_iter<ctype>(
  86. expr0, expr1, it0, it1, v0.layout, maxerr, maxerr_avg, maxerr_avg_biased,
  87. allow_invalid);
  88. }
  89. template <class Impl>
  90. void memcpy_noncontig(
  91. void* dst, const void* src, const TensorLayout& layout, const Impl& impl) {
  92. auto span = layout.span();
  93. dst = static_cast<dt_byte*>(dst) + span.low_byte;
  94. src = static_cast<const dt_byte*>(src) + span.low_byte;
  95. impl(dst, src, span.dist_byte());
  96. }
  97. template <typename Impl>
  98. void copy_tensors(
  99. const CheckerHelper::TensorValueArray& dest,
  100. const CheckerHelper::TensorValueArray& src, const Impl& copy_impl) {
  101. megdnn_assert(dest.size() == src.size());
  102. for (size_t i = 0; i < src.size(); i++) {
  103. auto&& tensor = src[i];
  104. if (tensor.layout.ndim == 0)
  105. continue;
  106. memcpy_noncontig(dest[i].raw_ptr(), tensor.raw_ptr(), tensor.layout, copy_impl);
  107. }
  108. }
  109. void copy_tensors(
  110. const CheckerHelper::TensorValueArray& dest,
  111. const CheckerHelper::TensorValueArray& src) {
  112. copy_tensors(dest, src, memcpy);
  113. }
  114. } // anonymous namespace
  115. ::testing::AssertionResult test::__assert_tensor_eq(
  116. const char* expr0, const char* expr1, const char* /*expr_maxerr*/,
  117. const char* /*expr_maxerr_avg*/, const char* /*expr_maxerr_avg*/,
  118. const TensorND& v0, const TensorND& v1, float maxerr, float maxerr_avg,
  119. float maxerr_avg_biased, bool allow_invalid) {
  120. if (!v0.layout.eq_shape(v1.layout)) {
  121. return ::testing::AssertionFailure()
  122. << "Shape mismatch\n"
  123. << "Value of: " << expr1 << "\n"
  124. << " Actual: " << v1.layout.TensorShape::to_string() << "\n"
  125. << "Expected: " << expr0 << "\n"
  126. << "Which is: " << v0.layout.TensorShape::to_string() << "\n";
  127. }
  128. auto dtype = v0.layout.dtype;
  129. if (dtype != v1.layout.dtype) {
  130. return ::testing::AssertionFailure()
  131. << "Data type mismatch\n"
  132. << "Value of: " << expr1 << "\n"
  133. << " Actual: " << v1.layout.dtype.name() << "\n"
  134. << "Expected: " << expr0 << "\n"
  135. << "Which is: " << v0.layout.dtype.name() << "\n";
  136. }
  137. switch (dtype.enumv()) {
  138. #define cb(_dt) \
  139. case DTypeTrait<_dt>::enumv: \
  140. return assert_tensor_eq_with_dtype<DTypeTrait<_dt>::ctype>( \
  141. expr0, expr1, v0, v1, maxerr, maxerr_avg, maxerr_avg_biased, \
  142. allow_invalid);
  143. MEGDNN_FOREACH_COMPUTING_DTYPE(cb)
  144. MEGDNN_FOREACH_QUANTIZED_DTYPE(cb)
  145. //! In order to avoid an unnecessary increase in binary size, we just
  146. //! use QuantizedS16 dtype in winograd_filter_preprocess now.
  147. cb(::megdnn::dtype::QuantizedS16) MEGDNN_FOREACH_QUANTIZED_LOWBIT_DTYPE(cb)
  148. cb(::megdnn::dtype::Uint16) cb(::megdnn::dtype::QuantizedS1)
  149. #undef cb
  150. default : megdnn_trap();
  151. }
  152. }
  153. ::testing::AssertionResult test::__assert_tensor_eq_allow_invalid(
  154. const char* expr0, const char* expr1, const char* expr_maxerr,
  155. const char* expr_maxerr_avg, const char* expr_maxerr_avg_biased,
  156. const TensorND& v0, const TensorND& v1, float maxerr, float maxerr_avg,
  157. float maxerr_avg_biased) {
  158. return __assert_tensor_eq(
  159. expr0, expr1, expr_maxerr, expr_maxerr_avg, expr_maxerr_avg_biased, v0, v1,
  160. maxerr, maxerr_avg, maxerr_avg_biased, true);
  161. };
  162. CheckerHelper::CheckerHelper(Handle* handle, bool check_dispatch)
  163. : m_handle_cur(handle), m_default_rng(new NormalRNG()) {
  164. //! set MGB_NO_NAIVE_CHECK=1 to close megdnn test check with naive
  165. const char* env_p = std::getenv("MGB_NO_NAIVE_CHECK");
  166. if (env_p) {
  167. int no_naive_flag = atoi(env_p);
  168. m_no_naive_and_check = no_naive_flag > 0 ? true : false;
  169. check_dispatch = false;
  170. } else {
  171. m_no_naive_and_check = false;
  172. }
  173. auto tmp_handle = create_cpu_handle(2, check_dispatch);
  174. m_handle_naive = std::move(tmp_handle);
  175. }
  176. CheckerHelper::~CheckerHelper() noexcept = default;
  177. void CheckerHelper::do_exec_with_testcases(
  178. const TensorValueArray& testcase_in, const TensorValueArray& testcase_out,
  179. const OprExec& exec_opr) {
  180. m_prev_succ = false;
  181. // Validate layouts of tensors in testcase_in and testcase_out.
  182. // It must be possible to aggregate the layouts of inputs and outputs.
  183. TensorLayoutArray layouts;
  184. for (size_t i = 0; i < testcase_in.size(); i++) {
  185. // ndim == 0 means does not apply.
  186. ASSERT_TRUE(
  187. testcase_in[i].layout.ndim == 0 || testcase_out[i].layout.ndim == 0 ||
  188. testcase_in[i].layout.eq_layout(testcase_out[i].layout));
  189. layouts.emplace_back(
  190. testcase_in[i].layout.ndim > 0 ? testcase_in[i].layout
  191. : testcase_out[i].layout);
  192. }
  193. auto tensors_cur_storage = alloc_tensors(m_handle_cur, layouts, m_offset);
  194. auto tensors_cur_host_storage =
  195. alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  196. auto&& tensors_cur = *tensors_cur_storage;
  197. auto&& tensors_cur_host = *tensors_cur_host_storage;
  198. copy_tensors_to_device(tensors_cur, testcase_in);
  199. exec_opr(tensors_cur);
  200. if (m_expect_exec_fail) {
  201. m_expect_exec_fail();
  202. m_expect_exec_fail = {};
  203. return;
  204. }
  205. copy_tensors_from_device(tensors_cur_host, tensors_cur);
  206. check_tensors(testcase_out, tensors_cur_host);
  207. m_prev_succ = !::testing::Test::HasFailure();
  208. }
  209. void CheckerHelper::do_exec(
  210. const TensorLayoutArray& user_layouts, const TensorLayoutArray& deduced_layouts,
  211. const OprExec& exec_naive, const OprExec& exec_opr) {
  212. m_prev_succ = false;
  213. // check if user provided layouts are correct
  214. for (size_t i = 0; i < deduced_layouts.size(); ++i) {
  215. if (user_layouts[i].ndim > 0) {
  216. ASSERT_TRUE(deduced_layouts[i].eq_shape(user_layouts[i]))
  217. << "User provided shape is "
  218. << user_layouts[i].TensorShape::to_string()
  219. << "\nExpected shape is "
  220. << deduced_layouts[i].TensorShape::to_string();
  221. }
  222. }
  223. auto layouts = user_layouts;
  224. for (size_t i = 0; i < layouts.size(); ++i) {
  225. if (layouts[i].ndim == 0) {
  226. //! in some opr, such as conv_bias has ndim==0
  227. layouts[i] = deduced_layouts[i];
  228. }
  229. }
  230. // allocate
  231. m_tensors_naive = alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  232. auto tensors_cur_storage = alloc_tensors(m_handle_cur, layouts, m_offset);
  233. auto tensors_cur_host_storage =
  234. alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  235. auto&& tensors_naive = *m_tensors_naive;
  236. auto&& tensors_cur = *tensors_cur_storage;
  237. auto&& tensors_cur_host = *tensors_cur_host_storage;
  238. std::shared_ptr<TensorValueArray> tensors_extra_opr_impl;
  239. if (m_extra_opr_impl) {
  240. tensors_extra_opr_impl = alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  241. }
  242. init_naive_values();
  243. copy_tensors_to_device(tensors_cur, tensors_naive);
  244. if (m_extra_opr_impl) {
  245. copy_tensors(*tensors_extra_opr_impl, tensors_naive);
  246. }
  247. // execute
  248. exec_opr(tensors_cur);
  249. if (m_expect_exec_fail) {
  250. m_expect_exec_fail();
  251. m_expect_exec_fail = {};
  252. return;
  253. }
  254. if (m_stable_check) {
  255. auto tensors_bak_host_storage =
  256. alloc_tensors(m_handle_naive.get(), layouts, m_offset);
  257. auto&& tensors_bak_host = *tensors_bak_host_storage;
  258. copy_tensors_from_device(tensors_bak_host, tensors_cur);
  259. for (int i = 0; i < 10; i++) {
  260. exec_opr(tensors_cur);
  261. copy_tensors_from_device(tensors_cur_host, tensors_cur);
  262. check_tensors(tensors_bak_host, tensors_cur_host);
  263. }
  264. }
  265. if (m_no_naive_and_check) {
  266. m_prev_succ = !::testing::Test::HasFailure();
  267. return;
  268. }
  269. exec_naive(tensors_naive);
  270. if (m_extra_opr_impl) {
  271. m_extra_opr_impl(*tensors_extra_opr_impl);
  272. }
  273. // see if we need performance regression test
  274. if (m_perf_check) {
  275. ASSERT_GT(m_perf_check_threshold, 0) << "perf_check_threshold should be "
  276. "set ahead of time.";
  277. Timer timer_naive, timer_cur;
  278. megdnn_sync(m_handle_naive.get());
  279. timer_naive.start();
  280. exec_naive(tensors_naive);
  281. megdnn_sync(m_handle_naive.get());
  282. timer_naive.stop();
  283. megdnn_sync(m_handle_cur);
  284. timer_cur.start();
  285. exec_opr(tensors_cur);
  286. megdnn_sync(m_handle_cur);
  287. timer_cur.stop();
  288. size_t time_in_us_naive = timer_naive.get_time_in_us(),
  289. time_in_us_cur = timer_cur.get_time_in_us();
  290. EXPECT_GE(time_in_us_naive, static_cast<size_t>(100))
  291. << "Running time smaller than 100us "
  292. << "might be imprecise. naive_time=" << time_in_us_naive << "us.";
  293. float speedup_ratio = static_cast<float>(time_in_us_naive) / time_in_us_cur;
  294. EXPECT_GE(speedup_ratio, m_perf_check_threshold)
  295. << "speedup_ratio=" << speedup_ratio
  296. << " threshold=" << m_perf_check_threshold
  297. << " naive_time=" << time_in_us_naive
  298. << "us cur_time=" << time_in_us_cur << "us";
  299. }
  300. copy_tensors_from_device(tensors_cur_host, tensors_cur);
  301. if (m_output_canonizer) {
  302. m_output_canonizer(tensors_cur_host);
  303. m_output_canonizer(tensors_naive);
  304. }
  305. check_tensors(tensors_naive, tensors_cur_host);
  306. if (m_extra_opr_impl) {
  307. check_tensors(tensors_naive, *tensors_extra_opr_impl);
  308. }
  309. m_prev_succ = !::testing::Test::HasFailure();
  310. }
  311. std::shared_ptr<CheckerHelper::TensorValueArray> CheckerHelper::alloc_tensors(
  312. Handle* handle, const TensorLayoutArray& layouts, const size_t offset) {
  313. auto deleter = [handle, offset](TensorValueArray* ptr) {
  314. for (auto&& i : *ptr) {
  315. auto pdata = static_cast<dt_byte*>(i.raw_ptr()) + i.layout.span().low_byte -
  316. offset;
  317. megdnn_free(handle, pdata);
  318. }
  319. delete ptr;
  320. };
  321. std::shared_ptr<TensorValueArray> ret{new TensorValueArray, deleter};
  322. for (size_t i = 0; i < layouts.size(); ++i) {
  323. auto span = layouts[i].span();
  324. auto ptr = megdnn_malloc(handle, span.dist_byte() + offset);
  325. ret->emplace_back(
  326. static_cast<dt_byte*>(ptr) - span.low_byte + offset, layouts[i]);
  327. }
  328. return ret;
  329. }
  330. void CheckerHelper::init_naive_values() {
  331. auto&& tensors_naive = *m_tensors_naive;
  332. megdnn_assert(!m_input_tensors_fpath || !m_tensor_constraint);
  333. if (m_input_tensors_fpath) {
  334. auto load = load_tensors(m_input_tensors_fpath);
  335. m_input_tensors_fpath = nullptr;
  336. megdnn_assert(load.size() <= tensors_naive.size());
  337. for (size_t i = 0; i < load.size(); ++i) {
  338. auto&& src = load[i];
  339. auto&& dst = tensors_naive[i];
  340. megdnn_assert(src->layout.eq_layout(dst.layout));
  341. memcpy_noncontig(dst.raw_ptr(), src->raw_ptr(), dst.layout, memcpy);
  342. }
  343. return;
  344. }
  345. for (size_t i = 0; i < tensors_naive.size(); ++i) {
  346. auto&& tensor = tensors_naive[i];
  347. auto rng = m_rng[i];
  348. if (!rng)
  349. rng = m_default_rng.get();
  350. rng->gen(tensor);
  351. }
  352. if (m_tensor_constraint) {
  353. m_tensor_constraint(tensors_naive);
  354. }
  355. }
  356. void CheckerHelper::copy_tensors_from_device(
  357. const TensorValueArray& dest, const TensorValueArray& src) {
  358. auto impl_d2h = [this](void* dst, const void* src, size_t sz) {
  359. megdnn_memcpy_D2H(m_handle_cur, dst, src, sz);
  360. };
  361. copy_tensors(dest, src, impl_d2h);
  362. }
  363. void CheckerHelper::check_tensors(
  364. const TensorValueArray& expected, const TensorValueArray& computed) {
  365. for (size_t i = 0; i < expected.size(); ++i) {
  366. if (expected[i].layout.ndim == 0 || m_bypass.find(i) != m_bypass.end())
  367. continue;
  368. if (m_allow_invalid_check) {
  369. MEGDNN_ASSERT_TENSOR_EQ_EPS_AVG_ALLOW_INVALID(
  370. expected[i], computed[i], m_epsilon, m_max_avg_error,
  371. m_max_avg_biased_error);
  372. } else {
  373. MEGDNN_ASSERT_TENSOR_EQ_EPS_AVG(
  374. expected[i], computed[i], m_epsilon, m_max_avg_error,
  375. m_max_avg_biased_error);
  376. }
  377. }
  378. }
  379. void CheckerHelper::copy_tensors_to_device(
  380. const TensorValueArray& dest, const TensorValueArray& src) {
  381. auto impl_h2d = [this](void* dst, const void* src, size_t sz) {
  382. megdnn_memcpy_H2D(m_handle_cur, dst, src, sz);
  383. };
  384. copy_tensors(dest, src, impl_h2d);
  385. }
  386. // vim: syntax=cpp.doxygen