You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_conv.py 1.4 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import itertools
  10. import numpy as np
  11. import pytest
  12. import megengine.module as M
  13. from megengine import Parameter, tensor
  14. from megengine.functional.debug_param import (
  15. get_execution_strategy,
  16. set_execution_strategy,
  17. )
  18. from megengine.module import ConvTranspose2d, ConvTranspose3d, LocalConv2d
  19. @pytest.fixture
  20. def reproducible():
  21. old = get_execution_strategy()
  22. set_execution_strategy("HEURISTIC_REPRODUCIBLE")
  23. yield
  24. set_execution_strategy(old)
  25. # NOTE: test in module for convenience. should really test in functional
  26. @pytest.mark.parametrize(
  27. "name",
  28. ["Conv1d", "Conv2d", "Conv3d", "ConvTranspose2d", "ConvTranspose3d", "LocalConv2d"],
  29. )
  30. def test_conv_dtype_promotion(name, reproducible):
  31. N, Ci, Co, K = 2, 16, 32, 3
  32. S = (7,) * int(name[-2])
  33. if "Local" in name:
  34. m = getattr(M, name)(Ci, Co, *S, K)
  35. else:
  36. m = getattr(M, name)(Ci, Co, K)
  37. x = tensor(np.random.random(size=(N, Ci) + S).astype("float16"))
  38. np.testing.assert_equal(m(x).numpy(), m(x.astype("float32")).numpy())

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台