You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

network.py 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import collections
  10. import fnmatch
  11. import itertools
  12. import re
  13. from collections import OrderedDict
  14. from typing import Dict, List
  15. import numpy as np
  16. from ..core._imperative_rt import ComputingGraph
  17. from ..core.tensor import megbrain_graph as G
  18. from .comp_graph_tools import get_dep_vars, get_opr_type, get_oprs_seq
  19. from .network_node import (
  20. Host2DeviceCopy,
  21. ImmutableTensor,
  22. NetworkNode,
  23. OpNode,
  24. VarNode,
  25. str_to_mge_class,
  26. )
  27. class Network:
  28. def __init__(self):
  29. self.input_vars = [] # input var of graph
  30. self._orig_inputs = []
  31. self.output_vars = [] # output var of graph
  32. self._orig_outputs = []
  33. self.all_oprs_map = OrderedDict()
  34. self.all_vars_map = OrderedDict()
  35. self.graph = ComputingGraph()
  36. @classmethod
  37. def load(cls, model_path: str, outspec: List[str] = None):
  38. """
  39. Loads a computing graph as a Network object.
  40. :param model_path: file path of mge model.
  41. :param outspec: only load the subgraph with outspec as its endpoints.
  42. """
  43. self = cls()
  44. _, _, outputs = G.load_graph(model_path)
  45. if outspec is not None:
  46. output_spec = outspec.copy()
  47. all_vars = get_dep_vars(outputs) + outputs
  48. new_outputs = {}
  49. for i in all_vars:
  50. if i.name in output_spec:
  51. new_outputs[i.name] = i
  52. output_spec.remove(i.name)
  53. assert len(output_spec) == 0, "Can not find {} in this model".format(
  54. output_spec
  55. )
  56. outputs = [new_outputs[i] for i in outspec]
  57. self._orig_outputs = outputs
  58. self.add_dep_oprs(*outputs)
  59. for x in self._orig_inputs:
  60. self.input_vars.append(self._get_var(x))
  61. for x in self._orig_outputs:
  62. self.output_vars.append(self._get_var(x))
  63. self.graph = self._orig_outputs[0].graph
  64. return self
  65. def _compile(self):
  66. self.all_oprs_map = {}
  67. self.all_vars_map = {}
  68. for opr in self.all_oprs:
  69. if isinstance(opr, (ImmutableTensor, Host2DeviceCopy)):
  70. opr.compile(self.graph)
  71. else:
  72. opr.compile()
  73. if opr.name is not None:
  74. opr._opr.name = opr.name
  75. self.all_oprs_map[opr._opr.id] = opr
  76. for o in opr.outputs:
  77. self.all_vars_map[o.var.id] = o
  78. def dump(
  79. self,
  80. file,
  81. *,
  82. keep_var_name: int = 1,
  83. keep_opr_name: bool = False,
  84. keep_param_name: bool = False,
  85. keep_opr_priority: bool = False,
  86. strip_info_file=None,
  87. append_json=False,
  88. optimize_for_inference=True,
  89. append=False,
  90. **kwargs
  91. ):
  92. """
  93. Serializes graph to file.
  94. :param file: output file, could be file object or filename.
  95. :param append: whether output is appended to ``file``.
  96. Only works when ``file`` is str.
  97. :param keep_var_name: level for keeping variable names:
  98. * 0: none of the names are kept
  99. * 1: (default)keep names of output vars
  100. * 2: keep names of all (output and internal) vars
  101. :param keep_opr_name: whether to keep operator names.
  102. :param keep_param_name: whether to keep param names, so param values can be
  103. easily manipulated after loading model
  104. :param keep_opr_priority: whether to keep priority setting for operators
  105. :param strip_info_file: a string for path or a file handler. if is not None,
  106. then the dump information for code strip would be written to ``strip_info_file``
  107. :param append_json: will be check when `strip_info_file` is not None. if set
  108. true, the information for code strip will be append to strip_info_file.
  109. if set false, will rewrite strip_info_file
  110. :param optimize_for_inference: enbale optmizations,
  111. will skip all optimize options if this is False. Default: True
  112. :Keyword Arguments:
  113. * enable_io16xc32 --
  114. whether to use float16 for I/O between oprs and use
  115. float32 as internal computation precision. Note the output var would be
  116. changed to float16.
  117. * enable_ioc16 --
  118. whether to use float16 for both I/O and computation
  119. precision.
  120. * enable_hwcd4 --
  121. whether to use NHWCD4 data layout. This is faster on some
  122. OpenCL backend.
  123. * enable_nchw88 --
  124. whether to use NCHW88 data layout, currently
  125. used in X86 AVX backend.
  126. * enable_nchw44 --
  127. whether to use NCHW44 data layout, currently
  128. used in arm backend.
  129. * enable_nchw44_dot --
  130. whether to use NCHW44_dot data layout, currently
  131. used in armv8.2+dotprod backend.
  132. * enable_nchw4 --
  133. whether to use NCHW4 data layout, currently
  134. used in nvidia backend(based on cudnn).
  135. * enable_nchw32 --
  136. whether to use NCHW32 data layout, currently
  137. used in nvidia backend with tensorcore(based on cudnn).
  138. * enable_chwn4 --
  139. whether to use CHWN4 data layout, currently
  140. used in nvidia backend with tensorcore.
  141. * enable_fuse_conv_bias_nonlinearity: whether to fuse conv+bias+nonlinearty
  142. into one opr.
  143. * enable_fuse_conv_bias_with_z: whether to fuse conv_bias with z
  144. input for inference on nvidia backend(this optimization pass will
  145. result in mismatch of the precision of output of training and
  146. inference)
  147. """
  148. self._compile()
  149. out = [G.VarNode(var.var) for var in self.output_vars]
  150. if optimize_for_inference:
  151. out = G.optimize_for_inference(out, **kwargs)
  152. dump_content, _ = G.dump_graph(
  153. out,
  154. keep_var_name=keep_var_name,
  155. keep_opr_name=keep_opr_name,
  156. keep_param_name=keep_param_name,
  157. keep_opr_priority=keep_opr_priority,
  158. strip_info_file=strip_info_file,
  159. append_json=append_json,
  160. )
  161. if isinstance(file, str):
  162. permission = "wb" if append == False else "ab"
  163. file = open(file, permission)
  164. file.write(dump_content)
  165. def make_const(self, data, name=None, device=None):
  166. """Makes an ImmutableTensor OpNode to provide a parameter for the network.
  167. """
  168. node = ImmutableTensor(data, name, device, self.graph)
  169. node.compile(self.graph)
  170. return node.outputs[0]
  171. def make_input_node(self, shape, dtype, name=None, device=None):
  172. """Makes a Host2DeviceCopy OpNode to provide an input varnode for the network.
  173. """
  174. node = Host2DeviceCopy(shape, dtype, name, device)
  175. node.compile(self.graph)
  176. return node.outputs[0]
  177. def add_output(self, *vars: VarNode):
  178. """Adds vars into the network output node list
  179. """
  180. for var in vars:
  181. if var not in self.output_vars:
  182. self.output_vars.append(var)
  183. def remove_output(self, *vars: VarNode):
  184. """Removes vars from the network output node list.
  185. """
  186. for var in vars:
  187. if var in self.output_vars:
  188. self.output_vars.remove(var)
  189. def add_dep_oprs(self, *vars):
  190. """Adds dependent opnodes and varnodes of vars into network
  191. """
  192. oprs = get_oprs_seq(vars, False, False)
  193. for mge_opr in oprs:
  194. if get_opr_type(mge_opr) == "Host2DeviceCopy":
  195. self._orig_inputs.extend(mge_opr.outputs)
  196. opr = self._add_opr(mge_opr)
  197. if opr is not None:
  198. for x in mge_opr.inputs:
  199. opr.add_inp_var(self._get_var(x))
  200. # set out var
  201. for x in mge_opr.outputs:
  202. opr.add_out_var(self._get_var(x))
  203. return [self.all_vars_map[var.id] for var in vars]
  204. def modify_opr_names(self, modifier):
  205. """Modifies names of operators **inplace**; useful for merging loaded
  206. network into another network
  207. :param modifier: a string to be prepended to the name, or a function
  208. that maps from name to name
  209. :type modifier: str or callable
  210. """
  211. if isinstance(modifier, str):
  212. om = modifier
  213. modifier = lambda v: "{}.{}".format(om, v)
  214. assert isinstance(modifier, collections.Callable)
  215. for i in self.all_oprs:
  216. v0 = i.name
  217. v1 = modifier(v0)
  218. assert isinstance(v1, str)
  219. i.name = v1
  220. def reset_batch_size(self, batchsize, *, blacklist=()):
  221. """Helper for reset batch size; first dimension of all data providers
  222. not in blacklist are assumed to be the batch size
  223. :param blacklist: data provider names whose first dimension is not
  224. batchbatch size
  225. """
  226. blacklist = set(blacklist)
  227. prev_batchsize = None
  228. for i in self.data_providers_filter:
  229. if i.name in blacklist:
  230. blacklist.remove(i.name)
  231. else:
  232. shp = list(i.shape)
  233. if prev_batchsize is None:
  234. prev_batchsize = shp[0]
  235. else:
  236. assert prev_batchsize == shp[0], (
  237. "batchsize mismatch: batchsize={} "
  238. "shape={} dp={}".format(prev_batchsize, shp, i.name)
  239. )
  240. shp[0] = batchsize
  241. i.shape = tuple(shp)
  242. assert prev_batchsize is not None, "no data provider found"
  243. assert not blacklist, "unused items in blacklist: {}".format(blacklist)
  244. def replace_vars(self, repl_dict: Dict[VarNode, VarNode]):
  245. """
  246. Replaces vars in the graph.
  247. :param repl_dict: the map {old_var: new_var} that specifies how to replace the vars.
  248. """
  249. for var in self.all_vars:
  250. if var in repl_dict:
  251. repl_var = repl_dict[var]
  252. owner = repl_var.owner
  253. idx = owner.outputs.index(repl_var)
  254. owner.outputs[idx] = var
  255. var.__dict__.update(repl_var.__dict__)
  256. def replace_oprs(self, repl_dict: Dict[OpNode, OpNode]):
  257. """
  258. Replaces operators in the graph.
  259. :param oprmap: the map {old_opr: new_opr} that specifies how to replace the operators.
  260. """
  261. for opr in self.all_oprs:
  262. if opr in repl_dict:
  263. assert len(opr.outputs) == len(
  264. repl_dict[opr].outputs
  265. ), "can not replace {} with {}".format(type(opr), type(repl_dict[opr]))
  266. repl_dict[opr].outputs = opr.outputs
  267. for ind, var in enumerate(opr.outputs):
  268. var.owner = repl_dict[opr]
  269. var.__dict__.update(repl_dict[opr].outputs[ind].__dict__)
  270. def get_opr_by_type(self, oprcls, unique=True):
  271. assert issubclass(oprcls, OpNode)
  272. rst = self.opr_filter.type(oprcls).as_list()
  273. if unique:
  274. assert len(rst) == 1, "{} operators of type {} found".format(
  275. len(rst), oprcls
  276. )
  277. (rst,) = rst
  278. return rst
  279. def get_opr_by_name(self, name, unique=True):
  280. rst = self.opr_filter.name(name).as_list()
  281. if unique:
  282. assert len(rst) == 1, "{} operators of type {} found".format(len(rst), name)
  283. (rst,) = rst
  284. return rst
  285. def get_var_by_name(self, name, unique=True):
  286. rst = self.var_filter.name(name).as_list()
  287. if unique:
  288. assert len(rst) == 1, "{} operators of type {} found".format(len(rst), name)
  289. (rst,) = rst
  290. return rst
  291. def get_var_receive_oprs(self, var):
  292. """ Gets all oprs which use var as input
  293. """
  294. return self.opr_filter.has_input(var).as_list()
  295. def get_dep_oprs(self, var):
  296. """Gets dependent oprs of var
  297. """
  298. return get_oprs_seq(var, False, False)
  299. @property
  300. def opr_filter(self):
  301. """Filter on all opnodes of the Network.
  302. """
  303. oprs = self.all_oprs
  304. return NodeFilter(itertools.islice(oprs, len(oprs)))
  305. @property
  306. def var_filter(self):
  307. """Filter on all varnode of the Network.
  308. """
  309. vars = self.all_vars
  310. return NodeFilter(itertools.islice(vars, len(vars)))
  311. @property
  312. def params_filter(self): # all immutable tensor
  313. """Filter on all parameters (ImmutableTensor Opr) of the Network
  314. """
  315. return self.opr_filter.param_provider()
  316. @property
  317. def data_providers_filter(self): # all host2devicecopy
  318. """Filter on all input nodes (Host2DeviceCopy Opr) of the Network
  319. """
  320. return self.opr_filter.data_provider()
  321. @property
  322. def dest_vars(self):
  323. """Output varnodes of the Network.
  324. """
  325. return self.output_vars
  326. @property
  327. def all_oprs(self):
  328. return get_oprs_seq(self.output_vars, False, False)
  329. @property
  330. def all_vars(self):
  331. return get_dep_vars(self.output_vars)
  332. @property
  333. def all_vars_dict(self):
  334. return self.var_filter.as_dict()
  335. @property
  336. def all_oprs_dict(self):
  337. return self.opr_filter.as_dict()
  338. # used for loading and building graph
  339. def _add_opr(self, x):
  340. # TODO: use megbrain C++ RTTI to replace type string
  341. if x.id not in self.all_oprs_map:
  342. self.all_oprs_map[x.id] = str_to_mge_class(get_opr_type(x)).load(x)
  343. return self.all_oprs_map[x.id]
  344. else:
  345. return None
  346. def _get_opr(self, x):
  347. if x.id in self.all_oprs_map:
  348. return self.all_oprs_map[x.id]
  349. else:
  350. return None
  351. def _get_var(self, x):
  352. # auto convert to VarNode of Network
  353. if x.id not in self.all_vars_map:
  354. self.all_vars_map[x.id] = VarNode.load(x, self._get_opr(x.owner))
  355. return self.all_vars_map[x.id]
  356. def as_varnode(obj):
  357. """convert a :class:`.VarNode` compatible object to :class:`.VarNode`.
  358. :param obj: it must be one of the following:
  359. 1. a :class:`.VarNode` object
  360. 2. a :class:`.OpNode` object that has unique output
  361. 3. an iterable that produces either type 1 or 2, with length 1
  362. :rtype: :class:`.VarNode`
  363. """
  364. if type(obj) is VarNode:
  365. return obj
  366. if isinstance(obj, OpNode):
  367. assert len(obj.outputs) == 1, (
  368. "operator {} must have one output to be converted to VarNode; "
  369. "got {} actually".format(obj, len(obj.outputs))
  370. )
  371. ret = obj.outputs[0]
  372. assert type(ret) is VarNode
  373. return ret
  374. assert isinstance(
  375. obj, collections.Iterable
  376. ), "{} is not compatible with VarNode".format(obj)
  377. val = list(obj)
  378. assert (
  379. len(val) == 1
  380. ), "can not convert sequence of length {} to VarNode ({})".format(
  381. len(val), (lambda s: s if len(s) < 50 else s[:50] + " ...")(str(val))
  382. )
  383. return as_varnode(val[0])
  384. def as_oprnode(obj):
  385. """convert a :class:`.OpNode` compatible object to
  386. :class:`.OpNode`; it works like :func:`as_varnode`."""
  387. if type(obj) is VarNode:
  388. return obj.owner
  389. if isinstance(obj, OpNode):
  390. return obj
  391. assert isinstance(
  392. obj, collections.Iterable
  393. ), "{} is not compatible with OpNode".format(obj)
  394. val = list(obj)
  395. assert (
  396. len(val) == 1
  397. ), "can not convert sequence of length {} to " "OpNode({})".format(len(val), val)
  398. return as_oprnode(val[0])
  399. class NodeFilter:
  400. """Filter on node iterator. This class is an iterator of
  401. :class:`.NetworkNode` objects and multiple filtering conditions and
  402. mappers can be chained.
  403. Example::
  404. # find all :class:`.ImmutableTensor` nodes
  405. for i in NodeFilter(node_iter).param_provider():
  406. print(i)
  407. # find all :class:`.ImmutableTensor` nodes that end with ':W'
  408. for i in NodeFilter(node_iter).param_provider().name('*:W'):
  409. print(i)
  410. # number of inputs
  411. nr_input = NodeFilter(node_iter).data_provider().as_count()
  412. """
  413. _iter = None
  414. def __init__(self, node_iter):
  415. """
  416. :param node_iter: iterator to :class:`.NetworkNode`, or a
  417. :class:`.VarNode`-compatible object; in the later case, its
  418. dependent oprs would be used
  419. """
  420. if isinstance(node_iter, VarNode):
  421. oprs = get_oprs_seq(node_iter, False, False)
  422. node_iter = itertools.islice(oprs, len(oprs) - 1)
  423. if isinstance(node_iter, OpNode):
  424. oprs = get_oprs_seq(node_iter.inputs, False, False)
  425. node_iter = itertools.islice(oprs, len(oprs) - 1)
  426. assert isinstance(node_iter, collections.Iterable)
  427. if (not isinstance(node_iter, NodeFilter)) and type(
  428. self
  429. ) is not NodeFilterCheckType:
  430. node_iter = NodeFilterCheckType(node_iter, NetworkNode)
  431. self._iter = node_iter
  432. @classmethod
  433. def make_all_deps(cls, *dest_vars):
  434. """make a :class:`NodeFilter` that contains all deps of given vars"""
  435. return cls(list(get_oprs_seq(dest_vars, False, False)))
  436. def __iter__(self):
  437. """to be overwritten by subclass to implement filters"""
  438. return iter(self._iter)
  439. def type(self, node_type):
  440. """filter by specific node type
  441. :param node_type: node type class
  442. :return: a new :class:`NodeFilter` object
  443. """
  444. return NodeFilterType(self, node_type)
  445. def check_type(self, node_type):
  446. """assert that all oprs produced by this iterator are instances of
  447. certain type
  448. :param node_type: node type class
  449. :return: a new :class:`NodeFilter` object
  450. :raises TypeError: if type check failed
  451. """
  452. return NodeFilterCheckType(self, node_type)
  453. def not_type(self, node_type):
  454. """remove oprs of specific type
  455. :param node_type: node type class
  456. :return: a new :class:`NodeFilter` object
  457. """
  458. return NodeFilterNotType(self, node_type)
  459. def param_provider(self):
  460. """get :class:`.ParamProvider` oprs; shorthand for
  461. ``.type(ParamProvider)``"""
  462. return self.type(ImmutableTensor)
  463. def data_provider(self):
  464. """get :class:`.DataProvider` oprs; shorthand for
  465. ``.type(DataProvider)``"""
  466. return self.type(Host2DeviceCopy)
  467. def name(self, pattern, ignorecase=True):
  468. """filter by node name
  469. :param pattern: a string in glob syntax that can contain ``?`` and
  470. ``*`` to match a single or arbitrary characters.
  471. :type pattern: :class:`str`
  472. :param ignorecase: whether to ignroe case
  473. :type ignorecase: bool
  474. :return: a new :class:`NodeFilter` object
  475. """
  476. return NodeFilterName(self, pattern, ignorecase)
  477. def has_input(self, var):
  478. """an opr is kept if it has given var as one of its inputs
  479. :param var: var node to checked
  480. :return: a new :class:`NodeFilter` object
  481. """
  482. return NodeFilterHasInput(self, var)
  483. def as_list(self):
  484. """consume this iterator and return its content as a list
  485. :rtype: [:class:`.GraphNodeBase`]
  486. """
  487. return list(self)
  488. def as_unique(self):
  489. """assert that this iterator yields only one node and return it
  490. :return: the unique node
  491. :rtype: :class:`.GraphNodeBase`
  492. :raises ValueError: if this iterator does not yield a unique node
  493. """
  494. (opr,) = self
  495. return opr
  496. def as_dict(self):
  497. """construct an ordered dict to map from node names to objects in
  498. this iterator
  499. :rtype: :class:`OrderedDict`
  500. """
  501. return collections.OrderedDict((i.name, i) for i in self)
  502. def as_count(self):
  503. """consume this iterator and get the number of elements
  504. :rtype: int
  505. """
  506. return sum(1 for _ in self)
  507. class NodeFilterType(NodeFilter):
  508. """see :meth:`NodeFilter.type`"""
  509. _node_type = None
  510. def __init__(self, node_iter, node_type):
  511. assert issubclass(node_type, NetworkNode), "bad opr type: {}".format(node_type)
  512. super().__init__(node_iter)
  513. self._node_type = node_type
  514. def __iter__(self):
  515. for i in self._iter:
  516. if isinstance(i, self._node_type):
  517. yield i
  518. class NodeFilterNotType(NodeFilterType):
  519. """see :meth:`NodeFilter.not_type`"""
  520. def __iter__(self):
  521. for i in self._iter:
  522. if not isinstance(i, self._node_type):
  523. yield i
  524. class NodeFilterCheckType(NodeFilterType):
  525. """see :meth:`NodeFilter.check_type`"""
  526. def __iter__(self):
  527. for i in self._iter:
  528. if not isinstance(i, self._node_type):
  529. raise TypeError(
  530. "all nodes should be {}; got {!r}".format(self._node_type, i)
  531. )
  532. yield i
  533. class NodeFilterHasInput(NodeFilter):
  534. """see :meth:`NodeFilter.has_input`"""
  535. _var = None
  536. def __init__(self, node_iter, var):
  537. var = as_varnode(var)
  538. super().__init__(node_iter)
  539. self.var = var
  540. def __iter__(self):
  541. for i in self._iter:
  542. assert isinstance(
  543. i, OpNode
  544. ), "has_input() must be used with OpNode; " "got {!r}".format(i)
  545. if self.var in i.inputs:
  546. yield i
  547. class NodeFilterName(NodeFilter):
  548. """see :meth:`NodeFilter.name`"""
  549. _re = None
  550. def __init__(self, node_iter, pattern, ignorecase):
  551. super().__init__(node_iter)
  552. self.pattern = pattern
  553. self._re = self.make_re(pattern, ignorecase)
  554. @classmethod
  555. def make_re(cls, pattern, ignorecase=True):
  556. assert isinstance(pattern, str), "bad pattern: {!r}".format(pattern)
  557. assert isinstance(ignorecase, bool)
  558. flags = 0
  559. if ignorecase:
  560. flags |= re.IGNORECASE
  561. return re.compile(fnmatch.translate(pattern), flags=flags)
  562. def __iter__(self):
  563. for i in self._iter:
  564. if self.pattern == i.name or self._re.match(i.name):
  565. yield i

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台