You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_repr.py 1.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. import megengine.module as M
  2. from megengine.quantization import quantize, quantize_qat
  3. def test_repr():
  4. class Net(M.Module):
  5. def __init__(self):
  6. super().__init__()
  7. self.conv_bn = M.ConvBnRelu2d(3, 3, 3)
  8. self.linear = M.Linear(3, 3)
  9. def forward(self, x):
  10. return x
  11. net = Net()
  12. ground_truth = (
  13. "Net(\n"
  14. " (conv_bn): ConvBnRelu2d(\n"
  15. " (conv): Conv2d(3, 3, kernel_size=(3, 3))\n"
  16. " (bn): BatchNorm2d(3, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)\n"
  17. " )\n"
  18. " (linear): Linear(in_features=3, out_features=3, bias=True)\n"
  19. ")"
  20. )
  21. assert net.__repr__() == ground_truth
  22. quantize_qat(net)
  23. ground_truth = (
  24. "Net(\n"
  25. " (conv_bn): QAT.ConvBnRelu2d(\n"
  26. " (conv): Conv2d(3, 3, kernel_size=(3, 3))\n"
  27. " (bn): BatchNorm2d(3, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)\n"
  28. " (act_observer): ExponentialMovingAverageObserver()\n"
  29. " (act_fake_quant): FakeQuantize()\n"
  30. " (weight_observer): MinMaxObserver()\n"
  31. " (weight_fake_quant): FakeQuantize()\n"
  32. " )\n"
  33. " (linear): QAT.Linear(\n"
  34. " in_features=3, out_features=3, bias=True\n"
  35. " (act_observer): ExponentialMovingAverageObserver()\n"
  36. " (act_fake_quant): FakeQuantize()\n"
  37. " (weight_observer): MinMaxObserver()\n"
  38. " (weight_fake_quant): FakeQuantize()\n"
  39. " )\n"
  40. ")"
  41. )
  42. assert net.__repr__() == ground_truth
  43. quantize(net)
  44. ground_truth = (
  45. "Net(\n"
  46. " (conv_bn): Quantized.ConvBnRelu2d(3, 3, kernel_size=(3, 3))\n"
  47. " (linear): Quantized.Linear()\n"
  48. ")"
  49. )
  50. assert net.__repr__() == ground_truth