You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

inference.cpp 183 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490
  1. /**
  2. * \file src/gopt/test/inference.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #include "megbrain/opr/dnn/local.h"
  13. #include "megbrain/test/helper.h"
  14. #include "megbrain/gopt/basic_arith.h"
  15. #include "megbrain/gopt/gtrans.h"
  16. #include "megbrain/gopt/inference.h"
  17. #include "megbrain/opr/basic_arith_wrapper.h"
  18. #include "megbrain/opr/blas.h"
  19. #include "megbrain/opr/dnn/batch_norm.h"
  20. #include "megbrain/opr/dnn/convolution.h"
  21. #include "megbrain/opr/dnn/pooling.h"
  22. #include "megbrain/opr/imgproc.h"
  23. #include "megbrain/opr/io.h"
  24. #include "megbrain/opr/nn_int.h"
  25. #include "megbrain/opr/tensor_gen.h"
  26. #include "megbrain/opr/tensor_manip.h"
  27. #include "megbrain/opr/utility.h"
  28. #include "./helper.h"
  29. #include "megbrain/comp_node_env.h"
  30. #include "megdnn/tensor_format.h"
  31. #include <random>
  32. #if MGB_CUDA
  33. #include <cudnn.h>
  34. #endif
  35. using namespace mgb;
  36. namespace {
  37. //! find first the operator of specific type; raise exception if not found
  38. template <typename T>
  39. T& find_opr(SymbolVar endpoint) {
  40. T* found = nullptr;
  41. auto cb = [&found](cg::OperatorNodeBase* opr) {
  42. if (!found && opr->same_type<T>()) {
  43. found = &opr->cast_final_safe<T>();
  44. }
  45. };
  46. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  47. mgb_assert(found, "not found opr from %s", endpoint.node()->name().c_str());
  48. return *found;
  49. }
  50. template <typename T>
  51. T& find_opr(SymbolVar endpoint, const std::string& node_name) {
  52. T* found = nullptr;
  53. auto cb = [&found, &node_name](cg::OperatorNodeBase* opr) {
  54. if (!found && opr->same_type<T>() && opr->name() == node_name) {
  55. found = &opr->cast_final_safe<T>();
  56. }
  57. };
  58. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  59. mgb_assert(found, "not found opr %s from %s", node_name.c_str(),
  60. endpoint.node()->name().c_str());
  61. return *found;
  62. }
  63. template <typename T>
  64. size_t find_opr_num(SymbolVar endpoint) {
  65. size_t opr_num = 0;
  66. auto cb = [&opr_num](cg::OperatorNodeBase* opr) {
  67. if (opr->same_type<T>()) {
  68. opr_num++;
  69. }
  70. };
  71. cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
  72. return opr_num;
  73. }
  74. class NaiveMegDNNHandleScope {
  75. int m_orig_level;
  76. public:
  77. NaiveMegDNNHandleScope()
  78. : m_orig_level{MegDNNHandle::exchange_default_dbg_level(2)} {
  79. CompNode::finalize();
  80. }
  81. ~NaiveMegDNNHandleScope() {
  82. auto set = MegDNNHandle::exchange_default_dbg_level(m_orig_level);
  83. mgb_assert(set == 2);
  84. CompNode::finalize();
  85. }
  86. };
  87. #if MGB_CUDA
  88. //! this function is only used in TestGoptInference.EnableCHWN4...
  89. void warp_perspective_mat_gen(HostTensorND& mat, size_t N, size_t INP_H,
  90. size_t INP_W) {
  91. static std::mt19937 rng(next_rand_seed());
  92. auto rand_real = [&](double lo, double hi) {
  93. return rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo;
  94. };
  95. auto rand_real2 = [&](double range) { return rand_real(-range, range); };
  96. auto ptr = mat.ptr<float>();
  97. for (size_t i = 0; i < N; ++i) {
  98. auto rot = rand_real(0, M_PI * 2), scale = rand_real(0.8, 1.2),
  99. sheer = rand_real(0.9, 1.1), dy = rand_real2(INP_H * 0.5),
  100. dx = rand_real2(INP_W * 0.5), ky = rand_real2(0.1 / INP_H),
  101. kx = rand_real2(0.1 / INP_W), kb = rand_real2(0.1) + 1;
  102. ptr[0] = ptr[4] = cos(rot) * scale;
  103. ptr[1] = -(ptr[3] = sin(rot) * scale);
  104. ptr[3] *= sheer;
  105. ptr[4] *= sheer;
  106. ptr[2] = dx;
  107. ptr[5] = dy;
  108. ptr[6] = kx;
  109. ptr[7] = ky;
  110. ptr[8] = kb;
  111. ptr += 9;
  112. }
  113. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  114. }
  115. #endif
  116. } // namespace
  117. TEST(TestGoptInference, ParamFuseConstEndPoint) {
  118. constexpr size_t SIZE = 23;
  119. HostTensorGenerator<> gen;
  120. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  121. auto graph = ComputingGraph::make();
  122. graph->options().graph_opt_level = 0;
  123. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  124. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  125. p = opr::Host2DeviceCopy::make(*graph, host_p), q = p + x, a = y + 3,
  126. z0 = a + q, z1 = a + 4;
  127. HostTensorND host_z0, host_z1;
  128. SymbolVar z0_1, z1_1;
  129. unpack_vector(gopt::GraphOptimizer{}
  130. .add_pass<gopt::ParamFusePass>()
  131. .apply({{z1, z0}})
  132. .endpoint_vars(),
  133. z1_1, z0_1);
  134. auto func = graph->compile({make_callback_copy(z0_1, host_z0),
  135. make_callback_copy(z1_1, host_z1)});
  136. func->to_json()->writeto_fpath(
  137. output_file("TestGoptInference.ParamFuseEndPoint.json"));
  138. func->execute();
  139. int nr_opr = 0;
  140. func->iter_opr_seq([&](cg::OperatorNodeBase*) {
  141. ++nr_opr;
  142. return true;
  143. });
  144. ASSERT_EQ(8, nr_opr);
  145. auto px = host_x->ptr<float>(), pz0 = host_z0.ptr<float>();
  146. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0],
  147. pz1 = host_z1.ptr<float>()[0];
  148. for (size_t i = 0; i < SIZE; ++i) {
  149. MGB_ASSERT_FLOAT_EQ(px[i] + yv + 3 + pv, pz0[i]);
  150. }
  151. MGB_ASSERT_FLOAT_EQ(yv + 7, pz1);
  152. }
  153. TEST(TestGoptInference, ParamFuse) {
  154. constexpr size_t SIZE = 23;
  155. HostTensorGenerator<> gen;
  156. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  157. auto graph = ComputingGraph::make();
  158. graph->options().graph_opt_level = 0;
  159. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  160. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  161. p = opr::Host2DeviceCopy::make(*graph, host_p),
  162. z = x + y, // endpoint
  163. q = x * y + p; // middle point
  164. SymbolVar z1, q1;
  165. unpack_vector(gopt::GraphOptimizer{}
  166. .add_pass<gopt::ParamFusePass>()
  167. .apply({{z, q}})
  168. .endpoint_vars(),
  169. z1, q1);
  170. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  171. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  172. ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
  173. q.node()->owner_opr()->dyn_typeinfo());
  174. HostTensorND host_z, host_q;
  175. auto func = graph->compile(
  176. {make_callback_copy(z1, host_z), make_callback_copy(q1, host_q)});
  177. func->execute();
  178. int nr_opr = 0;
  179. func->iter_opr_seq([&](cg::OperatorNodeBase*) {
  180. ++nr_opr;
  181. return true;
  182. });
  183. ASSERT_EQ(6, nr_opr);
  184. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
  185. pq = host_q.ptr<float>();
  186. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  187. for (size_t i = 0; i < SIZE; ++i) {
  188. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  189. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  190. }
  191. }
  192. TEST(TestGoptInference, ParamFuseMultiDeviceTensorHolder) {
  193. constexpr size_t SIZE = 23;
  194. HostTensorGenerator<> gen;
  195. auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
  196. auto graph = ComputingGraph::make();
  197. graph->options().graph_opt_level = 0;
  198. auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
  199. y = opr::SharedDeviceTensor::make(*graph, *host_y),
  200. p = opr::Host2DeviceCopy::make(*graph, host_p),
  201. z = x + y, //! endpoint
  202. q = x * y + p; //! middle point
  203. SymbolVar z1, q1;
  204. unpack_vector(gopt::GraphOptimizer{}
  205. .add_pass<gopt::ParamMergePass>()
  206. .apply({{z}})
  207. .endpoint_vars(),
  208. z1);
  209. ASSERT_TRUE(z1.node()
  210. ->owner_opr()
  211. ->input(0)
  212. ->owner_opr()
  213. ->same_type<opr::MultipleDeviceTensorHolder>());
  214. unpack_vector(gopt::GraphOptimizer{}
  215. .add_pass<gopt::ParamMergePass>()
  216. .add_pass<gopt::ParamFusePass>()
  217. .apply({{z, q}})
  218. .endpoint_vars(),
  219. z1, q1);
  220. ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
  221. ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
  222. ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
  223. q.node()->owner_opr()->dyn_typeinfo());
  224. HostTensorND host_z, host_q;
  225. auto func = graph->compile(
  226. {make_callback_copy(z1, host_z), make_callback_copy(q1, host_q)});
  227. func->execute();
  228. int nr_opr = 0;
  229. func->iter_opr_seq([&](cg::OperatorNodeBase* op) {
  230. ++nr_opr;
  231. return true;
  232. });
  233. ASSERT_EQ(6, nr_opr);
  234. auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
  235. pq = host_q.ptr<float>();
  236. auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
  237. for (size_t i = 0; i < SIZE; ++i) {
  238. MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
  239. MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
  240. }
  241. }
  242. TEST(TestGoptInference, ParamFuseMultiRead) {
  243. HostTensorGenerator<> gen;
  244. auto graph = ComputingGraph::make();
  245. graph->options().graph_opt_level = 0;
  246. auto mkvar = [&](const char* name, const TensorShape& shp) {
  247. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  248. };
  249. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  250. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  251. };
  252. auto x = mkvar("x", {23}), p0 = mkcvar("p0", {1}), p1 = mkcvar("p1", {1}),
  253. z0 = x * (p0 + p1) + x / (p0 + p1);
  254. SymbolVar z1;
  255. unpack_vector(gopt::GraphOptimizer{}
  256. .add_pass<gopt::ParamFusePass>()
  257. .apply({{z0}})
  258. .endpoint_vars(),
  259. z1);
  260. ASSERT_NE(z0.node(), z1.node());
  261. ASSERT_TRUE(z1.node()
  262. ->owner_opr()
  263. ->input(0)
  264. ->owner_opr()
  265. ->input(1)
  266. ->owner_opr()
  267. ->same_type<opr::SharedDeviceTensor>());
  268. ASSERT_TRUE(z1.node()
  269. ->owner_opr()
  270. ->input(1)
  271. ->owner_opr()
  272. ->input(1)
  273. ->owner_opr()
  274. ->same_type<opr::SharedDeviceTensor>());
  275. HostTensorND host_z0, host_z1;
  276. graph->compile({make_callback_copy(z0, host_z0),
  277. make_callback_copy(z1, host_z1)})
  278. ->execute();
  279. MGB_ASSERT_TENSOR_EQ(host_z0, host_z1);
  280. }
  281. TEST(TestGoptInference, ParamFuseStaticInfer) {
  282. HostTensorGenerator<> gen;
  283. auto graph = ComputingGraph::make();
  284. auto mkvar = [&](const char* name, const TensorShape& shp) {
  285. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  286. };
  287. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  288. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  289. };
  290. auto a = mkvar("x", {4}),
  291. b = a.reshape(opr::GetVarShape::make(mkcvar("tshp", {2, 2})));
  292. SymbolVar b1;
  293. unpack_vector(gopt::GraphOptimizer{}
  294. .add_pass<gopt::ParamFusePass>()
  295. .apply({{b}})
  296. .endpoint_vars(),
  297. b1);
  298. ASSERT_EQ(b1, a.reshape({2, 2}));
  299. }
  300. TEST(TestGoptInference, ParamRedistributeConvMul) {
  301. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  302. HostTensorGenerator<> gen;
  303. auto host_x = gen({N, IC, IH, IW}), host_k = gen({IC}),
  304. host_w = gen({OC, IC, KH, KW});
  305. auto graph = ComputingGraph::make();
  306. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  307. k = opr::Dimshuffle::make(
  308. opr::SharedDeviceTensor::make(*graph, *host_k),
  309. {-1, 0, -1, -1}),
  310. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  311. y0 = opr::Convolution::make(x * k, w);
  312. SymbolVar y1;
  313. unpack_vector(gopt::GraphOptimizer{}
  314. .add_pass<gopt::ParamRedistributePass>()
  315. .apply({{y0}})
  316. .endpoint_vars(),
  317. y1);
  318. ASSERT_NE(y0.node(), y1.node());
  319. HostTensorND host_y0, host_y1;
  320. auto func = graph->compile(
  321. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  322. func->execute();
  323. MGB_ASSERT_TENSOR_EQ(host_y0, host_y1);
  324. }
  325. TEST(TestGoptInference, ParamRedistributeConvMulUniqReader) {
  326. constexpr size_t N = 4, C = 3, IH = 5, IW = 4, KH = 1, KW = 1;
  327. HostTensorGenerator<> gen;
  328. auto host_x = gen({N, C, IH, IW}), host_k = gen({C}),
  329. host_w = gen({C, C, KH, KW});
  330. auto graph = ComputingGraph::make();
  331. graph->options().graph_opt_level = 0;
  332. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  333. k = opr::Dimshuffle::make(
  334. opr::SharedDeviceTensor::make(*graph, *host_k) + 2,
  335. {-1, 0, -1, -1}),
  336. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  337. // y0 should be replaced
  338. y0 = opr::powf(opr::Convolution::make(x * k, w).rename("y0") + 2,
  339. 2),
  340. y0k = (y0 * k).rename("y0k"),
  341. // y0k is accessed twice, so it should not be replaced
  342. y1 = opr::Convolution::make(y0k, w).rename("y1"), z0 = y1 / y0k;
  343. SymbolVar z1;
  344. unpack_vector(gopt::GraphOptimizer{}
  345. .add_pass<gopt::ParamRedistributePass>()
  346. .apply({{z0}})
  347. .endpoint_vars(),
  348. z1);
  349. ASSERT_NE(z0.node(), z1.node());
  350. auto y1_repl = z1.node()->owner_opr()->input(0)->owner_opr();
  351. ASSERT_TRUE(y1_repl->same_type<opr::Convolution>());
  352. ASSERT_EQ(y1_repl->input(0), z1.node()->owner_opr()->input(1));
  353. HostTensorND host_z0, host_z1;
  354. auto func = graph->compile(
  355. {make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)});
  356. func->execute();
  357. MGB_ASSERT_TENSOR_NEAR(host_z0, host_z1, 5e-5);
  358. }
  359. TEST(TestGoptInference, ParamRedistributeMulConvMul) {
  360. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  361. HostTensorGenerator<> gen;
  362. auto host_x = gen({N, IC, IH, IW}), host_k1 = gen({IC}),
  363. host_k2 = gen({1, OC, 1, 1}), host_w = gen({OC, IC, KH, KW});
  364. auto graph = ComputingGraph::make();
  365. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  366. k1 = opr::Dimshuffle::make(
  367. opr::SharedDeviceTensor::make(*graph, *host_k1),
  368. {-1, 0, -1, -1}),
  369. k2 = opr::SharedDeviceTensor::make(*graph, *host_k2),
  370. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  371. y0 = opr::Convolution::make(x * k1, w) * k2;
  372. SymbolVar y1;
  373. unpack_vector(gopt::GraphOptimizer{}
  374. .add_pass<gopt::ParamRedistributePass>()
  375. .add_pass<gopt::ParamFusePass>()
  376. .apply({{y0}})
  377. .endpoint_vars(),
  378. y1);
  379. auto y1opr = y1.node()->owner_opr();
  380. ASSERT_TRUE(y1opr->same_type<opr::Convolution>());
  381. ASSERT_EQ(y1opr->input(0), x.node());
  382. HostTensorND host_y0, host_y1;
  383. auto func = graph->compile(
  384. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  385. func->execute();
  386. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 5e-6);
  387. }
  388. TEST(TestGoptInference, ParamRedistributeConvAdd) {
  389. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  390. HostTensorGenerator<> gen;
  391. auto host_x = gen({N, IC, IH, IW}), host_b = gen({IC}),
  392. host_w = gen({OC, IC, KH, KW});
  393. auto graph = ComputingGraph::make();
  394. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  395. b = opr::Dimshuffle::make(
  396. opr::SharedDeviceTensor::make(*graph, *host_b),
  397. {-1, 0, -1, -1}),
  398. w = opr::SharedDeviceTensor::make(*graph, *host_w),
  399. y0 = opr::Convolution::make(x + b, w);
  400. SymbolVar y1;
  401. unpack_vector(gopt::GraphOptimizer{}
  402. .add_pass<gopt::ParamRedistributePass>()
  403. .add_pass<gopt::ParamFusePass>()
  404. .apply({{y0}})
  405. .endpoint_vars(),
  406. y1);
  407. ASSERT_NE(y0.node(), y1.node());
  408. HostTensorND host_y0, host_y1;
  409. auto func = graph->compile(
  410. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  411. func->execute();
  412. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  413. }
  414. TEST(TestGoptInference, ParamRedistributeDistThenReasso) {
  415. constexpr size_t N = 4, IC0 = 3, IC1 = 6, IH = 5, IW = 4, OC = 4, KH = 3,
  416. KW = 2;
  417. HostTensorGenerator<> gen;
  418. auto graph = ComputingGraph::make();
  419. auto mkvar = [&](const char* name, const TensorShape& shp) {
  420. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  421. };
  422. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  423. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  424. };
  425. auto x0 = mkvar("x0", {N, IC0, IH, IW}), x1 = mkvar("x1", {N, IC1, IH, IW}),
  426. k0 = opr::Dimshuffle::make(mkcvar("x1_", {IC0}), {-1, 0, -1, -1})
  427. .rename("x1"),
  428. w0 = mkcvar("w0", {OC, IC0, KH, KW}),
  429. k1 = mkcvar("k1", {1, IC1, 1, 1}),
  430. w1 = mkcvar("w1", {OC, IC1, KH, KW}), b0 = mkvar("b0", {1, OC, 1, 1}),
  431. b1 = mkcvar("b1", {1}), k2 = mkcvar("k2", {1}),
  432. y0 = (opr::Convolution::make(x0 * k0, w0) +
  433. opr::Convolution::make(x1 + k1, w1) + b0 + b1) *
  434. k2;
  435. SymbolVar y1;
  436. unpack_vector(gopt::GraphOptimizer{}
  437. .add_pass<gopt::ParamRedistributePass>()
  438. .add_pass<gopt::ReorderArithChainPass>(
  439. gopt::ConstVarType::IMMUTABLE_AND_PARAM)
  440. .add_pass<gopt::ParamFusePass>()
  441. .apply({{y0}})
  442. .endpoint_vars(),
  443. y1);
  444. ASSERT_NE(y0.node(), y1.node());
  445. HostTensorND host_y0, host_y1;
  446. auto func = graph->compile(
  447. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  448. func->execute();
  449. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  450. auto chain =
  451. gopt::extract_opr_leaves(y1.node(), [](cg::OperatorNodeBase* opr) {
  452. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  453. });
  454. size_t nr_conv = 0;
  455. for (auto i : chain) {
  456. auto opr = i->owner_opr();
  457. if (opr->same_type<opr::Convolution>()) {
  458. ++nr_conv;
  459. ASSERT_TRUE(opr->input(0)
  460. ->owner_opr()
  461. ->same_type<opr::Host2DeviceCopy>());
  462. ASSERT_TRUE(opr->input(1)
  463. ->owner_opr()
  464. ->same_type<opr::SharedDeviceTensor>());
  465. }
  466. }
  467. ASSERT_EQ(2u, nr_conv);
  468. ASSERT_EQ(4u, chain.size());
  469. }
  470. TEST(TestGoptInference, ParamRedistributeMultiChange) {
  471. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  472. HostTensorGenerator<> gen;
  473. auto graph = ComputingGraph::make();
  474. graph->options().graph_opt_level = 0;
  475. auto mkvar = [&](const char* name, const TensorShape& shp) {
  476. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  477. };
  478. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  479. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  480. };
  481. auto x = mkvar("x", {N, IC, IH, IW}), k0 = mkcvar("k0", {1, IC, 1, 1}),
  482. b0 = mkcvar("b0", {1, IC, 1, 1}), k1 = mkcvar("k0", {1}),
  483. b1 = mkcvar("b0", {1}), w = mkcvar("w", {OC, IC, KH, KW}),
  484. y0 = (opr::Convolution::make(x * k0 + b0, w) + b1) * k1;
  485. SymbolVar y1;
  486. unpack_vector(gopt::GraphOptimizer{}
  487. .add_pass<gopt::ParamRedistributePass>()
  488. .add_pass<gopt::ParamFusePass>()
  489. .apply({{y0}})
  490. .endpoint_vars(),
  491. y1);
  492. ASSERT_NE(y0.node(), y1.node());
  493. HostTensorND host_y0, host_y1;
  494. auto func = graph->compile(
  495. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  496. func->execute();
  497. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  498. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  499. ASSERT_TRUE(y1elem);
  500. auto yconv = y1elem->input(0)->owner_opr();
  501. if (!yconv->same_type<opr::Convolution>())
  502. yconv = y1elem->input(1)->owner_opr();
  503. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  504. ASSERT_EQ(x.node(), yconv->input(0));
  505. }
  506. TEST(TestGoptInference, ParamRedistributeMultiReader) {
  507. constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
  508. HostTensorGenerator<> gen;
  509. auto graph = ComputingGraph::make();
  510. graph->options().graph_opt_level = 0;
  511. auto mkvar = [&](const char* name, const TensorShape& shp) {
  512. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  513. };
  514. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  515. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  516. };
  517. auto x = mkvar("x", {N, IC, IH, IW}), k = mkcvar("k", {1, OC, 1, 1}),
  518. w = mkcvar("w", {OC, IC, KH, KW});
  519. auto conv = opr::Convolution::make(x, w);
  520. auto t = conv * k;
  521. auto y0 = t * 4.2f + t * 2.4f;
  522. SymbolVar y1;
  523. unpack_vector(gopt::GraphOptimizer{}
  524. .add_pass<gopt::ParamRedistributePass>()
  525. .add_pass<gopt::ParamFusePass>()
  526. .apply({{y0}})
  527. .endpoint_vars(),
  528. y1);
  529. ASSERT_NE(y0.node(), y1.node());
  530. HostTensorND host_y0, host_y1;
  531. auto func = graph->compile(
  532. {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
  533. func->execute();
  534. MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
  535. auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
  536. ASSERT_TRUE(y1elem);
  537. auto ymul0 = gopt::as_elem_opr(y1elem->input(0), opr::Elemwise::Mode::MUL),
  538. ymul1 = gopt::as_elem_opr(y1elem->input(1), opr::Elemwise::Mode::MUL);
  539. ASSERT_TRUE(ymul0);
  540. ASSERT_TRUE(ymul1);
  541. auto yconv = ymul0->input(0)->owner_opr();
  542. if (!yconv->same_type<opr::Convolution>()) {
  543. yconv = ymul0->input(1)->owner_opr();
  544. }
  545. ASSERT_TRUE(yconv->same_type<opr::Convolution>());
  546. if (ymul1->input(0) != yconv->output(0)) {
  547. ASSERT_EQ(yconv->output(0), ymul1->input(1));
  548. }
  549. ASSERT_EQ(x.node(), yconv->input(0));
  550. }
  551. TEST(TestGoptInference, ParamFuseBiasMerge) {
  552. HostTensorGenerator<> gen;
  553. auto graph = ComputingGraph::make();
  554. graph->options().graph_opt_level = 0;
  555. auto mkvar = [&](const char* name, const TensorShape& shp) {
  556. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  557. };
  558. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  559. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  560. };
  561. auto x = mkvar("x", {6, 3, 8, 8}), w1 = mkcvar("w1", {4, 3, 3, 3}),
  562. w2 = mkcvar("w2", {4, 3, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  563. b2 = mkcvar("b2", {1, 4, 1, 1}),
  564. y1 = opr::Convolution::make(x, w1) + b1,
  565. y2 = opr::Convolution::make(x, w2) + b2, y = y1 + y2;
  566. SymbolVar y_opt;
  567. unpack_vector(gopt::optimize_for_inference({y}), y_opt);
  568. HostTensorND host_y, host_y_opt;
  569. auto func = graph->compile({make_callback_copy(y, host_y),
  570. make_callback_copy(y_opt, host_y_opt)});
  571. func->execute();
  572. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  573. graph->compile({{y_opt, {}}})
  574. ->to_json()
  575. ->writeto_fpath(
  576. output_file("TestGoptInference.ParamFuseConvMerge.json"));
  577. auto chain = gopt::extract_opr_leaves(
  578. y_opt.node(), [](cg::OperatorNodeBase* opr) {
  579. return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
  580. });
  581. ASSERT_EQ(3u, chain.size());
  582. }
  583. TEST(TestGoptInference, Float16IOFloat32Compute) {
  584. constexpr size_t INP_H = 10, INP_W = 10;
  585. HostTensorGenerator<> gen;
  586. auto graph = ComputingGraph::make();
  587. auto mkvar = [&](const char* name, const TensorShape& shp) {
  588. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  589. };
  590. graph->options().graph_opt_level = 0;
  591. auto a = mkvar("a", {1, 4, INP_H, INP_W}),
  592. s0 = mkvar("s0", {20, 3, INP_H, INP_W}),
  593. s1 = mkvar("s1", {4, 3, 1, 1});
  594. auto b = opr::Convolution::make(s0, s1, {}, {});
  595. auto y = a + b;
  596. y = opr::Concat::make({y, -y}, 0);
  597. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  598. SymbolVar y_opt;
  599. auto options = gopt::OptimizeForInferenceOptions{};
  600. options.enable_f16_io_f32_comp();
  601. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  602. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  603. HostTensorND host_y, host_y_opt;
  604. auto func = graph->compile({make_callback_copy(y, host_y),
  605. make_callback_copy(y_opt, host_y_opt)});
  606. func->execute();
  607. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  608. }
  609. TEST(TestGoptInference, Float16IOFloat32ComputeDeConv) {
  610. constexpr size_t INP_H = 10, INP_W = 10;
  611. HostTensorGenerator<> gen;
  612. auto graph = ComputingGraph::make();
  613. auto mkvar = [&](const char* name, const TensorShape& shp) {
  614. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  615. };
  616. graph->options().graph_opt_level = 0;
  617. auto s0 = mkvar("s0", {5, 5, 3, 3}), s1 = mkvar("s1", {1, 5, INP_H, INP_W});
  618. auto y = opr::ConvolutionBackwardData::make(s0, s1, {}, {});
  619. SymbolVar y_opt;
  620. auto options = gopt::OptimizeForInferenceOptions{};
  621. options.enable_f16_io_f32_comp();
  622. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  623. ASSERT_EQ(
  624. find_opr<opr::ConvolutionBackwardData>(y_opt).param().compute_mode,
  625. opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32);
  626. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  627. HostTensorND host_y, host_y_opt;
  628. auto func = graph->compile({make_callback_copy(y, host_y),
  629. make_callback_copy(y_opt, host_y_opt)});
  630. func->execute();
  631. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-2);
  632. }
  633. TEST(TestGoptInference, Float16IOFloat32ComputeWarpPerspective) {
  634. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  635. HostTensorGenerator<> gen;
  636. auto graph = ComputingGraph::make();
  637. auto mkvar = [&](const char* name, const TensorShape& shp) {
  638. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  639. };
  640. graph->options().graph_opt_level = 0;
  641. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  642. float value1 = M_PI, value2 = 0.6;
  643. auto gen_mat = [&](HostTensorND& mat) {
  644. auto ptr = mat.ptr<float>();
  645. for (size_t i = 0; i < N; ++i) {
  646. auto rot = value1, scale = value2, sheer = value1, dy = value2,
  647. dx = value2, ky = value2, kx = value2, kb = value2;
  648. ptr[0] = ptr[4] = cos(rot) * scale;
  649. ptr[1] = -(ptr[3] = sin(rot) * scale);
  650. ptr[3] *= sheer;
  651. ptr[4] *= sheer;
  652. ptr[2] = dx;
  653. ptr[5] = dy;
  654. ptr[6] = kx;
  655. ptr[7] = ky;
  656. ptr[8] = kb;
  657. ptr += 9;
  658. }
  659. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  660. };
  661. auto mat_host = std::make_shared<HostTensorND>(
  662. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  663. gen_mat(*mat_host);
  664. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  665. TensorShape out_shp{20, 20};
  666. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  667. SymbolVar y_opt;
  668. auto options = gopt::OptimizeForInferenceOptions{};
  669. options.enable_f16_io_f32_comp();
  670. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  671. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  672. HostTensorND host_y, host_y_opt;
  673. auto func = graph->compile({make_callback_copy(y, host_y),
  674. make_callback_copy(y_opt, host_y_opt)});
  675. func->execute();
  676. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  677. }
  678. TEST(TestGoptInference, Float16IOFloat32ComputeRemap) {
  679. auto cn = CompNode::load("cpu1");
  680. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  681. HostTensorGenerator<> gen;
  682. auto graph = ComputingGraph::make();
  683. auto mkvar = [&](const char* name, const TensorShape& shp) {
  684. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  685. };
  686. graph->options().graph_opt_level = 0;
  687. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  688. auto gen_map = [&](HostTensorND& mat) {
  689. auto ptr = mat.ptr<float>();
  690. for (size_t n = 0; n < N; ++n) {
  691. for (int h = 0; h < 5; ++h) {
  692. for (int w = 0; w < 5; ++w) {
  693. *ptr++ = (h * 5 * 2) + 5 * 2 + 0;
  694. *ptr++ = (h * 5 * 2) + 5 * 2 + 1;
  695. }
  696. }
  697. }
  698. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  699. };
  700. auto map_host = std::make_shared<HostTensorND>(
  701. a.node()->comp_node(), TensorShape{N, 5, 5, 2}, dtype::Float32());
  702. gen_map(*map_host);
  703. auto map = opr::Host2DeviceCopy::make(*graph, map_host).rename("map");
  704. auto y = opr::Remap::make(a, map);
  705. SymbolVar y_opt;
  706. auto options = gopt::OptimizeForInferenceOptions{};
  707. options.enable_f16_io_f32_comp();
  708. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  709. ASSERT_EQ(y_opt.dtype(), dtype::Float32());
  710. HostTensorND host_y, host_y_opt;
  711. auto func = graph->compile({make_callback_copy(y, host_y),
  712. make_callback_copy(y_opt, host_y_opt)});
  713. func->execute();
  714. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  715. }
  716. TEST(TestGoptInference, Uint8IOFloat16ComputeWarpPerspective) {
  717. constexpr size_t INP_H = 10, INP_W = 10, N = 2;
  718. HostTensorGenerator<dtype::Uint8> gen_uint8;
  719. auto graph = ComputingGraph::make();
  720. auto mkvar = [&](const char* name, const TensorShape& shp) {
  721. return opr::Host2DeviceCopy::make(*graph, gen_uint8(shp)).rename(name);
  722. };
  723. graph->options().graph_opt_level = 0;
  724. auto a = mkvar("a", {N, 4, INP_H, INP_W});
  725. float value1 = M_PI, value2 = 0.6;
  726. auto gen_mat = [&](HostTensorND& mat) {
  727. auto ptr = mat.ptr<float>();
  728. for (size_t i = 0; i < N; ++i) {
  729. auto rot = value1, scale = value2, sheer = value1, dy = value2,
  730. dx = value2, ky = value2, kx = value2, kb = value2;
  731. ptr[0] = ptr[4] = cos(rot) * scale;
  732. ptr[1] = -(ptr[3] = sin(rot) * scale);
  733. ptr[3] *= sheer;
  734. ptr[4] *= sheer;
  735. ptr[2] = dx;
  736. ptr[5] = dy;
  737. ptr[6] = kx;
  738. ptr[7] = ky;
  739. ptr[8] = kb;
  740. ptr += 9;
  741. }
  742. mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
  743. };
  744. auto mat_host = std::make_shared<HostTensorND>(
  745. a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
  746. gen_mat(*mat_host);
  747. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  748. TensorShape out_shp{20, 20};
  749. auto y = opr::WarpPerspective::make(a, mat, out_shp);
  750. SymbolVar y_opt;
  751. auto options = gopt::OptimizeForInferenceOptions{};
  752. options.enable_f16_io_comp();
  753. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  754. ASSERT_EQ(y_opt.dtype(), dtype::Uint8());
  755. HostTensorND host_y, host_y_opt;
  756. auto func = graph->compile({make_callback_copy(y, host_y),
  757. make_callback_copy(y_opt, host_y_opt)});
  758. func->execute();
  759. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  760. }
  761. TEST(TestGoptInference, Float32TOFloat16) {
  762. CompNode cn = CompNode::load("cpu0");
  763. HostTensorGenerator<> gen(0, 1, 0);
  764. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  765. host_x2 = gen({4, 3, 1, 1}, cn);
  766. auto graph = ComputingGraph::make();
  767. auto make_f32_to_f16_graph = [&]() {
  768. graph->options().graph_opt_level = 0;
  769. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  770. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  771. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  772. auto b = opr::Convolution::make(d1, d2, {}, {});
  773. auto y = d0 + b;
  774. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  775. SymbolVar y_opt;
  776. auto options = gopt::OptimizeForInferenceOptions{};
  777. options.enable_f16_io_comp();
  778. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  779. return y_opt;
  780. };
  781. auto make_f16_graph = [&]() {
  782. auto d0 = opr::TypeCvt::make(
  783. opr::Host2DeviceCopy::make(*graph, host_x0),
  784. dtype::Float16{}),
  785. d1 = opr::TypeCvt::make(
  786. opr::Host2DeviceCopy::make(*graph, host_x1),
  787. dtype::Float16{}),
  788. d2 = opr::TypeCvt::make(
  789. opr::SharedDeviceTensor::make(*graph, *host_x2),
  790. dtype::Float16{});
  791. auto b = opr::Convolution::make(d1, d2, {}, {});
  792. SymbolVar y = d0 + b;
  793. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  794. y = opr::TypeCvt::make(y, dtype::Float32{});
  795. return y;
  796. };
  797. auto y_opt = make_f32_to_f16_graph();
  798. auto y = make_f16_graph();
  799. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  800. ASSERT_EQ(y.dtype(), dtype::Float32{});
  801. HostTensorND host_y_opt, host_y;
  802. auto func = graph->compile({make_callback_copy(y, host_y),
  803. make_callback_copy(y_opt, host_y_opt)});
  804. func->execute();
  805. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  806. }
  807. TEST(TestGoptInference, Float32TOFloat16C32) {
  808. CompNode cn = CompNode::load("cpu0");
  809. HostTensorGenerator<> gen(0, 1, 0);
  810. auto host_x0 = gen({1, 4, 1, 1}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  811. host_x2 = gen({4, 3, 1, 1}, cn);
  812. auto graph = ComputingGraph::make();
  813. auto make_f32_to_f16_graph = [&]() {
  814. graph->options().graph_opt_level = 0;
  815. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  816. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  817. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  818. auto y = opr::ConvBias::make(d1, d2, d0);
  819. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  820. SymbolVar y_opt;
  821. auto options = gopt::OptimizeForInferenceOptions{};
  822. options.enable_f16_io_f32_comp();
  823. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  824. return y_opt;
  825. };
  826. auto make_f16_graph = [&]() {
  827. auto d0 = opr::TypeCvt::make(
  828. opr::TypeCvt::make(
  829. opr::Host2DeviceCopy::make(*graph, host_x0),
  830. dtype::Float16{}),
  831. dtype::Float32{}),
  832. d1 = opr::TypeCvt::make(
  833. opr::TypeCvt::make(
  834. opr::Host2DeviceCopy::make(*graph, host_x1),
  835. dtype::Float16{}),
  836. dtype::Float32{}),
  837. d2 = opr::TypeCvt::make(
  838. opr::TypeCvt::make(
  839. opr::SharedDeviceTensor::make(*graph, *host_x2),
  840. dtype::Float16{}),
  841. dtype::Float32{});
  842. auto y = opr::ConvBias::make(d1, d2, d0);
  843. y = opr::Reduce::make(y, {}, y.make_scalar(1));
  844. y = opr::TypeCvt::make(opr::TypeCvt::make(y, dtype::Float16{}),
  845. dtype::Float32{});
  846. return y;
  847. };
  848. auto y_opt = make_f32_to_f16_graph();
  849. auto y = make_f16_graph();
  850. ASSERT_EQ(find_opr<opr::ConvBias>(y_opt).param().compute_mode,
  851. opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32);
  852. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  853. ASSERT_EQ(y.dtype(), dtype::Float32{});
  854. HostTensorND host_y_opt, host_y;
  855. auto func = graph->compile({make_callback_copy(y, host_y),
  856. make_callback_copy(y_opt, host_y_opt)});
  857. func->execute();
  858. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  859. }
  860. TEST(TestGoptInference, Float32TOFloat16EndpointElemwise) {
  861. CompNode cn = CompNode::load("cpu0");
  862. HostTensorGenerator<> gen(0, 1, 0);
  863. auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
  864. host_x2 = gen({4, 3, 1, 1}, cn);
  865. auto graph = ComputingGraph::make();
  866. auto make_f32_to_f16_graph = [&]() {
  867. graph->options().graph_opt_level = 0;
  868. auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
  869. d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
  870. d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
  871. auto b = opr::Convolution::make(d1, d2, {}, {});
  872. auto y = d0 + b;
  873. SymbolVar y_opt;
  874. auto options = gopt::OptimizeForInferenceOptions{};
  875. options.enable_f16_io_comp();
  876. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  877. return y_opt;
  878. };
  879. auto make_f16_graph = [&]() {
  880. auto d0 = opr::TypeCvt::make(
  881. opr::Host2DeviceCopy::make(*graph, host_x0),
  882. dtype::Float16{}),
  883. d1 = opr::TypeCvt::make(
  884. opr::Host2DeviceCopy::make(*graph, host_x1),
  885. dtype::Float16{}),
  886. d2 = opr::TypeCvt::make(
  887. opr::SharedDeviceTensor::make(*graph, *host_x2),
  888. dtype::Float16{});
  889. auto b = opr::Convolution::make(d1, d2, {}, {});
  890. SymbolVar y = d0 + b;
  891. y = opr::TypeCvt::make(y, dtype::Float32{});
  892. return y;
  893. };
  894. auto y_opt = make_f32_to_f16_graph();
  895. auto y = make_f16_graph();
  896. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  897. ASSERT_EQ(y.dtype(), dtype::Float32{});
  898. HostTensorND host_y_opt, host_y;
  899. auto func = graph->compile({make_callback_copy(y, host_y),
  900. make_callback_copy(y_opt, host_y_opt)});
  901. func->execute();
  902. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  903. }
  904. TEST(TestGoptInference, Float32TOFloat16Linspace) {
  905. CompNode cn = CompNode::load("cpu0");
  906. HostTensorGenerator<> gen(0, 1, 0);
  907. auto host_x = gen({3, 1}, cn);
  908. auto graph = ComputingGraph::make();
  909. auto make_f32_to_f16_graph = [&]() {
  910. graph->options().graph_opt_level = 0;
  911. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  912. auto xshp = opr::GetVarShape::make(x);
  913. auto cv = [&x](int v) { return x.make_scalar(v); };
  914. auto sub = [&xshp, &cv](int idx) {
  915. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  916. };
  917. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  918. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  919. auto y = opr::Reshape::make(lin, shp);
  920. auto mm = opr::MatrixMul::make(x, y);
  921. SymbolVar mm_opt;
  922. auto options = gopt::OptimizeForInferenceOptions{};
  923. options.enable_f16_io_comp();
  924. unpack_vector(gopt::optimize_for_inference({mm}, options), mm_opt);
  925. return mm_opt;
  926. };
  927. auto make_f16_graph = [&]() {
  928. auto x = opr::TypeCvt::make(opr::Host2DeviceCopy::make(*graph, host_x),
  929. dtype::Float16());
  930. auto xshp = opr::GetVarShape::make(x);
  931. auto cv = [&x](int v) { return x.make_scalar(v); };
  932. auto sub = [&xshp, &cv](int idx) {
  933. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  934. };
  935. auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
  936. lin = opr::TypeCvt::make(lin, dtype::Float16());
  937. auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
  938. auto y = opr::Reshape::make(lin, shp);
  939. auto mm = opr::MatrixMul::make(x, y);
  940. mm = opr::TypeCvt::make(mm, dtype::Float32{});
  941. return mm;
  942. };
  943. auto y_opt = make_f32_to_f16_graph();
  944. auto y = make_f16_graph();
  945. ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
  946. ASSERT_EQ(y.dtype(), dtype::Float32{});
  947. HostTensorND host_y_opt, host_y;
  948. auto func = graph->compile({make_callback_copy(y, host_y),
  949. make_callback_copy(y_opt, host_y_opt)});
  950. func->execute();
  951. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  952. }
  953. TEST(TestGoptInference, Float32TOFloat16Endpoints) {
  954. HostTensorGenerator<> gen;
  955. auto graph = ComputingGraph::make();
  956. auto mkvar = [&](const char* name, const TensorShape& shp) {
  957. return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
  958. };
  959. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  960. return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
  961. };
  962. graph->options().graph_opt_level = 0;
  963. opr::Convolution::Param param;
  964. param.pad_h = param.pad_w = 0;
  965. auto x = mkvar("x", {8, 8, 8, 8}), y = mkvar("y", {8, 8, 8, 8}),
  966. w = mkcvar("w", {4, 8, 3, 3}),
  967. z = opr::Convolution::make(x + y, w, param);
  968. auto options = gopt::OptimizeForInferenceOptions{};
  969. options.enable_f16_io_f32_comp();
  970. SymbolVarArray out = gopt::optimize_for_inference({x + y, z}, options);
  971. ASSERT_EQ(out[0].dtype(), dtype::Float32());
  972. ASSERT_EQ(out[1].dtype(), dtype::Float32());
  973. ASSERT_EQ(out[0].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
  974. ASSERT_EQ(out[1].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
  975. }
  976. TEST(TestGoptInference, ConvertFormatNHWCD4) {
  977. // hwcd4 is only supported in naive handle
  978. NaiveMegDNNHandleScope naive_megdnn_handle;
  979. HostTensorGenerator<> gen;
  980. auto cn = CompNode::load("cpu0");
  981. auto graph = ComputingGraph::make();
  982. graph->options().graph_opt_level = 0;
  983. auto mkvar = [&](const char* name, const TensorShape& shp) {
  984. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  985. };
  986. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  987. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  988. .rename(name);
  989. };
  990. auto host_x = gen({8, 8, 8, 8}, cn);
  991. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  992. opr::Convolution::Param param;
  993. param.pad_h = param.pad_w = 0;
  994. auto w1 = mkcvar("w1", {4, 8, 3, 3}),
  995. conv = opr::Convolution::make(x, w1, param);
  996. auto shape_of = opr::GetVarShape::make(conv);
  997. auto subtensor = opr::Subtensor::make(
  998. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  999. 0, x.make_scalar(2), None, x.make_scalar(1))});
  1000. opr::Resize::Param param_resize;
  1001. param_resize.format = opr::Resize::Param::Format::NCHW;
  1002. auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
  1003. auto mat = mkcvar("mat", {8, 3, 3}),
  1004. warp = opr::WarpPerspectiveForward::make(
  1005. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  1006. auto b = mkvar("b", {1, 4, 1, 1}),
  1007. elem = opr::Elemwise::make({warp + b},
  1008. opr::Elemwise::Param::Mode::RELU);
  1009. param.pad_h = param.pad_w = 1;
  1010. auto w2 = mkcvar("w2", {4, 4, 3, 3}),
  1011. y = opr::Convolution::make(elem, w2, param),
  1012. z = opr::AxisAddRemove::make(
  1013. y, {opr::AxisAddRemove::AxisDesc::make_add(0)});
  1014. SymbolVar y_opt, z_opt;
  1015. auto options = gopt::OptimizeForInferenceOptions{};
  1016. options.enable_nhwcd4();
  1017. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1018. unpack_vector(gopt::optimize_for_inference({z}, options), z_opt);
  1019. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  1020. find_opr<opr::Convolution>(y_opt).param().format);
  1021. ASSERT_EQ(TensorFormat::Type::DEFAULT,
  1022. find_opr<opr::AxisAddRemove>(z_opt).input(0)->format().type());
  1023. ASSERT_EQ(4, find_opr<opr::AxisAddRemove>(z_opt).input(0)->shape().ndim);
  1024. graph->compile({{y_opt, {}}})
  1025. ->to_json()
  1026. ->writeto_fpath(
  1027. output_file("TestGoptInference.ConvertFormatNHWCD4.json"));
  1028. HostTensorND host_y_opt, host_y;
  1029. auto func = graph->compile({make_callback_copy(y, host_y),
  1030. make_callback_copy(y_opt, host_y_opt)});
  1031. func->execute();
  1032. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1033. *host_x = *gen({8, 8, 16, 16}, cn);
  1034. func->execute();
  1035. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1036. }
  1037. TEST(TestGoptInference, ConvertFormatNHWCD4Elemwise) {
  1038. // hwcd4 is only supported in naive handle
  1039. NaiveMegDNNHandleScope naive_megdnn_handle;
  1040. HostTensorGenerator<> gen;
  1041. auto cn = CompNode::load("cpu0");
  1042. auto graph = ComputingGraph::make();
  1043. graph->options().graph_opt_level = 0;
  1044. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1045. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1046. };
  1047. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1048. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1049. .rename(name);
  1050. };
  1051. auto host_x = gen({8, 8, 8, 8}, cn);
  1052. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1053. opr::Convolution::Param param;
  1054. param.pad_h = param.pad_w = 0;
  1055. auto w1 = mkcvar("w1", {8, 8, 3, 3}),
  1056. conv = opr::Convolution::make(x, w1, param);
  1057. auto b = mkvar("b", {1, 1, 1, 1}),
  1058. elem = opr::Elemwise::make({conv + b},
  1059. opr::Elemwise::Param::Mode::RELU);
  1060. param.pad_h = param.pad_w = 1;
  1061. auto w2 = mkcvar("w2", {8, 8, 3, 3}),
  1062. conv2 = opr::Convolution::make(elem, w2, param);
  1063. auto b_scaler = mkvar("b", {1}), elem2 = conv2 + b_scaler;
  1064. param.pad_h = param.pad_w = 1;
  1065. auto w3 = mkcvar("w2", {8, 8, 3, 3}),
  1066. y = opr::Convolution::make(elem2, w3, param);
  1067. SymbolVar y_opt;
  1068. auto options = gopt::OptimizeForInferenceOptions{};
  1069. options.enable_nhwcd4();
  1070. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1071. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  1072. find_opr<opr::Convolution>(y_opt).param().format);
  1073. graph->compile({{y_opt, {}}})
  1074. ->to_json()
  1075. ->writeto_fpath(output_file(
  1076. "TestGoptInference.ConvertFormatNHWCD4Elemwise.json"));
  1077. HostTensorND host_y_opt, host_y;
  1078. auto func = graph->compile({make_callback_copy(y, host_y),
  1079. make_callback_copy(y_opt, host_y_opt)});
  1080. func->execute();
  1081. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1082. *host_x = *gen({8, 8, 16, 16}, cn);
  1083. func->execute();
  1084. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1085. }
  1086. TEST(TestGoptInference, ConvertFormatNHWCD4TypeCvt) {
  1087. NaiveMegDNNHandleScope naive_megdnn_handle;
  1088. HostTensorGenerator<> gen;
  1089. auto cn = CompNode::load("cpu0");
  1090. auto graph = ComputingGraph::make();
  1091. graph->options().graph_opt_level = 0;
  1092. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1093. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1094. .rename(name);
  1095. };
  1096. auto host_x = gen({8, 8, 8, 8}, cn);
  1097. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1098. opr::Convolution::Param param;
  1099. param.pad_h = param.pad_w = 0;
  1100. auto w1 = mkcvar("w1", {8, 8, 3, 3}),
  1101. conv1 = opr::Convolution::make(x, w1, param),
  1102. tcvt1 = opr::TypeCvt::make(conv1, dtype::Float16());
  1103. auto w2 = mkcvar("w2", {8, 8, 3, 3}),
  1104. conv2 = opr::Convolution::make(x, w2, param),
  1105. tcvt2 = opr::TypeCvt::make(conv2, dtype::Float16());
  1106. auto y = opr::Elemwise::make({tcvt1, tcvt2}, opr::Elemwise::Param::Mode::ADD);
  1107. SymbolVar y_opt;
  1108. auto options = gopt::OptimizeForInferenceOptions{};
  1109. options.enable_nhwcd4();
  1110. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1111. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  1112. find_opr<opr::Convolution>(y_opt).param().format);
  1113. graph->compile({{y_opt, {}}})
  1114. ->to_json()
  1115. ->writeto_fpath(output_file(
  1116. "TestGoptInference.ConvertFormatNHWCD4TypeCvt.json"));
  1117. HostTensorND host_y_opt, host_y;
  1118. auto func = graph->compile({make_callback_copy(y, host_y),
  1119. make_callback_copy(y_opt, host_y_opt)});
  1120. func->execute();
  1121. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1122. *host_x = *gen({8, 8, 16, 16}, cn);
  1123. func->execute();
  1124. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1125. }
  1126. TEST(TestGoptInference, ConvertFormatNHWCD4LOCAL) {
  1127. // hwcd4 is only supported in naive handle
  1128. NaiveMegDNNHandleScope naive_megdnn_handle;
  1129. HostTensorGenerator<> gen;
  1130. auto cn = CompNode::load("cpu0");
  1131. auto graph = ComputingGraph::make();
  1132. graph->options().graph_opt_level = 0;
  1133. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1134. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1135. .rename(name);
  1136. };
  1137. auto host_x = gen({2, 8, 8, 16}, cn);
  1138. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1139. opr::Convolution::Param param;
  1140. param.pad_h = param.pad_w = 1;
  1141. auto w1 = mkcvar("w1", {4, 8, 3, 3}),
  1142. conv1 = opr::Convolution::make(x, w1, param);
  1143. auto w2 = mkcvar("w2", {8, 16, 4, 3, 3, 4}),
  1144. local = opr::Local::make(conv1, w2, param);
  1145. auto w3 = mkcvar("w3", {4, 4, 3, 3}),
  1146. conv2 = opr::Convolution::make(local, w3, param);
  1147. opr::GroupLocal::Param param_group_local;
  1148. param_group_local.pad_h = param_group_local.pad_w = 1;
  1149. auto w4 = mkcvar("w4", {2, 8, 16, 2, 3, 3, 2}),
  1150. group_local = opr::GroupLocal::make(conv2, w4, param_group_local);
  1151. auto w5 = mkcvar("w5", {4, 4, 3, 3}),
  1152. y = opr::Convolution::make(group_local, w5, param);
  1153. SymbolVar y_opt;
  1154. auto options = gopt::OptimizeForInferenceOptions{};
  1155. options.enable_nhwcd4();
  1156. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1157. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  1158. find_opr<opr::Convolution>(y_opt).param().format);
  1159. ASSERT_EQ(opr::Local::Param::Format::NCHW,
  1160. find_opr<opr::Local>(y_opt).param().format);
  1161. ASSERT_EQ(opr::GroupLocal::Param::Format::NCHW,
  1162. find_opr<opr::GroupLocal>(y_opt).param().format);
  1163. graph->compile({{y_opt, {}}})
  1164. ->to_json()
  1165. ->writeto_fpath(output_file(
  1166. "TestGoptInference.ConvertFormatNHWCD4LOCAL.json"));
  1167. HostTensorND host_y_opt, host_y;
  1168. auto func = graph->compile({make_callback_copy(y, host_y),
  1169. make_callback_copy(y_opt, host_y_opt)});
  1170. func->execute();
  1171. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1172. }
  1173. TEST(TestGoptInference, ConvertFormatNHWCD4Deconv) {
  1174. // hwcd4 is only supported in naive handle
  1175. NaiveMegDNNHandleScope naive_megdnn_handle;
  1176. HostTensorGenerator<> gen;
  1177. auto cn = CompNode::load("cpu0");
  1178. auto graph = ComputingGraph::make();
  1179. graph->options().graph_opt_level = 0;
  1180. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1181. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1182. .rename(name);
  1183. };
  1184. auto host_x = gen({8, 8, 8, 8}, cn);
  1185. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  1186. opr::Convolution::Param param;
  1187. param.pad_h = param.pad_w = 0;
  1188. auto w0 = mkcvar("w1", {4, 8, 2, 2}),
  1189. conv = opr::Convolution::make(x, w0, param);
  1190. auto w1 = mkcvar("w1", {4, 1, 2, 2}),
  1191. y = opr::ConvolutionBackwardData::make(w1, conv, param, {}, {});
  1192. SymbolVar y_opt;
  1193. auto options = gopt::OptimizeForInferenceOptions{};
  1194. options.enable_nhwcd4();
  1195. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1196. ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
  1197. find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
  1198. ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
  1199. find_opr<opr::Convolution>(y_opt).param().format);
  1200. HostTensorND host_y_opt, host_y;
  1201. auto func = graph->compile({make_callback_copy(y, host_y),
  1202. make_callback_copy(y_opt, host_y_opt)});
  1203. func->execute();
  1204. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1205. }
  1206. TEST(TestGoptInference, ConvertFormatNHWCD4Qint8) {
  1207. // hwcd4 is only supported in naive handle
  1208. NaiveMegDNNHandleScope naive_megdnn_handle;
  1209. HostTensorGenerator<> gen;
  1210. auto cn = CompNode::load("cpu0");
  1211. auto graph = ComputingGraph::make();
  1212. graph->options().graph_opt_level = 0;
  1213. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1214. const DType& dtype) {
  1215. return opr::TypeCvt::make(
  1216. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1217. .rename(name),
  1218. dtype);
  1219. };
  1220. auto host_x = gen({8, 8, 8, 8}, cn);
  1221. auto _x = opr::Host2DeviceCopy::make(*graph, host_x),
  1222. x = opr::TypeCvt::make(_x, dtype::QuantizedS8(0.2f));
  1223. opr::ConvBias::Param param;
  1224. param.pad_h = param.pad_w = 0;
  1225. auto w = mkcvar("w", {4, 8, 3, 3}, dtype::QuantizedS8(0.1f)),
  1226. b = mkcvar("b", {1, 4, 1, 1}, dtype::QuantizedS32(0.02f)),
  1227. y = opr::ConvBias::make(x, w, b, param, {},
  1228. OperatorNodeConfig{dtype::QuantizedS8(0.2f)});
  1229. SymbolVar y_opt;
  1230. auto options = gopt::OptimizeForInferenceOptions{};
  1231. options.enable_nhwcd4();
  1232. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1233. ASSERT_EQ(opr::ConvBias::Param::Format::NHWCD4,
  1234. find_opr<opr::ConvBias>(y_opt).param().format);
  1235. graph->compile({{y_opt, {}}})
  1236. ->to_json()
  1237. ->writeto_fpath(output_file(
  1238. "TestGoptInference.ConvertFormatNHWCD4Qint8.json"));
  1239. auto float_y = opr::TypeCvt::make(y, dtype::Float32()),
  1240. float_y_opt = opr::TypeCvt::make(y_opt, dtype::Float32());
  1241. HostTensorND host_y_opt, host_y;
  1242. auto func = graph->compile({make_callback_copy(float_y, host_y),
  1243. make_callback_copy(float_y_opt, host_y_opt)});
  1244. func->execute();
  1245. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1246. }
  1247. TEST(TestGoptInference, ConvertFormatPadIC) {
  1248. // hwcd4 is only supported in naive handle
  1249. NaiveMegDNNHandleScope naive_megdnn_handle;
  1250. HostTensorGenerator<> gen;
  1251. auto cn = CompNode::load("cpu0");
  1252. auto graph = ComputingGraph::make();
  1253. graph->options().graph_opt_level = 0;
  1254. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1255. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1256. .rename(name);
  1257. };
  1258. auto host_inp1 = gen({1, 6, 128, 128}, cn),
  1259. host_inp2 = gen({1, 6, 256, 256}, cn);
  1260. auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
  1261. inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);
  1262. auto shape_tmp = mkcvar("tmp", {256, 256});
  1263. auto shape_of = opr::GetVarShape::make(shape_tmp);
  1264. opr::Resize::Param param_resize;
  1265. param_resize.format = opr::Resize::Param::Format::NCHW;
  1266. auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);
  1267. auto concat = opr::Concat::make({inp2, resize}, 1);
  1268. opr::Convolution::Param param;
  1269. param.pad_h = param.pad_w = 1;
  1270. param.sparse = opr::Convolution::Param::Sparse::DENSE;
  1271. auto w1 = mkcvar("w1", {12, 12, 3, 3});
  1272. auto y = opr::Convolution::make(concat, w1, param);
  1273. SymbolVar y_opt;
  1274. auto options = gopt::OptimizeForInferenceOptions{};
  1275. options.enable_nhwcd4();
  1276. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1277. HostTensorND host_y_opt, host_y;
  1278. auto func = graph->compile({make_callback_copy(y, host_y),
  1279. make_callback_copy(y_opt, host_y_opt)});
  1280. func->execute();
  1281. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  1282. }
  1283. TEST(TestGoptInference, ConvertBatchNormPass) {
  1284. auto cn = CompNode::load("cpu0");
  1285. HostTensorGenerator<> gen(0, 1, 0);
  1286. auto graph = ComputingGraph::make();
  1287. graph->options().graph_opt_level = 0;
  1288. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1289. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1290. };
  1291. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1292. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1293. .rename(name);
  1294. };
  1295. using Param = opr::BatchNorm::Param;
  1296. Param param(Param::ParamDim::DIM_1C11, Param::FwdMode::INFERENCE);
  1297. TensorShape shp = {1, 3, 1, 1};
  1298. auto x = mkvar("x", {2, 3, 16, 24}), scale = mkcvar("scale", shp),
  1299. bias = mkcvar("bias", shp), mean = mkcvar("mean", shp);
  1300. auto host_variance = gen(shp, cn);
  1301. for (size_t i = 0; i < shp.total_nr_elems(); ++i) {
  1302. host_variance->ptr<float>()[i] =
  1303. std::abs(host_variance->ptr<float>()[i]);
  1304. }
  1305. auto variance = opr::SharedDeviceTensor::make(*graph, *host_variance)
  1306. .rename("variance");
  1307. auto y = opr::BatchNorm::make(x, scale, bias, mean, variance, param)[4];
  1308. SymbolVar y_opt;
  1309. unpack_vector(gopt::optimize_for_inference(
  1310. {y}, gopt::OptimizeForInferenceOptions{}),
  1311. y_opt);
  1312. ASSERT_EQ(0u, find_opr_num<opr::BatchNorm>(y_opt));
  1313. graph->compile({{y_opt, {}}})
  1314. ->to_json()
  1315. ->writeto_fpath(
  1316. output_file("TestGoptInference.ConvertBatchNormPass.json"));
  1317. HostTensorND host_y, host_y_opt;
  1318. auto func = graph->compile({make_callback_copy(y, host_y),
  1319. make_callback_copy(y_opt, host_y_opt)});
  1320. func->execute();
  1321. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  1322. }
  1323. TEST(TestGoptInference, ConvBiasNonlinearityFusePass) {
  1324. // hwcd4 is only supported in naive handle
  1325. NaiveMegDNNHandleScope naive_megdnn_handle;
  1326. auto cn = CompNode::load("cpu0");
  1327. HostTensorGenerator<> gen;
  1328. auto graph = ComputingGraph::make();
  1329. graph->options().graph_opt_level = 0;
  1330. auto mkvar = [&](const char* name, const TensorShape& shp) {
  1331. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  1332. };
  1333. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1334. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1335. .rename(name);
  1336. };
  1337. opr::Convolution::Param param;
  1338. auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
  1339. w2 = mkcvar("w2", {4, 4, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
  1340. b2 = mkcvar("b2", {1, 4, 1, 1}), w3 = mkcvar("w3", {8, 4, 1, 1}),
  1341. y_cut = opr::Convolution::make(x, w1, param),
  1342. y1 = opr::Elemwise::make({y_cut + b1},
  1343. opr::Elemwise::Param::Mode::RELU);
  1344. param.pad_w = param.pad_h = 1;
  1345. auto y2 = opr::Elemwise::make({opr::Convolution::make(y1, w2, param) + b2},
  1346. opr::Elemwise::Param::Mode::SIGMOID);
  1347. param.pad_w = param.pad_h = 0;
  1348. auto y3 = opr::Convolution::make(y2, w3, param), y_tmp = y3 + x,
  1349. y_expand =
  1350. opr::Elemwise::make({y_cut}, opr::Elemwise::Param::Mode::RELU),
  1351. y_y = opr::Convolution::make(y_expand, w3, param), y = y_y + y_tmp;
  1352. SymbolVar y_opt;
  1353. auto options = gopt::OptimizeForInferenceOptions{};
  1354. options.enable_nhwcd4().enable_fuse_conv_bias_nonlinearity();
  1355. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1356. ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
  1357. graph->compile({{y_opt, {}}})
  1358. ->to_json()
  1359. ->writeto_fpath(output_file(
  1360. "TestGoptInference.FuseConvBiasNonlinPass.json"));
  1361. HostTensorND host_y, host_y_opt;
  1362. auto func = graph->compile({make_callback_copy(y, host_y),
  1363. make_callback_copy(y_opt, host_y_opt)});
  1364. func->execute();
  1365. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1366. }
  1367. TEST(TestGoptInference, ConvBiasNonlinearityFusePass_FullBias) {
  1368. NaiveMegDNNHandleScope naive_megdnn_handle;
  1369. for (int i = 0; i < 2; i++) {
  1370. auto graph = ComputingGraph::make();
  1371. auto cn = CompNode::load("cpu0");
  1372. HostTensorGenerator<> gen;
  1373. auto mkImvar = [&](const char* name, const TensorShape& shp) {
  1374. return opr::ImmutableTensor::make(*graph, *gen(shp, cn))
  1375. .rename(name);
  1376. };
  1377. graph->options().graph_opt_level = 0;
  1378. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  1379. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1380. .rename(name);
  1381. };
  1382. opr::Convolution::Param param;
  1383. auto host_x = gen({1, 8, 16, 24}, cn);
  1384. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1385. w1 = mkcvar("w1", {4, 8, 1, 1}), w2 = mkcvar("w2", {4, 8, 3, 3}),
  1386. w3 = mkcvar("w3", {4, 4, 1, 1}),
  1387. b = i == 0 ? mkcvar("b", {1, 4, 16, 24})
  1388. : mkImvar("bias", {1, 4, 16, 24}),
  1389. y_cut0 = opr::Convolution::make(x, w1, param);
  1390. param.pad_w = param.pad_h = 1;
  1391. auto y_cut1 = opr::Convolution::make(x, w2, param);
  1392. auto y1 = opr::Elemwise::make({y_cut0 + y_cut1},
  1393. opr::Elemwise::Param::Mode::RELU);
  1394. param.pad_w = param.pad_h = 0;
  1395. auto y2 = opr::Convolution::make(y1, w3, param);
  1396. auto y =
  1397. opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU);
  1398. SymbolVar y_opt;
  1399. auto options = gopt::OptimizeForInferenceOptions{};
  1400. options.enable_fuse_conv_bias_nonlinearity();
  1401. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1402. ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
  1403. graph->compile({{y_opt, {}}})
  1404. ->to_json()
  1405. ->writeto_fpath(
  1406. output_file("TestGoptInference.FuseConvBiasNonlinPass_"
  1407. "FulBias.json"));
  1408. HostTensorND host_y, host_y_opt;
  1409. auto func = graph->compile({make_callback_copy(y, host_y),
  1410. make_callback_copy(y_opt, host_y_opt)});
  1411. func->execute();
  1412. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1413. *host_x = *gen({4, 8, 16, 24}, cn);
  1414. func->execute();
  1415. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
  1416. }
  1417. }
  1418. TEST(TestGoptInference, ParamMerge) {
  1419. auto cns = load_multiple_xpus(2);
  1420. HostTensorGenerator<> gen;
  1421. auto graph = ComputingGraph::make();
  1422. auto var0 = opr::SharedDeviceTensor::make(*graph, *gen({2, 3}, cns[0])),
  1423. var1 = opr::SharedDeviceTensor::make(*graph, *gen({1, 3}, cns[1])),
  1424. y = var0 + opr::Copy::make(var1, {cns[0]});
  1425. HostTensorND y_expected_val;
  1426. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1427. SymbolVar y_opt;
  1428. unpack_vector(gopt::GraphOptimizer{}
  1429. .add_pass<gopt::ParamMergePass>()
  1430. .apply({{y}})
  1431. .endpoint_vars(),
  1432. y_opt);
  1433. auto opr = y_opt.node()->owner_opr();
  1434. ASSERT_EQ(2u, opr->input().size());
  1435. ASSERT_EQ(2u,
  1436. find_opr<opr::MultipleDeviceTensorHolder>(y_opt).output().size());
  1437. HostTensorND y_got_val;
  1438. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1439. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1440. }
  1441. TEST(TestGoptInference, ParamMergeFormat) {
  1442. auto cns = load_multiple_xpus(2);
  1443. auto make_dv = [](const HostTensorND& hv) {
  1444. TensorLayout layout{hv.layout(), hv.layout().dtype,
  1445. megdnn::Image2DPack4TensorFormat::make_raw(1, 64)};
  1446. auto ret = std::make_shared<DeviceTensorND>(hv.comp_node(), layout);
  1447. ret->copy_from_fixlayout(hv).sync();
  1448. return ret;
  1449. };
  1450. HostTensorGenerator<> gen;
  1451. auto graph = ComputingGraph::make();
  1452. auto var0 = opr::SharedDeviceTensorWithFormat::make(
  1453. *graph, make_dv(*gen({2, 32}, cns[0]))),
  1454. var1 = opr::SharedDeviceTensorWithFormat::make(
  1455. *graph, make_dv(*gen({1, 32}, cns[1]))),
  1456. y = var0 + opr::Copy::make(var1, {cns[0]});
  1457. HostTensorND y_expected_val;
  1458. graph->compile({make_callback_copy(y, y_expected_val)})->execute();
  1459. SymbolVar y_opt;
  1460. unpack_vector(gopt::GraphOptimizer{}
  1461. .add_pass<gopt::ParamMergePass>()
  1462. .apply({{y}})
  1463. .endpoint_vars(),
  1464. y_opt);
  1465. auto opr = y_opt.node()->owner_opr();
  1466. ASSERT_EQ(2u, opr->input().size());
  1467. ASSERT_EQ(2u, find_opr<opr::MultipleDeviceTensorWithFormatHolder>(y_opt)
  1468. .output()
  1469. .size());
  1470. HostTensorND y_got_val;
  1471. graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
  1472. MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
  1473. }
  1474. #if MGB_ENABLE_FASTRUN
  1475. TEST(TestGoptInference, AlgoProfile) {
  1476. HostTensorGenerator<> gen;
  1477. auto graph = ComputingGraph::make();
  1478. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1479. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1480. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1481. z = opr::Convolution::make(x, y);
  1482. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1483. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1484. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1485. gopt::enable_opr_algo_profiling_inplace({z + 2.3f});
  1486. ASSERT_EQ(S::PROFILE, conv.execution_policy().strategy);
  1487. }
  1488. #endif
  1489. TEST(TestGoptInference, ProfileCache) {
  1490. HostTensorGenerator<> gen;
  1491. auto graph = ComputingGraph::make();
  1492. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1493. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1494. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1495. z = opr::Convolution::make(x, y);
  1496. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1497. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1498. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1499. gopt::enable_opr_use_profiling_cache_inplace({z + 2.3f});
  1500. ASSERT_EQ(S::PROFILE | S::HEURISTIC, conv.execution_policy().strategy);
  1501. }
  1502. TEST(TestGoptInference, FastProfileCache) {
  1503. HostTensorGenerator<> gen;
  1504. auto graph = ComputingGraph::make();
  1505. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1506. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1507. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1508. z = opr::Convolution::make(x, y);
  1509. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1510. using S = opr::Convolution::ExecutionPolicy::Strategy;
  1511. ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
  1512. gopt::modify_opr_algo_strategy_inplace({z + 2.3f},
  1513. S::PROFILE | S::OPTIMIZED);
  1514. ASSERT_EQ(S::PROFILE | S::OPTIMIZED, conv.execution_policy().strategy);
  1515. }
  1516. TEST(TestGoptInference, AlgoWorkspaceLimit) {
  1517. HostTensorGenerator<> gen;
  1518. auto graph = ComputingGraph::make();
  1519. auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
  1520. auto x = opr::Host2DeviceCopy::make(*graph, host_x),
  1521. y = opr::Host2DeviceCopy::make(*graph, host_y),
  1522. z = opr::Convolution::make(x, y);
  1523. auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
  1524. ASSERT_EQ(std::numeric_limits<uint64_t>::max(),
  1525. conv.execution_policy_transient().workspace_limit);
  1526. gopt::set_opr_algo_workspace_limit_inplace({z + 2.3f}, 10000u);
  1527. ASSERT_EQ(10000u, conv.execution_policy().workspace_limit);
  1528. }
  1529. TEST_PASS(FuseConvBiasNonlinPass, Basic) {
  1530. auto cn = CompNode::load("xpux");
  1531. HostTensorGenerator<dtype::Int8> gen;
  1532. auto graph = ComputingGraph::make();
  1533. graph->options().graph_opt_level = 0;
  1534. auto mkvar = [&](const char* name, const TensorShape& shp,
  1535. const DType& dtype) {
  1536. return opr::TypeCvt::make(
  1537. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1538. dtype);
  1539. };
  1540. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1541. const DType& dtype) {
  1542. return opr::TypeCvt::make(
  1543. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1544. .rename(name),
  1545. dtype);
  1546. };
  1547. for (auto format : {opr::Convolution::Param::Format::NCHW,
  1548. opr::Convolution::Param::Format::NHWC,
  1549. opr::Convolution::Param::Format::NCHW4}) {
  1550. opr::Convolution::Param param;
  1551. param.format = format;
  1552. SymbolVar x, w, b;
  1553. if (format == opr::Convolution::Param::Format::NHWC) {
  1554. x = mkvar("x", {20, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1555. w = mkcvar("w1", {24, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1556. b = mkcvar("b", {1, 1, 1, 24}, dtype::QuantizedS32(6.25f));
  1557. } else if (format == opr::Convolution::Param::Format::NCHW) {
  1558. x = mkvar("x", {20, 4, 20, 20}, dtype::QuantizedS8(2.5f)),
  1559. w = mkcvar("w1", {24, 4, 1, 1}, dtype::QuantizedS8(2.5f)),
  1560. b = mkcvar("b", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  1561. } else {
  1562. mgb_assert(format == opr::Convolution::Param::Format::NCHW4);
  1563. x = mkvar("x", {20, 1, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
  1564. w = mkcvar("w1", {24, 1, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
  1565. b = mkcvar("b", {1, 6, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  1566. }
  1567. auto y = opr::Convolution::make(x, w, param);
  1568. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1569. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1570. opr::ConvBias::Param conv_bias_param;
  1571. conv_bias_param.format = format;
  1572. conv_bias_param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1573. auto concret_y = opr::ConvBias::make(
  1574. x, w, b, conv_bias_param, {},
  1575. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1576. check(concret_y, y);
  1577. }
  1578. }
  1579. #if MGB_CUDA
  1580. TEST(TestEnableTensorCore, SmallInputShape) {
  1581. REQUIRE_GPU(1);
  1582. auto cn = CompNode::load("gpu0");
  1583. cn.activate();
  1584. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1585. auto sm_ver = prop.major * 10 + prop.minor;
  1586. if (sm_ver < 75) {
  1587. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1588. "expected: %d)\n",
  1589. sm_ver, 75);
  1590. return;
  1591. }
  1592. HostTensorGenerator<dtype::Int8> gen;
  1593. auto graph = ComputingGraph::make();
  1594. graph->options().graph_opt_level = 0;
  1595. auto mkvar = [&](const char* name, const TensorShape& shp,
  1596. const DType& dtype) {
  1597. return opr::TypeCvt::make(
  1598. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1599. dtype);
  1600. };
  1601. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1602. const DType& dtype) {
  1603. return opr::TypeCvt::make(
  1604. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1605. .rename(name),
  1606. dtype);
  1607. };
  1608. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  1609. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1610. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1611. z = mkcvar("b1", {32, 16, 2, 4, 4}, dtype::QuantizedS8(2.5f));
  1612. opr::ConvBias::Param param;
  1613. param.format = opr::ConvBias::Param::Format::NCHW4;
  1614. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1615. param.stride_h = param.stride_w = 2;
  1616. param.pad_h = param.pad_w = 1;
  1617. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1618. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1619. y = opr::ConvBias::make(y, w, b, param, {},
  1620. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1621. y = opr::TypeCvt::make(y, dtype::Float32());
  1622. SymbolVar y_opt;
  1623. SymbolVar y_no_tc;
  1624. {
  1625. auto options = gopt::OptimizeForInferenceOptions{};
  1626. options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
  1627. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1628. }
  1629. {
  1630. auto options = gopt::OptimizeForInferenceOptions{};
  1631. options.enable_fuse_conv_bias_nonlinearity();
  1632. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1633. }
  1634. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1635. ASSERT_EQ(2u, nr_dimshuffle);
  1636. HostTensorND host_y, host_y_opt;
  1637. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1638. make_callback_copy(y_opt, host_y_opt)});
  1639. func->execute();
  1640. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1641. }
  1642. TEST(TestEnableTensorCore, Nchw4Nchw) {
  1643. REQUIRE_GPU(1);
  1644. auto cn = CompNode::load("gpu0");
  1645. cn.activate();
  1646. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1647. auto sm_ver = prop.major * 10 + prop.minor;
  1648. if (sm_ver < 75) {
  1649. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1650. "expected: %d)\n",
  1651. sm_ver, 75);
  1652. return;
  1653. }
  1654. HostTensorGenerator<dtype::Int8> gen;
  1655. auto graph = ComputingGraph::make();
  1656. graph->options().graph_opt_level = 0;
  1657. auto mkvar = [&](const char* name, const TensorShape& shp,
  1658. const DType& dtype) {
  1659. return opr::TypeCvt::make(
  1660. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1661. dtype);
  1662. };
  1663. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1664. const DType& dtype) {
  1665. return opr::TypeCvt::make(
  1666. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1667. .rename(name),
  1668. dtype);
  1669. };
  1670. auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C,
  1671. size_t H, size_t W) -> TensorShape {
  1672. mgb_assert(C % 4 == 0);
  1673. if (format == opr::ConvBias::Param::Format::NCHW4) {
  1674. return {N, C / 4, H, W, 4};
  1675. } else {
  1676. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  1677. return {N, C, H, W};
  1678. }
  1679. };
  1680. for (auto format : {opr::ConvBias::Param::Format::NCHW,
  1681. opr::ConvBias::Param::Format::NCHW4}) {
  1682. auto x = mkvar("x", mkshape(format, 32, 64, 16, 16),
  1683. dtype::QuantizedS8(2.5f)),
  1684. w = mkcvar("w1", mkshape(format, 64, 64, 3, 3),
  1685. dtype::QuantizedS8(2.5f)),
  1686. b = mkcvar("b", mkshape(format, 1, 64, 1, 1),
  1687. dtype::QuantizedS32(6.25f)),
  1688. z = mkcvar("b1", mkshape(format, 32, 64, 8, 8),
  1689. dtype::QuantizedS8(2.5f));
  1690. opr::ConvBias::Param param;
  1691. param.format = format;
  1692. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1693. param.stride_h = param.stride_w = 2;
  1694. param.pad_h = param.pad_w = 1;
  1695. auto y = opr::ConvBias::make(
  1696. x, w, b, z, param, {},
  1697. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1698. y = opr::ConvBias::make(y, w, b, param, {},
  1699. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1700. y = opr::TypeCvt::make(y, dtype::Float32());
  1701. SymbolVar y_opt;
  1702. SymbolVar y_no_tc;
  1703. {
  1704. auto options = gopt::OptimizeForInferenceOptions{};
  1705. options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
  1706. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1707. }
  1708. {
  1709. auto options = gopt::OptimizeForInferenceOptions{};
  1710. options.enable_fuse_conv_bias_nonlinearity();
  1711. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1712. }
  1713. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1714. if (format == opr::ConvBias::Param::Format::NCHW4) {
  1715. #if CUDA_VERSION >= 10020
  1716. //! try_conv_reformat_nchw322nchw4 used when cuda_version >= 10020
  1717. ASSERT_EQ(1u, nr_dimshuffle);
  1718. #else
  1719. ASSERT_EQ(2u, nr_dimshuffle);
  1720. #endif
  1721. } else {
  1722. ASSERT_EQ(2u, nr_dimshuffle);
  1723. }
  1724. std::string json_name;
  1725. if (format == opr::ConvBias::Param::Format::NCHW4) {
  1726. json_name = "TestGoptInference.Nchw4Nchw.NCHW4.json";
  1727. } else {
  1728. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  1729. json_name = "TestGoptInference.Nchw4Nchw.NCHW.json";
  1730. }
  1731. graph->compile({{y_opt, {}}})
  1732. ->to_json()
  1733. ->writeto_fpath(output_file(json_name.c_str()));
  1734. HostTensorND host_y, host_y_opt;
  1735. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1736. make_callback_copy(y_opt, host_y_opt)});
  1737. func->execute();
  1738. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1739. }
  1740. }
  1741. TEST(TestEnableTensorCore, ConvBiasWithZ) {
  1742. REQUIRE_GPU(1);
  1743. auto cn = CompNode::load("gpu0");
  1744. cn.activate();
  1745. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1746. auto sm_ver = prop.major * 10 + prop.minor;
  1747. if (sm_ver < 75) {
  1748. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1749. "expected: %d)\n",
  1750. sm_ver, 75);
  1751. return;
  1752. }
  1753. HostTensorGenerator<dtype::Int8> gen;
  1754. auto graph = ComputingGraph::make();
  1755. graph->options().graph_opt_level = 0;
  1756. auto mkvar = [&](const char* name, const TensorShape& shp,
  1757. const DType& dtype) {
  1758. return opr::TypeCvt::make(
  1759. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1760. dtype);
  1761. };
  1762. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1763. const DType& dtype) {
  1764. return opr::TypeCvt::make(
  1765. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1766. .rename(name),
  1767. dtype);
  1768. };
  1769. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1770. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1771. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1772. z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1773. opr::ConvBias::Param param;
  1774. param.format = opr::ConvBias::Param::Format::NCHW4;
  1775. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1776. param.stride_h = param.stride_w = 1;
  1777. param.pad_h = param.pad_w = 1;
  1778. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1779. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1780. y = opr::TypeCvt::make(y, dtype::Float32());
  1781. SymbolVar y_opt;
  1782. SymbolVar y_no_tc;
  1783. {
  1784. auto options = gopt::OptimizeForInferenceOptions{};
  1785. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1786. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1787. }
  1788. {
  1789. auto options = gopt::OptimizeForInferenceOptions{};
  1790. options.enable_fuse_conv_bias_nonlinearity();
  1791. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1792. }
  1793. HostTensorND host_y, host_y_opt;
  1794. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1795. make_callback_copy(y_opt, host_y_opt)});
  1796. func->execute();
  1797. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1798. }
  1799. TEST(TestEnableTensorCore, Pooling) {
  1800. REQUIRE_GPU(1);
  1801. auto cn = CompNode::load("gpu0");
  1802. cn.activate();
  1803. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1804. auto sm_ver = prop.major * 10 + prop.minor;
  1805. if (sm_ver < 75) {
  1806. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1807. "expected: %d)\n",
  1808. sm_ver, 75);
  1809. return;
  1810. }
  1811. HostTensorGenerator<dtype::Int8> gen;
  1812. auto graph = ComputingGraph::make();
  1813. graph->options().graph_opt_level = 0;
  1814. auto mkvar = [&](const char* name, const TensorShape& shp,
  1815. const DType& dtype) {
  1816. return opr::TypeCvt::make(
  1817. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1818. dtype);
  1819. };
  1820. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1821. const DType& dtype) {
  1822. return opr::TypeCvt::make(
  1823. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1824. .rename(name),
  1825. dtype);
  1826. };
  1827. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1828. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1829. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1830. z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1831. opr::ConvBias::Param param;
  1832. param.format = opr::ConvBias::Param::Format::NCHW4;
  1833. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  1834. param.stride_h = param.stride_w = 1;
  1835. param.pad_h = param.pad_w = 1;
  1836. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  1837. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1838. opr::Pooling::Param pool_param;
  1839. pool_param.format = opr::Pooling::Param::Format::NCHW4;
  1840. y = opr::Pooling::make(y, pool_param);
  1841. y = opr::TypeCvt::make(y, dtype::Float32());
  1842. SymbolVar y_opt;
  1843. SymbolVar y_no_tc;
  1844. {
  1845. auto options = gopt::OptimizeForInferenceOptions{};
  1846. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1847. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  1848. }
  1849. ASSERT_EQ(opr::Pooling::Param::Format::NCHW32,
  1850. find_opr<opr::Pooling>(y_opt).param().format);
  1851. {
  1852. auto options = gopt::OptimizeForInferenceOptions{};
  1853. options.enable_fuse_conv_bias_nonlinearity();
  1854. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  1855. }
  1856. HostTensorND host_y, host_y_opt;
  1857. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1858. make_callback_copy(y_opt, host_y_opt)});
  1859. func->execute();
  1860. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1861. }
  1862. TEST(TestGoptInference, EnableTensorCore) {
  1863. REQUIRE_GPU(1);
  1864. auto cn = CompNode::load("gpu0");
  1865. cn.activate();
  1866. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1867. auto sm_ver = prop.major * 10 + prop.minor;
  1868. if (sm_ver < 75) {
  1869. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1870. "expected: %d)\n",
  1871. sm_ver, 75);
  1872. return;
  1873. }
  1874. HostTensorGenerator<dtype::Int8> gen;
  1875. auto graph = ComputingGraph::make();
  1876. graph->options().graph_opt_level = 0;
  1877. auto mkvar = [&](const char* name, const TensorShape& shp,
  1878. const DType& dtype) {
  1879. return opr::TypeCvt::make(
  1880. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1881. dtype);
  1882. };
  1883. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1884. const DType& dtype) {
  1885. return opr::TypeCvt::make(
  1886. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1887. .rename(name),
  1888. dtype);
  1889. };
  1890. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1891. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1892. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1893. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  1894. opr::Convolution::Param param;
  1895. param.format = opr::Convolution::Param::Format::NCHW4;
  1896. param.stride_h = param.stride_w = 1;
  1897. param.pad_h = param.pad_w = 1;
  1898. auto y = opr::Convolution::make(x, w, param);
  1899. y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
  1900. y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
  1901. auto y1 = y + b1, y2 = opr::Convolution::make(y, w, param),
  1902. y3 = opr::Elemwise::make({y - b1}, opr::Elemwise::Param::Mode::RELU);
  1903. y2 = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU),
  1904. y2 = opr::TypeCvt::make(y2, dtype::QuantizedS8(2.5f));
  1905. auto y4 = y1 + y2 + y3;
  1906. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  1907. SymbolVar y_opt;
  1908. SymbolVar y_no_tc;
  1909. {
  1910. auto options = gopt::OptimizeForInferenceOptions{};
  1911. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1912. unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
  1913. }
  1914. {
  1915. auto options = gopt::OptimizeForInferenceOptions{};
  1916. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  1917. unpack_vector(gopt::optimize_for_inference({y4}, options), y_no_tc);
  1918. }
  1919. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  1920. ASSERT_EQ(3u, nr_dimshuffle);
  1921. graph->compile({{y_opt, {}}})
  1922. ->to_json()
  1923. ->writeto_fpath(
  1924. output_file("TestGoptInference.EnableTensorCorePass.json"));
  1925. HostTensorND host_y, host_y_opt;
  1926. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  1927. make_callback_copy(y_opt, host_y_opt)});
  1928. func->execute();
  1929. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  1930. }
  1931. TEST(FuseConvBiasZPass, BlockFuse) {
  1932. REQUIRE_GPU(1);
  1933. auto cn = CompNode::load("gpu0");
  1934. cn.activate();
  1935. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  1936. auto sm_ver = prop.major * 10 + prop.minor;
  1937. if (sm_ver < 61) {
  1938. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  1939. "expected: %d)\n",
  1940. sm_ver, 61);
  1941. return;
  1942. }
  1943. HostTensorGenerator<dtype::Int8> gen;
  1944. auto graph = ComputingGraph::make();
  1945. graph->options().graph_opt_level = 0;
  1946. auto mkvar = [&](const char* name, const TensorShape& shp,
  1947. const DType& dtype) {
  1948. return opr::TypeCvt::make(
  1949. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  1950. dtype);
  1951. };
  1952. auto mkcvar = [&](const char* name, const TensorShape& shp,
  1953. const DType& dtype) {
  1954. return opr::TypeCvt::make(
  1955. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  1956. .rename(name),
  1957. dtype);
  1958. };
  1959. using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
  1960. using NonlineMode = opr::ConvBias::Param::NonlineMode;
  1961. for (auto mode :
  1962. {ElemMultiMode::QFUSE_ADD_RELU, ElemMultiMode::QFUSE_ADD_H_SWISH}) {
  1963. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  1964. w1 = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1965. b1 = mkcvar("b1", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1966. w2 = mkcvar("w2", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1967. b2 = mkcvar("b2", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  1968. w3 = mkcvar("w3", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  1969. b3 = mkcvar("b3", {1, 16, 1, 1, 4}, dtype::QuantizedS32(3.0f));
  1970. NonlineMode nonline_mode = NonlineMode::RELU;
  1971. if (mode == ElemMultiMode::QFUSE_ADD_H_SWISH) {
  1972. nonline_mode = NonlineMode::H_SWISH;
  1973. }
  1974. opr::ConvBias::Param param;
  1975. param.format = opr::Convolution::Param::Format::NCHW4;
  1976. param.nonlineMode = nonline_mode;
  1977. param.stride_h = param.stride_w = 1;
  1978. param.pad_h = param.pad_w = 1;
  1979. auto y1 = opr::ConvBias::make(
  1980. x, w1, b1, param, {},
  1981. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1982. param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
  1983. auto y2 = opr::ConvBias::make(
  1984. y1, w2, b2, param, {},
  1985. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1986. y3 = opr::ElemwiseMultiType::make(
  1987. {y1, y2}, {mode},
  1988. OperatorNodeConfig{dtype::QuantizedS8(1.2f)});
  1989. param.nonlineMode = nonline_mode;
  1990. auto y4 = opr::ConvBias::make(
  1991. y3, w3, b3, param, {},
  1992. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  1993. z = opr::ElemwiseMultiType::make(
  1994. {y3, y4}, {opr::ElemwiseMultiType::Param::Mode::QADD},
  1995. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  1996. z = opr::TypeCvt::make(z, dtype::Float32());
  1997. SymbolVar z_fuse;
  1998. {
  1999. auto options = gopt::OptimizeForInferenceOptions{};
  2000. options.enable_fuse_conv_bias_nonlinearity()
  2001. .enable_fuse_conv_bias_with_z();
  2002. unpack_vector(gopt::optimize_for_inference({z}, options), z_fuse);
  2003. }
  2004. graph->compile({{z_fuse, {}}})
  2005. ->to_json()
  2006. ->writeto_fpath(
  2007. output_file("FuseConvBiasZPass.BlockFuse_fuse.json"));
  2008. auto nr_elem_multi_type =
  2009. find_opr_num<mgb::opr::ElemwiseMultiType>(z_fuse);
  2010. MGB_MARK_USED_VAR(nr_elem_multi_type);
  2011. #if MGB_CUDA && (CUDNN_MAJOR == 8)
  2012. ASSERT_EQ(2u, nr_elem_multi_type);
  2013. #else
  2014. ASSERT_EQ(1u, nr_elem_multi_type);
  2015. //! fuse z mannually
  2016. auto z0 = opr::ConvBias::make(
  2017. x, w1, b1, param, {},
  2018. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2019. auto z1 = opr::ConvBias::make(
  2020. z0, w2, b2, z0, param, {},
  2021. OperatorNodeConfig{dtype::QuantizedS8(1.2f)}),
  2022. z2 = opr::ConvBias::make(
  2023. z1, w3, b3, param, {},
  2024. OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
  2025. z4 = opr::ElemwiseMultiType::make(
  2026. {z1, z2}, {opr::ElemwiseMultiType::Mode::QADD},
  2027. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2028. z4 = opr::TypeCvt::make(z4, dtype::Float32());
  2029. SymbolVar z_nonfuse;
  2030. {
  2031. auto options = gopt::OptimizeForInferenceOptions{};
  2032. options.enable_fuse_conv_bias_nonlinearity();
  2033. unpack_vector(gopt::optimize_for_inference({z4}, options),
  2034. z_nonfuse);
  2035. }
  2036. graph->compile({{z_nonfuse, {}}})
  2037. ->to_json()
  2038. ->writeto_fpath(output_file(
  2039. "FuseConvBiasZPass.BlockFuse_nonfuse.json"));
  2040. HostTensorND host_z_fuse, host_z_nonfuse;
  2041. auto func =
  2042. graph->compile({make_callback_copy(z_nonfuse, host_z_nonfuse),
  2043. make_callback_copy(z_fuse, host_z_fuse)});
  2044. func->execute();
  2045. MGB_ASSERT_TENSOR_EQ(host_z_fuse, host_z_nonfuse);
  2046. #endif
  2047. }
  2048. }
  2049. TEST(TestEnableTensorCore, ShuffleMerge) {
  2050. REQUIRE_GPU(1);
  2051. auto cn = CompNode::load("gpu0");
  2052. cn.activate();
  2053. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2054. auto sm_ver = prop.major * 10 + prop.minor;
  2055. if (sm_ver < 75) {
  2056. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2057. "expected: %d)\n",
  2058. sm_ver, 75);
  2059. return;
  2060. }
  2061. HostTensorGenerator<dtype::Int8> gen;
  2062. auto graph = ComputingGraph::make();
  2063. graph->options().graph_opt_level = 0;
  2064. auto mkvar = [&](const char* name, const TensorShape& shp,
  2065. const DType& dtype) {
  2066. return opr::TypeCvt::make(
  2067. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2068. dtype);
  2069. };
  2070. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2071. const DType& dtype) {
  2072. return opr::TypeCvt::make(
  2073. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2074. .rename(name),
  2075. dtype);
  2076. };
  2077. auto nchw2nchw4 = [](SymbolVar x) {
  2078. auto xshp = opr::GetVarShape::make(x);
  2079. auto cv = [&x](int v) { return x.make_scalar(v); };
  2080. auto sub = [&xshp, &cv](int idx) {
  2081. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2082. };
  2083. auto tshp = opr::Concat::make(
  2084. {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  2085. auto y0 = opr::Reshape::make(x, tshp);
  2086. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  2087. return y1;
  2088. };
  2089. auto nchw42nchw = [](SymbolVar x) {
  2090. auto xshp = opr::GetVarShape::make(x);
  2091. auto cv = [&x](int v) { return x.make_scalar(v); };
  2092. auto sub = [&xshp, &cv](int idx) {
  2093. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2094. };
  2095. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2096. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2097. auto y1 = opr::Reshape::make(y0, tshp);
  2098. return y1;
  2099. };
  2100. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  2101. w = mkcvar("w1", {64, 64, 3, 3}, dtype::QuantizedS8(2.5f)),
  2102. b = mkcvar("b", {1, 64, 1, 1}, dtype::QuantizedS32(6.25f)),
  2103. z = mkvar("b1", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f));
  2104. x = nchw2nchw4(x), w = nchw2nchw4(w), b = nchw2nchw4(b), z = nchw2nchw4(z);
  2105. opr::ConvBias::Param param;
  2106. param.format = opr::ConvBias::Param::Format::NCHW4;
  2107. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2108. param.stride_h = param.stride_w = 1;
  2109. param.pad_h = param.pad_w = 1;
  2110. auto y = opr::ConvBias::make(x, w, b, z, param, {},
  2111. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2112. y = nchw42nchw(y);
  2113. y = opr::TypeCvt::make(y, dtype::Float32());
  2114. SymbolVar y_opt;
  2115. SymbolVar y_no_tc;
  2116. {
  2117. auto options = gopt::OptimizeForInferenceOptions{};
  2118. options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
  2119. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2120. }
  2121. {
  2122. auto options = gopt::OptimizeForInferenceOptions{};
  2123. options.enable_fuse_conv_bias_nonlinearity();
  2124. unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
  2125. }
  2126. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2127. ASSERT_EQ(3u, nr_dimshuffle);
  2128. HostTensorND host_y, host_y_opt;
  2129. auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
  2130. make_callback_copy(y_opt, host_y_opt)});
  2131. func->execute();
  2132. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2133. }
  2134. #endif
  2135. TEST(FuseConvBiasZPass, Basic) {
  2136. REQUIRE_GPU(1);
  2137. auto cn = CompNode::load("gpu0");
  2138. HostTensorGenerator<dtype::Int8> gen;
  2139. auto graph = ComputingGraph::make();
  2140. graph->options().graph_opt_level = 0;
  2141. auto mkvar = [&](const char* name, const TensorShape& shp,
  2142. const DType& dtype) {
  2143. return opr::TypeCvt::make(
  2144. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2145. dtype);
  2146. };
  2147. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2148. const DType& dtype) {
  2149. return opr::TypeCvt::make(
  2150. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2151. .rename(name),
  2152. dtype);
  2153. };
  2154. auto format = opr::Convolution::Param::Format::NCHW4;
  2155. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2156. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2157. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2158. b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2159. b2 = mkvar("b2", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
  2160. opr::ConvBias::Param conv_bias_param;
  2161. conv_bias_param.format = format;
  2162. conv_bias_param.stride_h = conv_bias_param.stride_w = 1;
  2163. conv_bias_param.pad_h = conv_bias_param.pad_w = 1;
  2164. auto y = opr::ConvBias::make(x, w, b, conv_bias_param, {},
  2165. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2166. SymbolVar y_opt;
  2167. // check fuse mode
  2168. for (auto mode : {opr::ElemwiseMultiType::Param::Mode::QADD,
  2169. opr::ElemwiseMultiType::Param::Mode::QMUL,
  2170. opr::ElemwiseMultiType::Param::Mode::QFUSE_ADD_RELU}) {
  2171. auto y1 = opr::ElemwiseMultiType::make(
  2172. {y, b1}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2173. {
  2174. auto options = gopt::OptimizeForInferenceOptions{};
  2175. options.enable_fuse_conv_bias_nonlinearity()
  2176. .enable_fuse_conv_bias_with_z()
  2177. .enable_nchw32();
  2178. unpack_vector(gopt::optimize_for_inference({y1}, options), y_opt);
  2179. }
  2180. auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
  2181. if (mode == opr::ElemwiseMultiType::Param::Mode::QMUL) {
  2182. ASSERT_NE(0u, nr_elemwisemultitype);
  2183. } else
  2184. ASSERT_EQ(0u, nr_elemwisemultitype);
  2185. // fuse convbiasz and z
  2186. if (mode == opr::ElemwiseMultiType::Param::Mode::QADD) {
  2187. auto y2 = opr::ElemwiseMultiType::make(
  2188. {y1, b2}, {mode},
  2189. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  2190. {
  2191. auto options = gopt::OptimizeForInferenceOptions{};
  2192. options.enable_fuse_conv_bias_nonlinearity()
  2193. .enable_fuse_conv_bias_with_z()
  2194. .enable_nchw32();
  2195. unpack_vector(gopt::optimize_for_inference({y2}, options),
  2196. y_opt);
  2197. }
  2198. auto nr_elemwisemultitype =
  2199. find_opr_num<opr::ElemwiseMultiType>(y_opt);
  2200. ASSERT_NE(0u, nr_elemwisemultitype);
  2201. }
  2202. }
  2203. }
  2204. #if MGB_CUDA
  2205. //! close for cu111 ci, reopen it when bug fixed
  2206. #if CUDA_VERSION < 11000
  2207. TEST(TestGoptInference, EnableCHWN4) {
  2208. REQUIRE_GPU(1);
  2209. auto cn = CompNode::load("gpu0");
  2210. cn.activate();
  2211. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2212. auto sm_ver = prop.major * 10 + prop.minor;
  2213. if (sm_ver < 61) {
  2214. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2215. "expected: %d)\n",
  2216. sm_ver, 61);
  2217. return;
  2218. }
  2219. HostTensorGenerator<dtype::Int8> gen;
  2220. auto graph = ComputingGraph::make();
  2221. graph->options().graph_opt_level = 0;
  2222. auto mkvar = [&](const char* name, const TensorShape& shp,
  2223. const DType& dtype) {
  2224. return opr::TypeCvt::make(
  2225. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2226. dtype);
  2227. };
  2228. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2229. const DType& dtype) {
  2230. return opr::TypeCvt::make(
  2231. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2232. .rename(name),
  2233. dtype);
  2234. };
  2235. auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C,
  2236. size_t H, size_t W) -> TensorShape {
  2237. mgb_assert(C % 4 == 0);
  2238. if (format == opr::ConvBias::Param::Format::NCHW4) {
  2239. return {N, C / 4, H, W, 4};
  2240. } else {
  2241. mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
  2242. return {N, C, H, W};
  2243. }
  2244. };
  2245. for (auto format : {opr::ConvBias::Param::Format::NCHW,
  2246. opr::ConvBias::Param::Format::NCHW4}) {
  2247. auto x = mkvar("x", mkshape(format, 32, 64, 16, 16),
  2248. dtype::QuantizedS8(2.5f)),
  2249. w = mkcvar("w1", mkshape(format, 64, 64, 3, 3),
  2250. dtype::QuantizedS8(2.5f)),
  2251. b = mkcvar("b", mkshape(format, 1, 64, 1, 1),
  2252. dtype::QuantizedS32(6.25f)),
  2253. b1 = mkvar("b1", mkshape(format, 32, 64, 16, 16),
  2254. dtype::QuantizedS8(2.5f));
  2255. opr::ConvBias::Param param;
  2256. param.format = format;
  2257. param.stride_h = param.stride_w = 1;
  2258. param.pad_h = param.pad_w = 1;
  2259. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2260. auto y = opr::ConvBiasForward::make(
  2261. x, w, b, param, {},
  2262. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2263. auto y1 = opr::ElemwiseMultiType::make(
  2264. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  2265. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2266. auto y2 = opr::ConvBiasForward::make(
  2267. y, w, b, param, {},
  2268. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2269. auto y3 = opr::ElemwiseMultiType::make(
  2270. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  2271. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2272. auto y4 = opr::ElemwiseMultiType::make(
  2273. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2274. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2275. y4 = opr::ElemwiseMultiType::make(
  2276. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2277. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2278. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  2279. SymbolVar y_opt;
  2280. SymbolVar y_cudnn;
  2281. {
  2282. auto options = gopt::OptimizeForInferenceOptions{};
  2283. options.enable_chwn4();
  2284. unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
  2285. }
  2286. unpack_vector(gopt::GraphOptimizer{}
  2287. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2288. .add_pass<gopt::FuseConvBiasZPass>()
  2289. .apply({{y4}})
  2290. .endpoint_vars(),
  2291. y_cudnn);
  2292. ASSERT_EQ(opr::ConvBias::Param::Format::CHWN4,
  2293. find_opr<opr::ConvBias>(y_opt).param().format);
  2294. HostTensorND host_y, host_y_opt;
  2295. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  2296. make_callback_copy(y_opt, host_y_opt)});
  2297. func->execute();
  2298. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2299. }
  2300. }
  2301. #endif
  2302. TEST(TestGoptInference, EnableCHWN4WarpPespective) {
  2303. REQUIRE_GPU(1);
  2304. auto cn = CompNode::load("gpu0");
  2305. cn.activate();
  2306. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2307. auto sm_ver = prop.major * 10 + prop.minor;
  2308. if (sm_ver < 61) {
  2309. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2310. "expected: %d)\n",
  2311. sm_ver, 61);
  2312. return;
  2313. }
  2314. HostTensorGenerator<dtype::Int8> gen;
  2315. auto graph = ComputingGraph::make();
  2316. graph->options().graph_opt_level = 0;
  2317. auto mkvar = [&](const char* name, const TensorShape& shp,
  2318. const DType& dtype) {
  2319. return opr::TypeCvt::make(
  2320. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2321. dtype);
  2322. };
  2323. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2324. const DType& dtype) {
  2325. return opr::TypeCvt::make(
  2326. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2327. .rename(name),
  2328. dtype);
  2329. };
  2330. std::shared_ptr<HostTensorND> mat = std::make_shared<HostTensorND>(
  2331. cn, TensorShape{32, 3, 3}, dtype::Float32());
  2332. warp_perspective_mat_gen(*mat, 32, 16, 16);
  2333. auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
  2334. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2335. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2336. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  2337. opr::ConvBias::Param param;
  2338. param.format = opr::ConvBias::Param::Format::NCHW4;
  2339. param.stride_h = param.stride_w = 1;
  2340. param.pad_h = param.pad_w = 1;
  2341. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2342. auto y = opr::ConvBiasForward::make(
  2343. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2344. opr::WarpPerspective::Param warp_param;
  2345. warp_param.format = opr::WarpPerspective::Param::Format::NCHW4;
  2346. auto y1 = opr::WarpPerspective::make(y, mat_var, TensorShape{16, 16},
  2347. warp_param);
  2348. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  2349. auto nchw42nchw = [](SymbolVar x) {
  2350. auto xshp = opr::GetVarShape::make(x);
  2351. auto cv = [&x](int v) { return x.make_scalar(v); };
  2352. auto sub = [&xshp, &cv](int idx) {
  2353. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2354. };
  2355. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2356. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2357. auto y1 = opr::Reshape::make(y0, tshp);
  2358. return y1;
  2359. };
  2360. y1 = nchw42nchw(y1);
  2361. warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
  2362. auto y2 = opr::WarpPerspective::make(y1, mat_var, TensorShape{16, 16},
  2363. warp_param);
  2364. SymbolVar y_opt;
  2365. SymbolVar y_cudnn;
  2366. {
  2367. auto options = gopt::OptimizeForInferenceOptions{};
  2368. options.enable_chwn4();
  2369. unpack_vector(gopt::optimize_for_inference({y2}, options), y_opt);
  2370. }
  2371. unpack_vector(gopt::GraphOptimizer{}
  2372. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2373. .add_pass<gopt::FuseConvBiasZPass>()
  2374. .apply({{y2}})
  2375. .endpoint_vars(),
  2376. y_cudnn);
  2377. HostTensorND host_y, host_y_opt;
  2378. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  2379. make_callback_copy(y_opt, host_y_opt)});
  2380. func->execute();
  2381. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2382. }
  2383. TEST(TestGoptInference, EnableCHWN4Pooling) {
  2384. REQUIRE_GPU(1);
  2385. auto cn = CompNode::load("gpu0");
  2386. cn.activate();
  2387. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2388. auto sm_ver = prop.major * 10 + prop.minor;
  2389. if (sm_ver < 61) {
  2390. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2391. "expected: %d)\n",
  2392. sm_ver, 61);
  2393. return;
  2394. }
  2395. HostTensorGenerator<dtype::Int8> gen;
  2396. auto graph = ComputingGraph::make();
  2397. graph->options().graph_opt_level = 0;
  2398. auto mkvar = [&](const char* name, const TensorShape& shp,
  2399. const DType& dtype) {
  2400. return opr::TypeCvt::make(
  2401. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2402. dtype);
  2403. };
  2404. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2405. const DType& dtype) {
  2406. return opr::TypeCvt::make(
  2407. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2408. .rename(name),
  2409. dtype);
  2410. };
  2411. auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
  2412. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2413. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  2414. opr::ConvBias::Param param;
  2415. param.format = opr::ConvBias::Param::Format::NCHW4;
  2416. param.stride_h = param.stride_w = 1;
  2417. param.pad_h = param.pad_w = 1;
  2418. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2419. auto y = opr::ConvBiasForward::make(
  2420. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2421. opr::Pooling::Param pool_param;
  2422. pool_param.format = opr::Pooling::Param::Format::NCHW4;
  2423. y = opr::Pooling::make(y, pool_param);
  2424. y = opr::TypeCvt::make(y, dtype::Float32());
  2425. auto nchw42nchw = [](SymbolVar x) {
  2426. auto xshp = opr::GetVarShape::make(x);
  2427. auto cv = [&x](int v) { return x.make_scalar(v); };
  2428. auto sub = [&xshp, &cv](int idx) {
  2429. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2430. };
  2431. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2432. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2433. auto y1 = opr::Reshape::make(y0, tshp);
  2434. return y1;
  2435. };
  2436. y = nchw42nchw(y);
  2437. pool_param.format = opr::Pooling::Param::Format::NCHW;
  2438. auto y1 = opr::Pooling::make(y, pool_param);
  2439. SymbolVar y_opt;
  2440. SymbolVar y_cudnn;
  2441. unpack_vector(
  2442. gopt::GraphOptimizer{}
  2443. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2444. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  2445. .add_pass<gopt::FuseConvBiasZPass>()
  2446. .apply({{y1}})
  2447. .endpoint_vars(),
  2448. y_opt);
  2449. unpack_vector(gopt::GraphOptimizer{}
  2450. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2451. .add_pass<gopt::FuseConvBiasZPass>()
  2452. .apply({{y1}})
  2453. .endpoint_vars(),
  2454. y_cudnn);
  2455. HostTensorND host_y, host_y_opt;
  2456. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  2457. make_callback_copy(y_opt, host_y_opt)});
  2458. func->execute();
  2459. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2460. }
  2461. TEST(TestGoptInference, EnableCHWN4ShuffleRemove) {
  2462. REQUIRE_GPU(1);
  2463. auto cn = CompNode::load("gpu0");
  2464. cn.activate();
  2465. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2466. auto sm_ver = prop.major * 10 + prop.minor;
  2467. if (sm_ver < 61) {
  2468. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2469. "expected: %d)\n",
  2470. sm_ver, 61);
  2471. return;
  2472. }
  2473. HostTensorGenerator<dtype::Int8> gen;
  2474. auto graph = ComputingGraph::make();
  2475. graph->options().graph_opt_level = 0;
  2476. auto mkvar = [&](const char* name, const TensorShape& shp,
  2477. const DType& dtype) {
  2478. return opr::TypeCvt::make(
  2479. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2480. dtype);
  2481. };
  2482. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2483. const DType& dtype) {
  2484. return opr::TypeCvt::make(
  2485. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2486. .rename(name),
  2487. dtype);
  2488. };
  2489. auto nchw2nchw4 = [](SymbolVar x) {
  2490. auto xshp = opr::GetVarShape::make(x);
  2491. auto cv = [&x](int v) { return x.make_scalar(v); };
  2492. auto sub = [&xshp, &cv](int idx) {
  2493. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2494. };
  2495. auto tshp = opr::Concat::make(
  2496. {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
  2497. auto y0 = opr::Reshape::make(x, tshp);
  2498. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
  2499. return y1;
  2500. };
  2501. auto nchw42nchw = [](SymbolVar x) {
  2502. auto xshp = opr::GetVarShape::make(x);
  2503. auto cv = [&x](int v) { return x.make_scalar(v); };
  2504. auto sub = [&xshp, &cv](int idx) {
  2505. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  2506. };
  2507. auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  2508. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  2509. auto y1 = opr::Reshape::make(y0, tshp);
  2510. return y1;
  2511. };
  2512. auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
  2513. w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  2514. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  2515. b1 = mkcvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8{2.5f});
  2516. x = nchw2nchw4(x);
  2517. opr::ConvBias::Param param;
  2518. param.format = opr::ConvBias::Param::Format::NCHW4;
  2519. param.stride_h = param.stride_w = 1;
  2520. param.pad_h = param.pad_w = 1;
  2521. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2522. auto y = opr::ConvBiasForward::make(
  2523. x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2524. auto y1 = opr::ElemwiseMultiType::make(
  2525. {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
  2526. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2527. auto y2 = opr::ConvBiasForward::make(
  2528. y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2529. auto y3 = opr::ElemwiseMultiType::make(
  2530. {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
  2531. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2532. auto y4 = opr::ElemwiseMultiType::make(
  2533. {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2534. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2535. y4 = opr::ElemwiseMultiType::make(
  2536. {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
  2537. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2538. y4 = opr::TypeCvt::make(y4, dtype::Float32());
  2539. y4 = nchw42nchw(y4);
  2540. SymbolVar y_opt;
  2541. SymbolVar y_cudnn;
  2542. unpack_vector(
  2543. gopt::GraphOptimizer{}
  2544. .add_pass<gopt::ParamRedistributePass>()
  2545. .add_pass<gopt::ParamFusePass>()
  2546. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2547. .add_pass<gopt::FuseConvBiasZPass>()
  2548. .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
  2549. .add_pass<gopt::ShuffleShuffleRemovePass>()
  2550. .add_pass<gopt::ParamFusePass>()
  2551. .apply({{y4}})
  2552. .endpoint_vars(),
  2553. y_opt);
  2554. graph->compile({{y_opt, {}}})
  2555. ->to_json()
  2556. ->writeto_fpath(output_file(
  2557. "TestGoptInference.EnableCHWN4ShuffleRemove.json"));
  2558. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2559. ASSERT_EQ(2u, nr_dimshuffle);
  2560. auto nr_reformat = find_opr_num<mgb::opr::RelayoutFormat>(y_opt);
  2561. ASSERT_EQ(0u, nr_reformat);
  2562. unpack_vector(gopt::GraphOptimizer{}
  2563. .add_pass<gopt::FuseConvBiasNonlinPass>()
  2564. .add_pass<gopt::FuseConvBiasZPass>()
  2565. .apply({{y4}})
  2566. .endpoint_vars(),
  2567. y_cudnn);
  2568. HostTensorND host_y, host_y_opt;
  2569. auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
  2570. make_callback_copy(y_opt, host_y_opt)});
  2571. func->execute();
  2572. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2573. }
  2574. TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
  2575. REQUIRE_GPU(1);
  2576. auto cn = CompNode::load("gpu0");
  2577. cn.activate();
  2578. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  2579. auto sm_ver = prop.major * 10 + prop.minor;
  2580. if (sm_ver < 61) {
  2581. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  2582. "expected: %d)\n",
  2583. sm_ver, 61);
  2584. return;
  2585. }
  2586. HostTensorGenerator<dtype::Int8> gen;
  2587. auto graph = ComputingGraph::make();
  2588. graph->options().graph_opt_level = 0;
  2589. auto mkvar = [&](const char* name, const TensorShape& shp,
  2590. const DType& dtype) {
  2591. return opr::TypeCvt::make(
  2592. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2593. dtype);
  2594. };
  2595. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2596. const DType& dtype) {
  2597. return opr::TypeCvt::make(
  2598. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2599. .rename(name),
  2600. dtype);
  2601. };
  2602. auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
  2603. opr::ConvBias::Param param_conv_bias;
  2604. param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
  2605. param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
  2606. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2607. param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2608. // dense
  2609. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2610. auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2611. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2612. auto conv1 = opr::ConvBiasForward::make(
  2613. x, w1, b1, param_conv_bias, {},
  2614. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2615. // group
  2616. // icpg != 1 && ocpg != 1
  2617. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2618. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2619. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2620. auto conv2 = opr::ConvBiasForward::make(
  2621. conv1, w2, b2, param_conv_bias, {},
  2622. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2623. opr::Convolution::Param param_deconv;
  2624. param_deconv.format = opr::Convolution::Param::Format::NCHW;
  2625. param_deconv.stride_h = param_deconv.stride_w = 2;
  2626. param_deconv.pad_h = param_deconv.pad_w = 2;
  2627. // dense
  2628. param_deconv.sparse = opr::Convolution::Param::Sparse::DENSE;
  2629. auto w3 = mkcvar("w3", {8, 8, 4, 4}, dtype::QuantizedS8(2.5f));
  2630. auto deconv1 = opr::ConvolutionBackwardData::make_deconv(
  2631. conv2, w3, param_deconv, {},
  2632. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2633. auto deconv1_fp32 = opr::TypeCvt::make(deconv1, dtype::Float32());
  2634. auto y = deconv1_fp32 + opr::TypeCvt::make(b2, dtype::Float32());
  2635. SymbolVar y_opt;
  2636. {
  2637. auto options = gopt::OptimizeForInferenceOptions{};
  2638. options.enable_nchw4();
  2639. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2640. }
  2641. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
  2642. find_opr<opr::ConvBias>(y_opt).param().format);
  2643. ASSERT_EQ(opr::ConvolutionBackwardData::Param::Format::NCHW4,
  2644. find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
  2645. auto nr_reshape = find_opr_num<mgb::opr::Reshape>(y_opt);
  2646. ASSERT_EQ(2u, nr_reshape);
  2647. graph->compile({{y_opt, {}}})
  2648. ->to_json()
  2649. ->writeto_fpath(output_file(
  2650. "TestGoptInference.ConvertFormatNCHW4GPU.json"));
  2651. HostTensorND host_y, host_y_opt;
  2652. auto func = graph->compile({make_callback_copy(y, host_y),
  2653. make_callback_copy(y_opt, host_y_opt)});
  2654. func->execute();
  2655. MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
  2656. }
  2657. #endif
  2658. TEST(TestGoptInference, ConvertFormatNCHW4NonConvOpr) {
  2659. auto cn = CompNode::load("xpu0");
  2660. HostTensorGenerator<dtype::Int8> gen;
  2661. auto graph = ComputingGraph::make();
  2662. graph->options().graph_opt_level = 0;
  2663. auto mkvar = [&](const char* name, const TensorShape& shp,
  2664. const DType& dtype) {
  2665. return opr::TypeCvt::make(
  2666. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  2667. dtype);
  2668. };
  2669. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2670. const DType& dtype) {
  2671. return opr::TypeCvt::make(
  2672. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2673. .rename(name),
  2674. dtype);
  2675. };
  2676. auto mkcvarf32 = [&](const char* name, const TensorShape& shp) {
  2677. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2678. .rename(name);
  2679. };
  2680. auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
  2681. opr::ConvBias::Param param_conv_bias;
  2682. param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
  2683. param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
  2684. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2685. param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  2686. // dense
  2687. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2688. auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2689. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2690. auto conv1 = opr::ConvBiasForward::make(
  2691. x, w1, b1, param_conv_bias, {},
  2692. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2693. // test Resize
  2694. auto shape_of = opr::GetVarShape::make(x);
  2695. auto subtensor = opr::Subtensor::make(
  2696. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2697. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2698. opr::Resize::Param param_resize;
  2699. param_resize.format = opr::Resize::Param::Format::NCHW;
  2700. auto resize = opr::ResizeForward::make(conv1, subtensor * 2, param_resize);
  2701. // test WarpPerspective
  2702. auto mat = mkcvarf32("mat", {2, 3, 3}),
  2703. warp = opr::WarpPerspectiveForward::make(
  2704. resize, mat, nullptr, cg::var_from_tensor_shape(x, {32, 32}));
  2705. opr::Pooling::Param pool_param;
  2706. pool_param.format = opr::Pooling::Param::Format::NCHW;
  2707. // test Pooling
  2708. auto pool = opr::Pooling::make(warp, pool_param);
  2709. // group
  2710. // icpg != 1 && ocpg != 1
  2711. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2712. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2713. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2714. auto conv2 = opr::ConvBiasForward::make(
  2715. pool, w2, b2, param_conv_bias, {},
  2716. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2717. auto add = opr::ElemwiseMultiType::make(
  2718. {conv1, conv2}, {opr::ElemwiseMultiType::Param::Mode::QADD},
  2719. OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
  2720. auto y = opr::TypeCvt::make(add, dtype::Float32());
  2721. SymbolVar y_opt;
  2722. {
  2723. auto options = gopt::OptimizeForInferenceOptions{};
  2724. options.enable_nchw4();
  2725. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2726. }
  2727. auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
  2728. ASSERT_EQ(2u, nr_dimshuffle);
  2729. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
  2730. find_opr<opr::ConvBias>(y_opt).param().format);
  2731. ASSERT_EQ(opr::ResizeForward::Param::Format::NCHW4,
  2732. find_opr<opr::ResizeForward>(y_opt).param().format);
  2733. ASSERT_EQ(opr::WarpPerspectiveForward::Param::Format::NCHW4,
  2734. find_opr<opr::WarpPerspectiveForward>(y_opt).param().format);
  2735. ASSERT_EQ(opr::PoolingForward::Param::Format::NCHW4,
  2736. find_opr<opr::PoolingForward>(y_opt).param().format);
  2737. }
  2738. TEST(TestGoptInference, ConvertFormatNCHW4) {
  2739. HostTensorGenerator<> gen;
  2740. auto cn = CompNode::load("cpu0");
  2741. auto graph = ComputingGraph::make();
  2742. graph->options().graph_opt_level = 0;
  2743. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2744. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2745. };
  2746. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2747. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2748. .rename(name);
  2749. };
  2750. auto x = mkvar("x", {2, 4, 16, 16});
  2751. // ConvBias test dense
  2752. opr::ConvBias::Param param_conv_bias;
  2753. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2754. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2755. auto w1 = mkcvar("w1", {8, 4, 3, 3}), b1 = mkcvar("b1", {1, 8, 1, 1});
  2756. auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
  2757. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2758. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1});
  2759. auto conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  2760. // Convolution
  2761. opr::Convolution::Param param_conv;
  2762. param_conv.pad_h = param_conv.pad_w = 1;
  2763. param_conv.sparse = opr::Convolution::Param::Sparse::DENSE;
  2764. auto w3 = mkcvar("w3", {8, 8, 3, 3});
  2765. auto y = opr::Convolution::make(conv2, w3, param_conv);
  2766. SymbolVar y_opt;
  2767. {
  2768. auto options = gopt::OptimizeForInferenceOptions{};
  2769. options.enable_nchw4();
  2770. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2771. }
  2772. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW,
  2773. find_opr<opr::ConvBias>(y_opt).param().format);
  2774. graph->compile({{y_opt, {}}})
  2775. ->to_json()
  2776. ->writeto_fpath(
  2777. output_file("TestGoptInference.ConvertFormatNCHW4.json"));
  2778. HostTensorND host_y_opt, host_y;
  2779. auto func = graph->compile({make_callback_copy(y, host_y),
  2780. make_callback_copy(y_opt, host_y_opt)});
  2781. func->execute();
  2782. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  2783. }
  2784. TEST(TestGoptInference, ConvertFormatNCHW4Ic3) {
  2785. REQUIRE_GPU(1);
  2786. auto cn = CompNode::load("gpu0");
  2787. cn.activate();
  2788. REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
  2789. HostTensorGenerator<dtype::Float32, RandomDistribution::UNIFORM> gen{
  2790. 1.2f, 127 * 127};
  2791. auto graph = ComputingGraph::make();
  2792. graph->options().graph_opt_level = 0;
  2793. auto mkvar = [&](const char* name, const TensorShape& shp,
  2794. const DType& dtype) {
  2795. return opr::TypeCvt::make(
  2796. opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name),
  2797. dtype);
  2798. };
  2799. auto mkcvar = [&](const char* name, const TensorShape& shp,
  2800. const DType& dtype) {
  2801. return opr::TypeCvt::make(
  2802. opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name),
  2803. dtype);
  2804. };
  2805. auto x = mkvar("x", {2, 3, 16, 16}, dtype::QuantizedS8(2.5f));
  2806. // ConvBias test dense
  2807. opr::ConvBias::Param param_conv_bias;
  2808. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2809. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2810. auto w1 = mkcvar("w1", {8, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  2811. b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2812. auto conv1 =
  2813. opr::ConvBias::make(x, w1, b1, param_conv_bias, {},
  2814. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2815. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2816. auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2817. b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2818. auto conv2 =
  2819. opr::ConvBias::make(conv1, w2, b2, param_conv_bias, {},
  2820. OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
  2821. auto y = opr::TypeCvt::make(conv2, dtype::Float32());
  2822. SymbolVar y_opt;
  2823. {
  2824. auto options = gopt::OptimizeForInferenceOptions{};
  2825. options.enable_nchw4();
  2826. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2827. }
  2828. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
  2829. find_opr<opr::ConvBias>(y_opt).param().format);
  2830. graph->compile({{y_opt, {}}})
  2831. ->to_json()
  2832. ->writeto_fpath(output_file(
  2833. "TestGoptInference.ConvertFormatNCHW4Ic3.json"));
  2834. HostTensorND host_y_opt, host_y;
  2835. auto func = graph->compile({make_callback_copy(y, host_y),
  2836. make_callback_copy(y_opt, host_y_opt)});
  2837. func->execute();
  2838. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  2839. }
  2840. TEST(TestGoptInference, ConvertFormatNCHW88) {
  2841. HostTensorGenerator<> gen;
  2842. auto cn = CompNode::load("cpu0");
  2843. auto graph = ComputingGraph::make();
  2844. graph->options().graph_opt_level = 0;
  2845. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2846. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2847. };
  2848. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2849. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2850. .rename(name);
  2851. };
  2852. auto host_x = gen({2, 3, 16, 16}, cn);
  2853. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  2854. //! Hybrid nchw88 mode
  2855. opr::Convolution::Param param_conv;
  2856. param_conv.pad_h = param_conv.pad_w = 1;
  2857. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  2858. conv1 = opr::Convolution::make(x, w1, param_conv, {},
  2859. OperatorNodeConfig("conv1"));
  2860. //! channel wise
  2861. opr::ConvBias::Param param_conv_bias;
  2862. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2863. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2864. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  2865. conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
  2866. //! group
  2867. auto w3 = mkcvar("w3", {1, 8, 8, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  2868. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  2869. auto shape_of = opr::GetVarShape::make(conv3);
  2870. auto subtensor = opr::Subtensor::make(
  2871. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2872. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2873. opr::Resize::Param param_resize;
  2874. param_resize.format = opr::Resize::Param::Format::NCHW;
  2875. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  2876. auto mat = mkcvar("mat", {2, 3, 3}),
  2877. warp = opr::WarpPerspectiveForward::make(
  2878. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  2879. auto b = mkvar("b", {1, 8, 1, 1}),
  2880. elem = opr::Elemwise::make({warp + b},
  2881. opr::Elemwise::Param::Mode::RELU);
  2882. //! Dense
  2883. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2884. auto w4 = mkcvar("w4", {2, 6, 4, 3, 3}), b4 = mkcvar("b4", {1, 12, 1, 1}),
  2885. conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
  2886. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2887. auto w5 = mkcvar("w5", {8, 12, 3, 3}), b5 = mkcvar("b5", {1, 8, 1, 1}),
  2888. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
  2889. auto w6 = mkcvar("w6", {8, 8, 3, 3}), b6 = mkcvar("b6", {1, 8, 1, 1}),
  2890. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
  2891. SymbolVar y_opt;
  2892. {
  2893. auto options = gopt::OptimizeForInferenceOptions{};
  2894. options.enable_nchw88();
  2895. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  2896. }
  2897. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW88,
  2898. find_opr<opr::Convolution>(y_opt, "conv1").param().format);
  2899. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW88,
  2900. find_opr<opr::ConvBias>(y_opt).param().format);
  2901. graph->compile({{y_opt, {}}})
  2902. ->to_json()
  2903. ->writeto_fpath(
  2904. output_file("TestGoptInference.ConvertFormatNCHW88.json"));
  2905. HostTensorND host_y_opt, host_y;
  2906. auto func = graph->compile({make_callback_copy(y, host_y),
  2907. make_callback_copy(y_opt, host_y_opt)});
  2908. func->execute();
  2909. //! meybe go to winograd in x86-32, so set error 1e-1
  2910. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2911. *host_x = *gen({2, 3, 32, 32}, cn);
  2912. func->execute();
  2913. //! meybe go to winograd in x86-32, so set error 1e-1
  2914. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  2915. }
  2916. TEST(TestGoptInference, ConvertFormatNCHW44) {
  2917. HostTensorGenerator<> gen;
  2918. auto cn = CompNode::load("cpu0");
  2919. auto graph = ComputingGraph::make();
  2920. graph->options().graph_opt_level = 0;
  2921. auto mkvar = [&](const char* name, const TensorShape& shp) {
  2922. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  2923. };
  2924. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  2925. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2926. .rename(name);
  2927. };
  2928. auto mkcvar_dtype = [&](const char* name, const TensorShape& shp,
  2929. const DType& dtype) {
  2930. return opr::TypeCvt::make(
  2931. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  2932. .rename(name),
  2933. dtype);
  2934. };
  2935. auto host_x = gen({2, 3, 16, 16}, cn);
  2936. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  2937. //! Hybrid nchw44 mode
  2938. opr::Convolution::Param param_conv;
  2939. param_conv.pad_h = param_conv.pad_w = 1;
  2940. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  2941. conv1 = opr::Convolution::make(x, w1, param_conv, {},
  2942. OperatorNodeConfig("conv1"));
  2943. //! no supported hybrid nchw44
  2944. opr::ConvBias::Param param_conv_bias_pad0;
  2945. param_conv_bias_pad0.pad_h = param_conv_bias_pad0.pad_w = 0;
  2946. auto w1_f1 = mkcvar("w1_1", {8, 3, 1, 1});
  2947. auto conv1_f1 = opr::ConvBias::make(x, w1_f1, param_conv_bias_pad0, {},
  2948. OperatorNodeConfig("conv1_f1"));
  2949. auto conv1_add = conv1_f1 * conv1;
  2950. auto conv_1_q8 = opr::TypeCvt::make(conv1_add, dtype::QuantizedS8(2.5f));
  2951. //! s8 dense conv
  2952. opr::ConvBias::Param param_conv_bias;
  2953. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2954. auto w1_2 = mkcvar_dtype("w1_2", {8, 8, 3, 3}, dtype::QuantizedS8(2.5f));
  2955. auto b1_2 = mkcvar_dtype("b1_2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
  2956. auto conv_1_2 = opr::ConvBias::make(
  2957. conv_1_q8, w1_2, b1_2, param_conv_bias, {},
  2958. OperatorNodeConfig{"conv_1_2", cn, dtype::QuantizedS8{6.25f}});
  2959. auto conv_1_2_fp32 = opr::TypeCvt::make(conv_1_2, dtype::Float32());
  2960. //! channel wise
  2961. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2962. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  2963. conv2 = opr::ConvBias::make(conv_1_2_fp32, w2, b2, param_conv_bias);
  2964. //! group
  2965. auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  2966. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  2967. auto shape_of = opr::GetVarShape::make(conv3);
  2968. auto subtensor = opr::Subtensor::make(
  2969. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  2970. 0, x.make_scalar(2), None, x.make_scalar(1))});
  2971. opr::Resize::Param param_resize;
  2972. param_resize.format = opr::Resize::Param::Format::NCHW;
  2973. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  2974. auto mat = mkcvar("mat", {2, 3, 3}),
  2975. warp = opr::WarpPerspectiveForward::make(
  2976. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  2977. auto b = mkvar("b", {1, 8, 1, 1}),
  2978. elem = opr::Elemwise::make({warp + b},
  2979. opr::Elemwise::Param::Mode::RELU);
  2980. //! Dense
  2981. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2982. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  2983. auto w3_2 = mkcvar("w3_2", {16, 8, 3, 3}),
  2984. b3_2 = mkcvar("b3_2", {1, 16, 1, 1}),
  2985. conv3_2 = opr::ConvBias::make(elem, w3_2, b3_2, param_conv_bias, {},
  2986. OperatorNodeConfig("conv3_2"));
  2987. //! s8 group conv
  2988. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  2989. auto conv3_2_q8 = opr::TypeCvt::make(conv3_2, dtype::QuantizedS8(2.5f));
  2990. auto w3_3 = mkcvar_dtype("w3_3", {4, 8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  2991. b3_3 = mkcvar_dtype("b3_3", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
  2992. conv3_3_q = opr::ConvBias::make(
  2993. conv3_2_q8, w3_3, b3_3, param_conv_bias, {},
  2994. OperatorNodeConfig{"conv_3_3_q", cn,
  2995. dtype::QuantizedS8{6.25f}});
  2996. auto conv3_3 = opr::TypeCvt::make(conv3_3_q, dtype::Float32());
  2997. //! Dense
  2998. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  2999. auto w4 = mkcvar("w4", {16, 32, 3, 3}), b4 = mkcvar("b4", {1, 16, 1, 1}),
  3000. conv4 = opr::ConvBias::make(conv3_3, w4, b4, param_conv_bias, {},
  3001. OperatorNodeConfig("conv4"));
  3002. auto w4_1 = mkcvar("w4_1", {16, 32, 1, 1}),
  3003. b4_1 = mkcvar("b4_1", {2, 16, 4, 4}),
  3004. conv4_1 =
  3005. opr::ConvBias::make(conv3_3, w4_1, b4_1, param_conv_bias_pad0,
  3006. {}, OperatorNodeConfig("conv4_1"));
  3007. auto conv4_add = conv4 + conv4_1;
  3008. auto w5 = mkcvar("w5", {6, 16, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
  3009. conv5 = opr::ConvBias::make(conv4_add, w5, b5, param_conv_bias, {},
  3010. OperatorNodeConfig("conv5"));
  3011. auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
  3012. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias, {},
  3013. OperatorNodeConfig("conv6"));
  3014. SymbolVar y_opt;
  3015. auto options = gopt::OptimizeForInferenceOptions{};
  3016. options.enable_fuse_conv_bias_nonlinearity();
  3017. options.enable_nchw44();
  3018. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3019. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3020. find_opr<opr::Convolution>(y_opt, "conv1").param().format);
  3021. ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
  3022. find_opr<opr::ConvBias>(y_opt, "conv1_f1").param().format);
  3023. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3024. find_opr<opr::ConvBias>(y_opt, "conv_1_2").param().format);
  3025. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3026. find_opr<opr::ConvBias>(y_opt, "conv3_2").param().format);
  3027. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3028. find_opr<opr::ConvBias>(y_opt, "conv_3_3_q").param().format);
  3029. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3030. find_opr<opr::ConvBias>(y_opt, "conv4").param().format);
  3031. ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
  3032. find_opr<opr::ConvBias>(y_opt, "conv5").param().format);
  3033. graph->compile({{y_opt, {}}})
  3034. ->to_json()
  3035. ->writeto_fpath(
  3036. output_file("TestGoptInference.ConvertFormatNCHW44.json"));
  3037. HostTensorND host_y_opt, host_y;
  3038. auto func = graph->compile({make_callback_copy(y, host_y),
  3039. make_callback_copy(y_opt, host_y_opt)});
  3040. func->execute();
  3041. //! meybe go to winograd in x86-32, so set error 1e-1
  3042. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3043. *host_x = *gen({2, 3, 32, 32}, cn);
  3044. func->execute();
  3045. //! meybe go to winograd in x86-32, so set error 1e-1
  3046. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3047. }
  3048. TEST(TestGoptInference, ConvertFormatNCHW44MultiInput) {
  3049. HostTensorGenerator<> gen;
  3050. auto cn = CompNode::load("cpu0");
  3051. auto graph = ComputingGraph::make();
  3052. graph->options().graph_opt_level = 0;
  3053. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3054. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3055. };
  3056. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3057. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3058. .rename(name);
  3059. };
  3060. auto host_x1 = gen({1, 8, 16, 16}, cn);
  3061. auto host_x2 = gen({1, 1, 16, 16}, cn);
  3062. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3063. opr::Convolution::Param param_conv;
  3064. param_conv.pad_h = param_conv.pad_w = 1;
  3065. auto w1 = mkcvar("w1", {8, 8, 3, 3}),
  3066. conv1 = opr::Convolution::make(x, w1, param_conv);
  3067. auto b = mkvar("b", {1, 1, 16, 16}),
  3068. elem0 = opr::Elemwise::make({conv1 + b + b},
  3069. opr::Elemwise::Param::Mode::RELU);
  3070. auto w2 = mkcvar("w2", {8, 8, 3, 3}),
  3071. conv2 = opr::Convolution::make(elem0, w2, param_conv);
  3072. auto b1 = mkvar("b1", {1}),
  3073. y = opr::Elemwise::make({conv2 + b1 + b},
  3074. opr::Elemwise::Param::Mode::RELU);
  3075. SymbolVar y_opt;
  3076. auto options = gopt::OptimizeForInferenceOptions{};
  3077. options.enable_nchw44();
  3078. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3079. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3080. find_opr<opr::Convolution>(y_opt).param().format);
  3081. graph->compile({{y_opt, {}}})
  3082. ->to_json()
  3083. ->writeto_fpath(output_file(
  3084. "TestGoptInference.ConvertFormatNCHW44MultiInput.json"));
  3085. HostTensorND host_y_opt, host_y;
  3086. auto func = graph->compile({make_callback_copy(y, host_y),
  3087. make_callback_copy(y_opt, host_y_opt)});
  3088. func->execute();
  3089. //! meybe go to winograd in x86-32, so set error 1e-1
  3090. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3091. }
  3092. TEST(TestGoptInference, ConvertFormatNCHW44Reshape) {
  3093. HostTensorGenerator<> gen;
  3094. auto cn = CompNode::load("cpu0");
  3095. auto graph = ComputingGraph::make();
  3096. graph->options().graph_opt_level = 0;
  3097. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3098. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3099. .rename(name);
  3100. };
  3101. auto host_x1 = gen({1, 8, 16, 16}, cn);
  3102. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3103. opr::Convolution::Param param_conv;
  3104. param_conv.pad_h = param_conv.pad_w = 1;
  3105. auto w1 = mkcvar("w1", {8, 8, 3, 3}),
  3106. conv1 = opr::Convolution::make(x, w1, param_conv);
  3107. auto y = opr::Reshape::make(conv1, {8, 16 * 16});
  3108. SymbolVar y_opt;
  3109. auto options = gopt::OptimizeForInferenceOptions{};
  3110. options.enable_nchw44();
  3111. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3112. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3113. find_opr<opr::Convolution>(y_opt).param().format);
  3114. graph->compile({{y_opt, {}}})
  3115. ->to_json()
  3116. ->writeto_fpath(output_file(
  3117. "TestGoptInference.ConvertFormatNCHW44Reshape.json"));
  3118. HostTensorND host_y_opt, host_y;
  3119. auto func = graph->compile({make_callback_copy(y, host_y),
  3120. make_callback_copy(y_opt, host_y_opt)});
  3121. func->execute();
  3122. //! meybe go to winograd in x86-32, so set error 1e-1
  3123. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3124. }
  3125. TEST(TestGoptInference, ConvertFormatNCHW44_DOT) {
  3126. HostTensorGenerator<> gen;
  3127. auto cn = CompNode::load("cpu0");
  3128. auto graph = ComputingGraph::make();
  3129. graph->options().graph_opt_level = 0;
  3130. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3131. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3132. };
  3133. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3134. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3135. .rename(name);
  3136. };
  3137. auto mkcvar_dtype = [&](const char* name, const TensorShape& shp,
  3138. const DType& dtype) {
  3139. return opr::TypeCvt::make(
  3140. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3141. .rename(name),
  3142. dtype);
  3143. };
  3144. auto host_x = gen({2, 3, 16, 16}, cn);
  3145. auto x = opr::Host2DeviceCopy::make(*graph, host_x);
  3146. //! Hybrid nchw44 mode
  3147. opr::Convolution::Param param_conv;
  3148. param_conv.pad_h = param_conv.pad_w = 1;
  3149. auto w1 = mkcvar("w1", {8, 3, 3, 3}),
  3150. conv1 = opr::Convolution::make(x, w1, param_conv, {},
  3151. OperatorNodeConfig("conv1"));
  3152. printf("create conv1 %s\n",
  3153. conv1.node()->owner_opr()->dyn_typeinfo()->name);
  3154. param_conv.pad_h = param_conv.pad_w = 1;
  3155. //! no supported hybrid nchw44
  3156. opr::ConvBias::Param param_conv_bias_pad0;
  3157. param_conv_bias_pad0.pad_h = param_conv_bias_pad0.pad_w = 0;
  3158. auto b1 = mkcvar("b1", {1, 8, 1, 1});
  3159. auto w1_f1 = mkcvar("w1_1", {8, 3, 1, 1});
  3160. auto conv1_f1 = opr::ConvBias::make(x, w1_f1, b1, param_conv_bias_pad0, {},
  3161. OperatorNodeConfig("conv1_f1"));
  3162. //! hybrid dot
  3163. auto x_s = opr::TypeCvt::make(x, dtype::QuantizedS8(2.5f));
  3164. auto w1_3 = mkcvar_dtype("w1_3", {8, 3, 3, 3}, dtype::QuantizedS8(2.5f));
  3165. auto conv1_3_q = opr::Convolution::make(
  3166. x_s, w1_3, param_conv, {},
  3167. OperatorNodeConfig{"conv1_3_q", cn, dtype::QuantizedS8{6.25f}});
  3168. auto conv1_3 = opr::TypeCvt::make(conv1_3_q, dtype::Float32());
  3169. auto conv1_add = conv1_f1 * conv1 * conv1_3;
  3170. auto conv_1_q8 = opr::TypeCvt::make(conv1_add, dtype::QuantizedS8(2.5f));
  3171. //! s8 dense conv
  3172. opr::ConvBias::Param param_conv_bias;
  3173. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3174. auto w1_2 = mkcvar_dtype("w1_2", {8, 8, 3, 3}, dtype::QuantizedS8(2.5f));
  3175. auto conv_1_2 = opr::ConvBias::make(
  3176. conv_1_q8, w1_2, param_conv_bias, {},
  3177. OperatorNodeConfig{"conv_1_2", cn, dtype::QuantizedS8{6.25f}});
  3178. auto conv_1_2_fp32 = opr::TypeCvt::make(conv_1_2, dtype::Float32());
  3179. //! channel wise
  3180. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3181. auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
  3182. conv2 = opr::ConvBias::make(conv_1_2_fp32, w2, b2, param_conv_bias);
  3183. //! group
  3184. auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
  3185. conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
  3186. auto shape_of = opr::GetVarShape::make(conv3);
  3187. auto subtensor = opr::Subtensor::make(
  3188. shape_of, {opr::Subtensor::AxisIndexer::make_interval(
  3189. 0, x.make_scalar(2), None, x.make_scalar(1))});
  3190. opr::Resize::Param param_resize;
  3191. param_resize.format = opr::Resize::Param::Format::NCHW;
  3192. auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
  3193. auto mat = mkcvar("mat", {2, 3, 3}),
  3194. warp = opr::WarpPerspectiveForward::make(
  3195. resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
  3196. auto b = mkvar("b", {1, 8, 1, 1}),
  3197. elem = opr::Elemwise::make({warp + b},
  3198. opr::Elemwise::Param::Mode::RELU);
  3199. //! Dense
  3200. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3201. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3202. auto w3_2 = mkcvar("w3_2", {16, 8, 3, 3}),
  3203. b3_2 = mkcvar("b3_2", {1, 16, 1, 1}),
  3204. conv3_2 = opr::ConvBias::make(elem, w3_2, b3_2, param_conv_bias, {},
  3205. OperatorNodeConfig("conv3_2"));
  3206. //! s8 group conv
  3207. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3208. auto conv3_2_q8 = opr::TypeCvt::make(conv3_2, dtype::QuantizedS8(2.5f));
  3209. auto w3_3 = mkcvar_dtype("w3_3", {4, 8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
  3210. b3_3 = mkcvar_dtype("b3_3", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
  3211. conv3_3_q = opr::ConvBias::make(
  3212. conv3_2_q8, w3_3, b3_3, param_conv_bias, {},
  3213. OperatorNodeConfig{"conv_3_3_q", cn,
  3214. dtype::QuantizedS8{6.25f}});
  3215. auto conv3_3 = opr::TypeCvt::make(conv3_3_q, dtype::Float32());
  3216. //! Dense
  3217. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
  3218. auto w4 = mkcvar("w4", {4, 32, 3, 3}), b4 = mkcvar("b4", {1, 4, 1, 1}),
  3219. conv4 = opr::ConvBias::make(conv3_3, w4, b4, param_conv_bias, {},
  3220. OperatorNodeConfig("conv4"));
  3221. auto w5 = mkcvar("w5", {6, 4, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
  3222. conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias, {},
  3223. OperatorNodeConfig("conv5"));
  3224. auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
  3225. y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias, {},
  3226. OperatorNodeConfig("conv6"));
  3227. SymbolVar y_opt;
  3228. auto options = gopt::OptimizeForInferenceOptions{};
  3229. options.enable_fuse_conv_bias_nonlinearity();
  3230. options.enable_nchw44_dot();
  3231. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3232. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3233. find_opr<opr::Convolution>(y_opt, "conv1").param().format);
  3234. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44_DOT,
  3235. find_opr<opr::Convolution>(y_opt, "conv1_3_q").param().format);
  3236. ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
  3237. find_opr<opr::ConvBias>(y_opt, "conv1_f1").param().format);
  3238. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44_DOT,
  3239. find_opr<opr::ConvBias>(y_opt, "conv_1_2").param().format);
  3240. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3241. find_opr<opr::ConvBias>(y_opt, "conv3_2").param().format);
  3242. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44_DOT,
  3243. find_opr<opr::ConvBias>(y_opt, "conv_3_3_q").param().format);
  3244. ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
  3245. find_opr<opr::ConvBias>(y_opt, "conv4").param().format);
  3246. ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
  3247. find_opr<opr::ConvBias>(y_opt, "conv5").param().format);
  3248. graph->compile({{y_opt, {}}})
  3249. ->to_json()
  3250. ->writeto_fpath(output_file(
  3251. "TestGoptInference.ConvertFormatNCHW44_DOT.json"));
  3252. HostTensorND host_y_opt, host_y;
  3253. auto func = graph->compile({make_callback_copy(y, host_y),
  3254. make_callback_copy(y_opt, host_y_opt)});
  3255. func->execute();
  3256. //! meybe go to winograd in x86-32, so set error 1e-1
  3257. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3258. *host_x = *gen({2, 3, 32, 32}, cn);
  3259. func->execute();
  3260. //! meybe go to winograd in x86-32, so set error 1e-1
  3261. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
  3262. }
  3263. TEST(TestGoptInference, ConvertFormatCD4GroupOneConv) {
  3264. // hwcd4 is only supported in naive handle
  3265. NaiveMegDNNHandleScope naive_megdnn_handle;
  3266. HostTensorGenerator<> gen;
  3267. auto cn = CompNode::load("cpu0");
  3268. auto graph = ComputingGraph::make();
  3269. graph->options().graph_opt_level = 0;
  3270. auto mkvar = [&](const char* name, const TensorShape& shp) {
  3271. return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
  3272. };
  3273. auto mkcvar = [&](const char* name, const TensorShape& shp) {
  3274. return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3275. .rename(name);
  3276. };
  3277. auto x = mkvar("x", {1, 3, 128, 128});
  3278. // ConvBias
  3279. opr::ConvBias::Param param_conv_bias;
  3280. param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
  3281. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3282. auto w1 = mkcvar("w1", {1, 16, 3, 3, 3}), b1 = mkcvar("b1", {1, 16, 1, 1});
  3283. auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
  3284. param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
  3285. // Convolution
  3286. opr::Convolution::Param param_conv;
  3287. param_conv.pad_h = param_conv.pad_w = 1;
  3288. param_conv.sparse = opr::Convolution::Param::Sparse::GROUP;
  3289. auto w3 = mkcvar("w3", {1, 16, 16, 3, 3});
  3290. auto y = opr::Convolution::make(conv1, w3, param_conv);
  3291. SymbolVar y_opt;
  3292. {
  3293. auto options = gopt::OptimizeForInferenceOptions{};
  3294. options.enable_nhwcd4();
  3295. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3296. }
  3297. HostTensorND host_y_opt, host_y;
  3298. auto func = graph->compile({make_callback_copy(y, host_y),
  3299. make_callback_copy(y_opt, host_y_opt)});
  3300. func->execute();
  3301. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
  3302. }
  3303. #if MGB_CUDA
  3304. TEST(TestGoptInference, PreProcessCase0) {
  3305. REQUIRE_GPU(1);
  3306. HostTensorGenerator<dtype::Quantized8Asymm, RandomDistribution::UNIFORM>
  3307. gen(dt_quint8(0), dt_quint8(50), 1, 128, 1234);
  3308. auto cn = CompNode::load("gpu0");
  3309. auto graph = ComputingGraph::make();
  3310. graph->options().graph_opt_level = 0;
  3311. size_t n = 1;
  3312. size_t c = 3;
  3313. size_t h = 16;
  3314. size_t w = 16;
  3315. auto host_x1 = gen({n, c, h, w}, cn);
  3316. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3317. auto x_q8 = opr::TypeCvt::make(x, dtype::QuantizedS8(1.f), cn);
  3318. auto zero = DTypeScalar(dtype::QuantizedS8(1.f));
  3319. auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
  3320. auto pad_channel_tensor =
  3321. opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
  3322. auto paded_x = opr::Concat::make({x_q8, pad_channel_tensor}, 1, cn)
  3323. .reshape({n, 1, 4, h, w});
  3324. auto result = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
  3325. auto y = result;
  3326. SymbolVar y_opt;
  3327. auto options = gopt::OptimizeForInferenceOptions{};
  3328. options.enable_fuse_preprocess();
  3329. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3330. graph->compile({{y_opt, {}}})
  3331. ->to_json()
  3332. ->writeto_fpath(
  3333. output_file("TestGoptInference.PreProcessCase0.json"));
  3334. HostTensorND host_y_opt, host_y;
  3335. auto func = graph->compile({make_callback_copy(y, host_y),
  3336. make_callback_copy(y_opt, host_y_opt)});
  3337. func->execute();
  3338. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3339. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::RelayoutFormat>());
  3340. }
  3341. TEST(TestGoptInference, PreProcessCase1) {
  3342. REQUIRE_GPU(1);
  3343. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  3344. auto cn = CompNode::load("gpu0");
  3345. auto graph = ComputingGraph::make();
  3346. graph->options().graph_opt_level = 0;
  3347. size_t n = 1;
  3348. size_t c = 3;
  3349. size_t h = 16;
  3350. size_t w = 16;
  3351. auto host_x1 = gen({n, c, h, w}, cn);
  3352. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3353. auto x_u8 = opr::TypeCvt::make(x, dtype::Float32(), cn);
  3354. auto x_s8 = x_u8 - 128;
  3355. auto zero = DTypeScalar(dtype::Float32());
  3356. auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
  3357. auto pad_channel_tensor =
  3358. opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
  3359. auto paded_x = opr::Concat::make({x_s8, pad_channel_tensor}, 1, cn)
  3360. .reshape({n, 1, 4, h, w});
  3361. auto nchw4_out = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
  3362. auto result = opr::TypeCvt::make(nchw4_out, dtype::QuantizedS8(1.f));
  3363. auto y = result;
  3364. SymbolVar y_opt;
  3365. auto options = gopt::OptimizeForInferenceOptions{};
  3366. options.enable_fuse_preprocess();
  3367. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3368. graph->compile({{y_opt, {}}})
  3369. ->to_json()
  3370. ->writeto_fpath(
  3371. output_file("TestGoptInference.PreProcessCase1.json"));
  3372. HostTensorND host_y_opt, host_y;
  3373. auto func = graph->compile({make_callback_copy(y, host_y),
  3374. make_callback_copy(y_opt, host_y_opt)});
  3375. func->execute();
  3376. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3377. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::RelayoutFormat>());
  3378. }
  3379. TEST(TestGoptInference, WarpAndPreProcessCase0) {
  3380. REQUIRE_GPU(1);
  3381. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  3382. auto cn = CompNode::load("gpu0");
  3383. auto graph = ComputingGraph::make();
  3384. graph->options().graph_opt_level = 0;
  3385. size_t n = 1;
  3386. size_t c = 3;
  3387. size_t h = 16;
  3388. size_t w = 16;
  3389. auto host_x1 = gen({n, h, w, c}, cn);
  3390. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3391. auto mat_host = std::make_shared<HostTensorND>(cn, TensorShape{n, 3, 3},
  3392. dtype::Float32());
  3393. warp_perspective_mat_gen(*mat_host, n, h, w);
  3394. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  3395. opr::WarpPerspective::Param warp_param;
  3396. warp_param.format = opr::WarpPerspective::Param::Format::NHWC;
  3397. auto x_warp =
  3398. opr::WarpPerspective::make(x, mat, TensorShape{h, w}, warp_param);
  3399. auto x_nchw = opr::Dimshuffle::make(x_warp, {0, 3, 1, 2}, 4, cn);
  3400. auto x_u8 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
  3401. auto x_s8 = x_u8 - 128;
  3402. auto zero = DTypeScalar(dtype::Float32());
  3403. auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
  3404. auto pad_channel_tensor =
  3405. opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
  3406. auto paded_x = opr::Concat::make({x_s8, pad_channel_tensor}, 1, cn)
  3407. .reshape({n, 1, 4, h, w});
  3408. auto nchw4_out = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
  3409. auto result = opr::TypeCvt::make(nchw4_out, dtype::QuantizedS8(1.f));
  3410. auto y = result;
  3411. SymbolVar y_opt;
  3412. auto options = gopt::OptimizeForInferenceOptions{};
  3413. options.enable_fuse_preprocess();
  3414. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3415. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::WarpPerspective>());
  3416. ASSERT_EQ(opr::WarpPerspective::Param::Format::NHWC_NCHW4_IC_SMALL,
  3417. find_opr<opr::WarpPerspective>(y_opt).param().format);
  3418. graph->compile({{y_opt, {}}})
  3419. ->to_json()
  3420. ->writeto_fpath(output_file(
  3421. "TestGoptInference.WarpAndPreProcessCase0.json"));
  3422. HostTensorND host_y_opt, host_y;
  3423. auto func = graph->compile({make_callback_copy(y, host_y),
  3424. make_callback_copy(y_opt, host_y_opt)});
  3425. func->execute();
  3426. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3427. }
  3428. TEST(TestGoptInference, WarpAndPreProcessCase1) {
  3429. REQUIRE_GPU(1);
  3430. HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
  3431. auto cn = CompNode::load("gpu0");
  3432. auto graph = ComputingGraph::make();
  3433. graph->options().graph_opt_level = 0;
  3434. size_t n = 1;
  3435. size_t c = 3;
  3436. size_t h = 16;
  3437. size_t w = 16;
  3438. auto host_x1 = gen({n, h, w, c}, cn);
  3439. auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
  3440. auto mat_host = std::make_shared<HostTensorND>(cn, TensorShape{n, 3, 3},
  3441. dtype::Float32());
  3442. warp_perspective_mat_gen(*mat_host, n, h, w);
  3443. auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
  3444. opr::WarpPerspective::Param warp_param;
  3445. warp_param.format = opr::WarpPerspective::Param::Format::NHWC;
  3446. auto x_warp =
  3447. opr::WarpPerspective::make(x, mat, TensorShape{h, w}, warp_param);
  3448. auto x_nchw = opr::Dimshuffle::make(x_warp, {0, 3, 1, 2}, 4, cn);
  3449. auto result = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
  3450. auto y = result;
  3451. SymbolVar y_opt;
  3452. auto options = gopt::OptimizeForInferenceOptions{};
  3453. options.enable_fuse_preprocess();
  3454. unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
  3455. ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::WarpPerspective>());
  3456. ASSERT_EQ(opr::WarpPerspective::Param::Format::NHWC_NCHW,
  3457. find_opr<opr::WarpPerspective>(y_opt).param().format);
  3458. graph->compile({{y_opt, {}}})
  3459. ->to_json()
  3460. ->writeto_fpath(output_file(
  3461. "TestGoptInference.WarpAndPreProcessCase1.json"));
  3462. HostTensorND host_y_opt, host_y;
  3463. auto func = graph->compile({make_callback_copy(y, host_y),
  3464. make_callback_copy(y_opt, host_y_opt)});
  3465. func->execute();
  3466. MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
  3467. }
  3468. TEST(TestGoptInference, FoldingConvDimshuffle) {
  3469. REQUIRE_GPU(1);
  3470. auto cn = CompNode::load("gpu0");
  3471. cn.activate();
  3472. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  3473. auto sm_ver = prop.major * 10 + prop.minor;
  3474. if (sm_ver < 61) {
  3475. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  3476. "expected: %d)\n",
  3477. sm_ver, 61);
  3478. return;
  3479. }
  3480. HostTensorGenerator<dtype::Int8> gen;
  3481. auto graph = ComputingGraph::make();
  3482. graph->options().graph_opt_level = 0;
  3483. auto mkvar = [&](const char* name, const TensorShape& shp,
  3484. const DType& dtype) {
  3485. return opr::TypeCvt::make(
  3486. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  3487. dtype);
  3488. };
  3489. auto mkcvar = [&](const char* name, const TensorShape& shp,
  3490. const DType& dtype) {
  3491. return opr::TypeCvt::make(
  3492. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3493. .rename(name),
  3494. dtype);
  3495. };
  3496. auto nchw42nchw = [](SymbolVar x) {
  3497. auto xshp = opr::GetVarShape::make(x);
  3498. auto cv = [&x](int v) { return x.make_scalar(v); };
  3499. auto sub = [&xshp, &cv](int idx) {
  3500. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  3501. };
  3502. auto tshp0 = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
  3503. auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
  3504. auto y1 = opr::Reshape::make(y0, tshp0);
  3505. return y1;
  3506. };
  3507. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  3508. w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  3509. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  3510. opr::ConvBias::Param param;
  3511. param.format = opr::ConvBias::Param::Format::NCHW4;
  3512. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3513. param.stride_h = param.stride_w = 2;
  3514. param.pad_h = param.pad_w = 1;
  3515. auto y = opr::ConvBias::make(x, w, b, param, {},
  3516. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3517. y = opr::TypeCvt::make(y, dtype::Float32());
  3518. y = nchw42nchw(y);
  3519. SymbolVar y_fuse, y_non_fuse;
  3520. unpack_vector(gopt::GraphOptimizer{}
  3521. .add_pass<gopt::ShuffleShuffleRemovePass>()
  3522. .add_pass<gopt::FoldingConvBiasDimshufflePass>()
  3523. .add_pass<gopt::ParamFusePass>()
  3524. .apply({{y}})
  3525. .endpoint_vars(),
  3526. y_fuse);
  3527. gopt::modify_opr_algo_strategy_inplace(
  3528. {y_fuse},
  3529. opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy::PROFILE);
  3530. graph->compile({{y_fuse, {}}})
  3531. ->to_json()
  3532. ->writeto_fpath(output_file(
  3533. "TestGoptInference.FoldingConvDimshuffle.json"));
  3534. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4_NCHW,
  3535. find_opr<opr::ConvBias>(y_fuse).param().format);
  3536. ASSERT_EQ(0u, find_opr_num<opr::Dimshuffle>(y_fuse));
  3537. unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(),
  3538. y_non_fuse);
  3539. HostTensorND host_y_fuse, host_y_non_fuse;
  3540. auto func =
  3541. graph->compile({make_callback_copy(y_fuse, host_y_fuse),
  3542. make_callback_copy(y_non_fuse, host_y_non_fuse)});
  3543. func->execute();
  3544. }
  3545. TEST(TestGoptInference, FoldingConvDimshuffleNCHW4NCHW32) {
  3546. REQUIRE_GPU(1);
  3547. auto cn = CompNode::load("gpu0");
  3548. cn.activate();
  3549. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  3550. auto sm_ver = prop.major * 10 + prop.minor;
  3551. if (sm_ver < 61) {
  3552. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  3553. "expected: %d)\n",
  3554. sm_ver, 61);
  3555. return;
  3556. }
  3557. HostTensorGenerator<dtype::Int8> gen;
  3558. auto graph = ComputingGraph::make();
  3559. graph->options().graph_opt_level = 0;
  3560. auto mkvar = [&](const char* name, const TensorShape& shp,
  3561. const DType& dtype) {
  3562. return opr::TypeCvt::make(
  3563. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  3564. dtype);
  3565. };
  3566. auto mkcvar = [&](const char* name, const TensorShape& shp,
  3567. const DType& dtype) {
  3568. return opr::TypeCvt::make(
  3569. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3570. .rename(name),
  3571. dtype);
  3572. };
  3573. auto nchw42nchw32 = [](SymbolVar x) {
  3574. auto xshp = opr::GetVarShape::make(x);
  3575. auto cv = [&x](int v) { return x.make_scalar(v); };
  3576. auto sub = [&xshp, &cv](int idx) {
  3577. return opr::IndexAt::make(xshp, {{0, cv(idx)}});
  3578. };
  3579. auto tshp0 = opr::Concat::make(
  3580. {sub(0), sub(1) / 8, cv(8), sub(2), sub(3), sub(4)}, 0),
  3581. tshp1 = opr::Concat::make(
  3582. {sub(0), sub(1) / 8, sub(2), sub(3), sub(4) * 8}, 0);
  3583. auto y0 = opr::Reshape::make(x, tshp0);
  3584. auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2, 5});
  3585. auto y2 = opr::Reshape::make(y1, tshp1);
  3586. return y2;
  3587. };
  3588. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  3589. w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  3590. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  3591. opr::ConvBias::Param param;
  3592. param.format = opr::ConvBias::Param::Format::NCHW4;
  3593. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3594. param.stride_h = param.stride_w = 2;
  3595. param.pad_h = param.pad_w = 1;
  3596. auto y = opr::ConvBias::make(x, w, b, param, {},
  3597. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3598. y = nchw42nchw32(y);
  3599. y = opr::TypeCvt::make(y, dtype::Float32());
  3600. SymbolVar y_fuse, y_non_fuse;
  3601. unpack_vector(gopt::GraphOptimizer{}
  3602. .add_pass<gopt::FoldingConvBiasDimshufflePass>()
  3603. .add_pass<gopt::ParamFusePass>()
  3604. .apply({{y}})
  3605. .endpoint_vars(),
  3606. y_fuse);
  3607. gopt::modify_opr_algo_strategy_inplace(
  3608. {y_fuse},
  3609. opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy::PROFILE);
  3610. graph->compile({{y_fuse, {}}})
  3611. ->to_json()
  3612. ->writeto_fpath(output_file(
  3613. "TestGoptInference.FoldingConvDimshuffleNCHW4NCHW32.json"));
  3614. ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4_NCHW32,
  3615. find_opr<opr::ConvBias>(y_fuse).param().format);
  3616. ASSERT_EQ(0u, find_opr_num<opr::Dimshuffle>(y_fuse));
  3617. unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(),
  3618. y_non_fuse);
  3619. HostTensorND host_y_fuse, host_y_non_fuse;
  3620. auto func =
  3621. graph->compile({make_callback_copy(y_fuse, host_y_fuse),
  3622. make_callback_copy(y_non_fuse, host_y_non_fuse)});
  3623. func->execute();
  3624. MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
  3625. }
  3626. #if CUDA_VERSION >= 10020
  3627. TEST(TestGoptInference, FoldingConvDimshuffleNCHW32NCHW4) {
  3628. REQUIRE_GPU(1);
  3629. auto cn = CompNode::load("gpu0");
  3630. cn.activate();
  3631. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  3632. auto sm_ver = prop.major * 10 + prop.minor;
  3633. if (sm_ver < 75) {
  3634. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  3635. "expected: %d)\n",
  3636. sm_ver, 75);
  3637. return;
  3638. }
  3639. HostTensorGenerator<dtype::Int8> gen;
  3640. auto graph = ComputingGraph::make();
  3641. graph->options().graph_opt_level = 0;
  3642. auto mkvar = [&](const char* name, const TensorShape& shp,
  3643. const DType& dtype) {
  3644. return opr::TypeCvt::make(
  3645. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  3646. dtype);
  3647. };
  3648. auto mkcvar = [&](const char* name, const TensorShape& shp,
  3649. const DType& dtype) {
  3650. return opr::TypeCvt::make(
  3651. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3652. .rename(name),
  3653. dtype);
  3654. };
  3655. auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
  3656. w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  3657. b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
  3658. w1 = mkcvar("w1", {16, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
  3659. b1 = mkcvar("b1", {1, 4, 1, 1, 4}, dtype::QuantizedS32(6.25f));
  3660. opr::ConvBias::Param param;
  3661. param.format = opr::ConvBias::Param::Format::NCHW4;
  3662. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3663. param.stride_h = param.stride_w = 2;
  3664. param.pad_h = param.pad_w = 1;
  3665. auto y = opr::ConvBias::make(x, w, b, param, {},
  3666. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3667. param.stride_h = param.stride_w = 1;
  3668. y = opr::ConvBias::make(y, w1, b1, param, {},
  3669. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3670. y = opr::TypeCvt::make(y, dtype::Float32());
  3671. SymbolVar y_fuse, y_non_fuse;
  3672. {
  3673. auto options = gopt::OptimizeForInferenceOptions{};
  3674. options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
  3675. unpack_vector(gopt::optimize_for_inference({y}, options), y_fuse);
  3676. }
  3677. graph->compile({{y_fuse, {}}})
  3678. ->to_json()
  3679. ->writeto_fpath(output_file(
  3680. "TestGoptInference.FoldingConvDimshuffleNCHW32NCHW4.json"));
  3681. ASSERT_EQ(1u, find_opr_num<opr::Dimshuffle>(y_fuse));
  3682. bool found = false;
  3683. cg::DepOprIter{[&found](cg::OperatorNodeBase* opr) {
  3684. if (!found && opr->same_type<opr::ConvBias>()) {
  3685. opr::ConvBias* cb = &opr->cast_final_safe<opr::ConvBias>();
  3686. if (cb->param().format ==
  3687. opr::ConvBias::Param::Format::NCHW32_NCHW4)
  3688. found = true;
  3689. }
  3690. }}
  3691. .add(y_fuse.node()->owner_opr());
  3692. EXPECT_TRUE(found);
  3693. unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(),
  3694. y_non_fuse);
  3695. HostTensorND host_y_fuse, host_y_non_fuse;
  3696. auto func =
  3697. graph->compile({make_callback_copy(y_fuse, host_y_fuse),
  3698. make_callback_copy(y_non_fuse, host_y_non_fuse)});
  3699. func->execute();
  3700. MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
  3701. }
  3702. #endif
  3703. TEST(TestGoptInference, PaddingChannels) {
  3704. REQUIRE_GPU(1);
  3705. auto cn = CompNode::load("gpu0");
  3706. cn.activate();
  3707. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  3708. auto sm_ver = prop.major * 10 + prop.minor;
  3709. if (sm_ver < 61) {
  3710. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  3711. "expected: %d)\n",
  3712. sm_ver, 61);
  3713. return;
  3714. }
  3715. HostTensorGenerator<dtype::Int8> gen;
  3716. auto graph = ComputingGraph::make();
  3717. graph->options().graph_opt_level = 0;
  3718. auto mkvar = [&](const char* name, const TensorShape& shp,
  3719. const DType& dtype) {
  3720. return opr::TypeCvt::make(
  3721. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  3722. dtype);
  3723. };
  3724. auto mkcvar = [&](const char* name, const TensorShape& shp,
  3725. const DType& dtype) {
  3726. return opr::TypeCvt::make(
  3727. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3728. .rename(name),
  3729. dtype);
  3730. };
  3731. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  3732. w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  3733. b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  3734. opr::ConvBias::Param param;
  3735. param.format = opr::ConvBias::Param::Format::NCHW;
  3736. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3737. param.stride_h = param.stride_w = 1;
  3738. param.pad_h = param.pad_w = 1;
  3739. auto y = opr::ConvBias::make(x, w, b, param, {},
  3740. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3741. auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
  3742. b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  3743. auto y1 = opr::ConvBias::make(y, w1, b1, param, {},
  3744. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3745. auto w2 = mkcvar("w2", {20, 24, 3, 3}, dtype::QuantizedS8(2.5f)),
  3746. b2 = mkcvar("b2", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  3747. auto y2 = opr::ConvBias::make(y1, w2, b2, param, {},
  3748. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3749. using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
  3750. auto y3 = opr::ElemwiseMultiType::make(
  3751. {y, y2}, {ElemMultiMode::QFUSE_ADD_RELU},
  3752. OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
  3753. y3 = opr::TypeCvt::make(y3, dtype::Float32());
  3754. SymbolVar y3_pad;
  3755. unpack_vector(gopt::GraphOptimizer{}
  3756. .add_pass<gopt::PaddingChannelPass>()
  3757. .apply({{y3}})
  3758. .endpoint_vars(),
  3759. y3_pad);
  3760. ASSERT_EQ(y3_pad.node()->shape()[1], y3.node()->shape()[1]);
  3761. SmallVector<cg::OperatorNodeBase*> oprs;
  3762. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  3763. if (opr->same_type<opr::ConvBias>()) {
  3764. oprs.push_back(opr);
  3765. }
  3766. };
  3767. cg::DepOprIter{cb}.add(y3_pad.node()->owner_opr());
  3768. ASSERT_EQ(oprs.size(), 3);
  3769. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 20);
  3770. ASSERT_EQ(oprs[1]->output(0)->shape()[1], 32);
  3771. ASSERT_EQ(oprs[2]->output(0)->shape()[1], 32);
  3772. HostTensorND t1, t2;
  3773. auto func1 = graph->compile({make_callback_copy(y3, t1)});
  3774. func1->execute();
  3775. auto func2 = graph->compile({make_callback_copy(y3_pad, t2)});
  3776. func2->execute();
  3777. MGB_ASSERT_TENSOR_EQ(t1, t2);
  3778. }
  3779. TEST(TestGoptInference, ConcatAfterPaddingChannels) {
  3780. REQUIRE_GPU(1);
  3781. auto cn = CompNode::load("gpu0");
  3782. cn.activate();
  3783. auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  3784. auto sm_ver = prop.major * 10 + prop.minor;
  3785. if (sm_ver < 61) {
  3786. printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  3787. "expected: %d)\n",
  3788. sm_ver, 61);
  3789. return;
  3790. }
  3791. HostTensorGenerator<dtype::Int8> gen;
  3792. auto graph = ComputingGraph::make();
  3793. graph->options().graph_opt_level = 0;
  3794. auto mkvar = [&](const char* name, const TensorShape& shp,
  3795. const DType& dtype) {
  3796. return opr::TypeCvt::make(
  3797. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  3798. dtype);
  3799. };
  3800. auto mkcvar = [&](const char* name, const TensorShape& shp,
  3801. const DType& dtype) {
  3802. return opr::TypeCvt::make(
  3803. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3804. .rename(name),
  3805. dtype);
  3806. };
  3807. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  3808. w = mkcvar("w", {18, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  3809. b = mkcvar("b", {1, 18, 1, 1}, dtype::QuantizedS32(6.25f));
  3810. opr::ConvBias::Param param;
  3811. param.format = opr::ConvBias::Param::Format::NCHW;
  3812. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3813. param.stride_h = param.stride_w = 1;
  3814. param.pad_h = param.pad_w = 1;
  3815. auto y = opr::ConvBias::make(x, w, b, param, {},
  3816. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3817. auto w1 = mkcvar("w1", {18, 18, 3, 3}, dtype::QuantizedS8(2.5f)),
  3818. b1 = mkcvar("b1", {1, 18, 1, 1}, dtype::QuantizedS32(6.25f));
  3819. auto y1 = opr::ConvBias::make(y, w1, b1, param, {},
  3820. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3821. // concat at batch dim
  3822. auto y2 = opr::Concat::make({y, y1}, 0);
  3823. y2 = opr::TypeCvt::make(y2, dtype::Float32());
  3824. SymbolVar y2_pad;
  3825. unpack_vector(gopt::GraphOptimizer{}
  3826. .add_pass<gopt::PaddingChannelPass>()
  3827. .apply({{y2}})
  3828. .endpoint_vars(),
  3829. y2_pad);
  3830. ASSERT_EQ(y2_pad.node()->shape()[1], y2.node()->shape()[1]);
  3831. SmallVector<cg::OperatorNodeBase*> oprs;
  3832. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  3833. if (opr->same_type<opr::ConvBias>()) {
  3834. oprs.push_back(opr);
  3835. }
  3836. };
  3837. cg::DepOprIter{cb}.add(y2_pad.node()->owner_opr());
  3838. ASSERT_EQ(oprs.size(), 2);
  3839. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 20);
  3840. ASSERT_EQ(oprs[1]->output(0)->shape()[1], 32);
  3841. HostTensorND t1, t2;
  3842. auto func1 = graph->compile({make_callback_copy(y2, t1)});
  3843. func1->execute();
  3844. auto func2 = graph->compile({make_callback_copy(y2_pad, t2)});
  3845. func2->execute();
  3846. MGB_ASSERT_TENSOR_EQ(t1, t2);
  3847. }
  3848. // FIXME replace cpu with gpu to enable gpu validation
  3849. TEST(TestGoptInference, PaddingChannelsWithPooling) {
  3850. REQUIRE_GPU(1);
  3851. auto cn = CompNode::load("cpu0");
  3852. // cn.activate();
  3853. // auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  3854. // auto sm_ver = prop.major * 10 + prop.minor;
  3855. // if (sm_ver < 61) {
  3856. // printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  3857. // "expected: %d)\n",
  3858. // sm_ver, 61);
  3859. // return;
  3860. // }
  3861. HostTensorGenerator<dtype::Int8> gen;
  3862. auto graph = ComputingGraph::make();
  3863. graph->options().graph_opt_level = 0;
  3864. auto mkvar = [&](const char* name, const TensorShape& shp,
  3865. const DType& dtype) {
  3866. return opr::TypeCvt::make(
  3867. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  3868. dtype);
  3869. };
  3870. auto mkcvar = [&](const char* name, const TensorShape& shp,
  3871. const DType& dtype) {
  3872. return opr::TypeCvt::make(
  3873. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3874. .rename(name),
  3875. dtype);
  3876. };
  3877. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  3878. w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  3879. b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  3880. opr::ConvBias::Param param;
  3881. param.format = opr::ConvBias::Param::Format::NCHW;
  3882. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3883. param.stride_h = param.stride_w = 1;
  3884. param.pad_h = param.pad_w = 1;
  3885. auto y = opr::ConvBias::make(x, w, b, param, {},
  3886. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3887. auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
  3888. b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  3889. auto y1 = opr::ConvBias::make(y, w1, b1, param, {},
  3890. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3891. opr::Pooling::Param pool_param;
  3892. pool_param.format = opr::Pooling::Param::Format::NCHW;
  3893. y1 = opr::Pooling::make(y1, pool_param);
  3894. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  3895. SymbolVar y1_pad;
  3896. unpack_vector(gopt::GraphOptimizer{}
  3897. .add_pass<gopt::PaddingChannelPass>()
  3898. .apply({{y1}})
  3899. .endpoint_vars(),
  3900. y1_pad);
  3901. ASSERT_EQ(y1_pad.node()->shape()[1], y1.node()->shape()[1]);
  3902. SmallVector<cg::OperatorNodeBase*> oprs;
  3903. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  3904. if (opr->same_type<opr::Pooling>()) {
  3905. oprs.push_back(opr);
  3906. }
  3907. };
  3908. cg::DepOprIter{cb}.add(y1_pad.node()->owner_opr());
  3909. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
  3910. HostTensorND t1, t2;
  3911. auto func1 = graph->compile({make_callback_copy(y1, t1)});
  3912. func1->execute();
  3913. auto func2 = graph->compile({make_callback_copy(y1_pad, t2)});
  3914. func2->execute();
  3915. MGB_ASSERT_TENSOR_EQ(t1, t2);
  3916. }
  3917. // FIXME replace cpu with gpu to enable gpu validation
  3918. TEST(TestGoptInference, PaddingChannelsWithWarpPerspective) {
  3919. REQUIRE_GPU(1);
  3920. auto cn = CompNode::load("cpu0");
  3921. // cn.activate();
  3922. // auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
  3923. // auto sm_ver = prop.major * 10 + prop.minor;
  3924. // if (sm_ver < 61) {
  3925. // printf("This testcast ignored due to insufficient cuda cap(got: %d, "
  3926. // "expected: %d)\n",
  3927. // sm_ver, 61);
  3928. // return;
  3929. // }
  3930. HostTensorGenerator<dtype::Int8> gen;
  3931. auto graph = ComputingGraph::make();
  3932. graph->options().graph_opt_level = 0;
  3933. auto mkvar = [&](const char* name, const TensorShape& shp,
  3934. const DType& dtype) {
  3935. return opr::TypeCvt::make(
  3936. opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
  3937. dtype);
  3938. };
  3939. auto mkcvar = [&](const char* name, const TensorShape& shp,
  3940. const DType& dtype) {
  3941. return opr::TypeCvt::make(
  3942. opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
  3943. .rename(name),
  3944. dtype);
  3945. };
  3946. std::shared_ptr<HostTensorND> mat = std::make_shared<HostTensorND>(
  3947. cn, TensorShape{16, 3, 3}, dtype::Float32());
  3948. warp_perspective_mat_gen(*mat, 16, 14, 14);
  3949. auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
  3950. auto x = mkvar("x", {16, 3, 14, 14}, dtype::QuantizedS8(2.5f)),
  3951. w = mkcvar("w", {20, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
  3952. b = mkcvar("b", {1, 20, 1, 1}, dtype::QuantizedS32(6.25f));
  3953. opr::ConvBias::Param param;
  3954. param.format = opr::ConvBias::Param::Format::NCHW;
  3955. param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
  3956. param.stride_h = param.stride_w = 1;
  3957. param.pad_h = param.pad_w = 1;
  3958. auto y = opr::ConvBias::make(x, w, b, param, {},
  3959. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3960. auto w1 = mkcvar("w1", {24, 20, 3, 3}, dtype::QuantizedS8(2.5f)),
  3961. b1 = mkcvar("b1", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
  3962. auto y1 = opr::ConvBias::make(y, w1, b1, param, {},
  3963. OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
  3964. opr::WarpPerspective::Param warp_param;
  3965. warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
  3966. y1 = opr::WarpPerspective::make(y1, mat_var, TensorShape{14, 14},
  3967. warp_param);
  3968. y1 = opr::TypeCvt::make(y1, dtype::Float32());
  3969. SymbolVar y1_pad;
  3970. unpack_vector(gopt::GraphOptimizer{}
  3971. .add_pass<gopt::PaddingChannelPass>()
  3972. .apply({{y1}})
  3973. .endpoint_vars(),
  3974. y1_pad);
  3975. ASSERT_EQ(y1_pad.node()->shape()[1], y1.node()->shape()[1]);
  3976. SmallVector<cg::OperatorNodeBase*> oprs;
  3977. auto cb = [&oprs](cg::OperatorNodeBase* opr) {
  3978. if (opr->same_type<opr::WarpPerspective>()) {
  3979. oprs.push_back(opr);
  3980. }
  3981. };
  3982. cg::DepOprIter{cb}.add(y1_pad.node()->owner_opr());
  3983. ASSERT_EQ(oprs[0]->output(0)->shape()[1], 32);
  3984. HostTensorND t1, t2;
  3985. auto func1 = graph->compile({make_callback_copy(y1, t1)});
  3986. func1->execute();
  3987. auto func2 = graph->compile({make_callback_copy(y1_pad, t2)});
  3988. func2->execute();
  3989. MGB_ASSERT_TENSOR_EQ(t1, t2);
  3990. }
  3991. #endif
  3992. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台