|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117 |
- /**
- * \file src/gopt/test/inference.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
-
- #include "megbrain/opr/dnn/local.h"
- #include "megbrain/test/helper.h"
-
- #include "megbrain/gopt/basic_arith.h"
- #include "megbrain/gopt/gtrans.h"
- #include "megbrain/gopt/inference.h"
-
- #include "megbrain/opr/basic_arith_wrapper.h"
- #include "megbrain/opr/blas.h"
- #include "megbrain/opr/dnn/batch_norm.h"
- #include "megbrain/opr/dnn/convolution.h"
- #include "megbrain/opr/dnn/pooling.h"
- #include "megbrain/opr/imgproc.h"
- #include "megbrain/opr/io.h"
- #include "megbrain/opr/nn_int.h"
- #include "megbrain/opr/tensor_gen.h"
- #include "megbrain/opr/tensor_manip.h"
- #include "megbrain/opr/utility.h"
-
- #include "./helper.h"
- #include "megbrain/comp_node_env.h"
-
- #include "megdnn/tensor_format.h"
-
- #include <random>
-
- using namespace mgb;
-
- namespace {
- //! find first the operator of specific type; raise exception if not found
- template <typename T>
- T& find_opr(SymbolVar endpoint) {
- T* found = nullptr;
- auto cb = [&found](cg::OperatorNodeBase* opr) {
- if (!found && opr->same_type<T>()) {
- found = &opr->cast_final_safe<T>();
- }
- };
- cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
- mgb_assert(found, "not found opr from %s", endpoint.node()->name().c_str());
- return *found;
- }
-
- template <typename T>
- T& find_opr(SymbolVar endpoint, const std::string& node_name) {
- T* found = nullptr;
- auto cb = [&found, &node_name](cg::OperatorNodeBase* opr) {
- if (!found && opr->same_type<T>() && opr->name() == node_name) {
- found = &opr->cast_final_safe<T>();
- }
- };
- cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
- mgb_assert(found, "not found opr %s from %s", node_name.c_str(),
- endpoint.node()->name().c_str());
- return *found;
- }
-
- template <typename T>
- size_t find_opr_num(SymbolVar endpoint) {
- size_t opr_num = 0;
- auto cb = [&opr_num](cg::OperatorNodeBase* opr) {
- if (opr->same_type<T>()) {
- opr_num++;
- }
- };
- cg::DepOprIter{cb}.add(endpoint.node()->owner_opr());
- return opr_num;
- }
-
- class NaiveMegDNNHandleScope {
- int m_orig_level;
-
- public:
- NaiveMegDNNHandleScope()
- : m_orig_level{MegDNNHandle::exchange_default_dbg_level(2)} {
- CompNode::finalize();
- }
- ~NaiveMegDNNHandleScope() {
- auto set = MegDNNHandle::exchange_default_dbg_level(m_orig_level);
- mgb_assert(set == 2);
- CompNode::finalize();
- }
- };
-
- #if MGB_CUDA
- //! this function is only used in TestGoptInference.EnableCHWN4...
- void warp_perspective_mat_gen(HostTensorND& mat, size_t N, size_t INP_H,
- size_t INP_W) {
- static std::mt19937 rng(next_rand_seed());
- auto rand_real = [&](double lo, double hi) {
- return rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo;
- };
- auto rand_real2 = [&](double range) { return rand_real(-range, range); };
- auto ptr = mat.ptr<float>();
- for (size_t i = 0; i < N; ++i) {
- auto rot = rand_real(0, M_PI * 2), scale = rand_real(0.8, 1.2),
- sheer = rand_real(0.9, 1.1), dy = rand_real2(INP_H * 0.5),
- dx = rand_real2(INP_W * 0.5), ky = rand_real2(0.1 / INP_H),
- kx = rand_real2(0.1 / INP_W), kb = rand_real2(0.1) + 1;
- ptr[0] = ptr[4] = cos(rot) * scale;
- ptr[1] = -(ptr[3] = sin(rot) * scale);
- ptr[3] *= sheer;
- ptr[4] *= sheer;
- ptr[2] = dx;
- ptr[5] = dy;
- ptr[6] = kx;
- ptr[7] = ky;
- ptr[8] = kb;
- ptr += 9;
- }
- mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
- }
- #endif
- } // namespace
-
- TEST(TestGoptInference, ParamFuseConstEndPoint) {
- constexpr size_t SIZE = 23;
- HostTensorGenerator<> gen;
- auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
-
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
- y = opr::SharedDeviceTensor::make(*graph, *host_y),
- p = opr::Host2DeviceCopy::make(*graph, host_p), q = p + x, a = y + 3,
- z0 = a + q, z1 = a + 4;
-
- HostTensorND host_z0, host_z1;
-
- SymbolVar z0_1, z1_1;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ParamFusePass>()
- .apply({{z1, z0}})
- .endpoint_vars(),
- z1_1, z0_1);
-
- auto func = graph->compile({make_callback_copy(z0_1, host_z0),
- make_callback_copy(z1_1, host_z1)});
- func->to_json()->writeto_fpath(
- output_file("TestGoptInference.ParamFuseEndPoint.json"));
- func->execute();
-
- int nr_opr = 0;
- func->iter_opr_seq([&](cg::OperatorNodeBase*) {
- ++nr_opr;
- return true;
- });
- ASSERT_EQ(8, nr_opr);
-
- auto px = host_x->ptr<float>(), pz0 = host_z0.ptr<float>();
-
- auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0],
- pz1 = host_z1.ptr<float>()[0];
-
- for (size_t i = 0; i < SIZE; ++i) {
- MGB_ASSERT_FLOAT_EQ(px[i] + yv + 3 + pv, pz0[i]);
- }
- MGB_ASSERT_FLOAT_EQ(yv + 7, pz1);
- }
-
- TEST(TestGoptInference, ParamFuse) {
- constexpr size_t SIZE = 23;
- HostTensorGenerator<> gen;
- auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
-
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
- y = opr::SharedDeviceTensor::make(*graph, *host_y),
- p = opr::Host2DeviceCopy::make(*graph, host_p),
- z = x + y, // endpoint
- q = x * y + p; // middle point
-
- SymbolVar z1, q1;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ParamFusePass>()
- .apply({{z, q}})
- .endpoint_vars(),
- z1, q1);
-
- ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
- ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
- ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
- q.node()->owner_opr()->dyn_typeinfo());
-
- HostTensorND host_z, host_q;
- auto func = graph->compile(
- {make_callback_copy(z1, host_z), make_callback_copy(q1, host_q)});
- func->execute();
-
- int nr_opr = 0;
- func->iter_opr_seq([&](cg::OperatorNodeBase*) {
- ++nr_opr;
- return true;
- });
- ASSERT_EQ(6, nr_opr);
-
- auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
- pq = host_q.ptr<float>();
- auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
- for (size_t i = 0; i < SIZE; ++i) {
- MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
- MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
- }
- }
-
- TEST(TestGoptInference, ParamFuseMultiDeviceTensorHolder) {
- constexpr size_t SIZE = 23;
- HostTensorGenerator<> gen;
- auto host_x = gen({SIZE}), host_y = gen({1}), host_p = gen({1});
-
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto x = opr::SharedDeviceTensor::make(*graph, *host_x),
- y = opr::SharedDeviceTensor::make(*graph, *host_y),
- p = opr::Host2DeviceCopy::make(*graph, host_p),
- z = x + y, //! endpoint
- q = x * y + p; //! middle point
-
- SymbolVar z1, q1;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ParamMergePass>()
- .apply({{z}})
- .endpoint_vars(),
- z1);
-
- ASSERT_TRUE(z1.node()
- ->owner_opr()
- ->input(0)
- ->owner_opr()
- ->same_type<opr::MultipleDeviceTensorHolder>());
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ParamMergePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{z, q}})
- .endpoint_vars(),
- z1, q1);
-
- ASSERT_TRUE(z1.node()->owner_opr()->same_type<opr::SharedDeviceTensor>());
- ASSERT_NE(q1.node()->owner_opr(), q.node()->owner_opr());
- ASSERT_EQ(q1.node()->owner_opr()->dyn_typeinfo(),
- q.node()->owner_opr()->dyn_typeinfo());
-
- HostTensorND host_z, host_q;
- auto func = graph->compile(
- {make_callback_copy(z1, host_z), make_callback_copy(q1, host_q)});
- func->execute();
-
- int nr_opr = 0;
- func->iter_opr_seq([&](cg::OperatorNodeBase* op) {
- ++nr_opr;
- return true;
- });
- ASSERT_EQ(6, nr_opr);
-
- auto px = host_x->ptr<float>(), pz = host_z.ptr<float>(),
- pq = host_q.ptr<float>();
- auto yv = host_y->ptr<float>()[0], pv = host_p->ptr<float>()[0];
- for (size_t i = 0; i < SIZE; ++i) {
- MGB_ASSERT_FLOAT_EQ(px[i] + yv, pz[i]);
- MGB_ASSERT_FLOAT_EQ(px[i] * yv + pv, pq[i]);
- }
- }
-
- TEST(TestGoptInference, ParamFuseMultiRead) {
- HostTensorGenerator<> gen;
-
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
- };
-
- auto x = mkvar("x", {23}), p0 = mkcvar("p0", {1}), p1 = mkcvar("p1", {1}),
- z0 = x * (p0 + p1) + x / (p0 + p1);
-
- SymbolVar z1;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ParamFusePass>()
- .apply({{z0}})
- .endpoint_vars(),
- z1);
-
- ASSERT_NE(z0.node(), z1.node());
- ASSERT_TRUE(z1.node()
- ->owner_opr()
- ->input(0)
- ->owner_opr()
- ->input(1)
- ->owner_opr()
- ->same_type<opr::SharedDeviceTensor>());
- ASSERT_TRUE(z1.node()
- ->owner_opr()
- ->input(1)
- ->owner_opr()
- ->input(1)
- ->owner_opr()
- ->same_type<opr::SharedDeviceTensor>());
- HostTensorND host_z0, host_z1;
- graph->compile({make_callback_copy(z0, host_z0),
- make_callback_copy(z1, host_z1)})
- ->execute();
- MGB_ASSERT_TENSOR_EQ(host_z0, host_z1);
- }
-
- TEST(TestGoptInference, ParamFuseStaticInfer) {
- HostTensorGenerator<> gen;
-
- auto graph = ComputingGraph::make();
-
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
- };
-
- auto a = mkvar("x", {4}),
- b = a.reshape(opr::GetVarShape::make(mkcvar("tshp", {2, 2})));
-
- SymbolVar b1;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ParamFusePass>()
- .apply({{b}})
- .endpoint_vars(),
- b1);
-
- ASSERT_EQ(b1, a.reshape({2, 2}));
- }
-
- TEST(TestGoptInference, ParamRedistributeConvMul) {
- constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
-
- HostTensorGenerator<> gen;
- auto host_x = gen({N, IC, IH, IW}), host_k = gen({IC}),
- host_w = gen({OC, IC, KH, KW});
-
- auto graph = ComputingGraph::make();
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- k = opr::Dimshuffle::make(
- opr::SharedDeviceTensor::make(*graph, *host_k),
- {-1, 0, -1, -1}),
- w = opr::SharedDeviceTensor::make(*graph, *host_w),
- y0 = opr::Convolution::make(x * k, w);
-
- SymbolVar y1;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .apply({{y0}})
- .endpoint_vars(),
- y1);
-
- ASSERT_NE(y0.node(), y1.node());
-
- HostTensorND host_y0, host_y1;
- auto func = graph->compile(
- {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
- func->execute();
-
- MGB_ASSERT_TENSOR_EQ(host_y0, host_y1);
- }
-
- TEST(TestGoptInference, ParamRedistributeConvMulUniqReader) {
- constexpr size_t N = 4, C = 3, IH = 5, IW = 4, KH = 1, KW = 1;
-
- HostTensorGenerator<> gen;
- auto host_x = gen({N, C, IH, IW}), host_k = gen({C}),
- host_w = gen({C, C, KH, KW});
-
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- k = opr::Dimshuffle::make(
- opr::SharedDeviceTensor::make(*graph, *host_k) + 2,
- {-1, 0, -1, -1}),
- w = opr::SharedDeviceTensor::make(*graph, *host_w),
- // y0 should be replaced
- y0 = opr::powf(opr::Convolution::make(x * k, w).rename("y0") + 2,
- 2),
- y0k = (y0 * k).rename("y0k"),
- // y0k is accessed twice, so it should not be replaced
- y1 = opr::Convolution::make(y0k, w).rename("y1"), z0 = y1 / y0k;
-
- SymbolVar z1;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .apply({{z0}})
- .endpoint_vars(),
- z1);
-
- ASSERT_NE(z0.node(), z1.node());
- auto y1_repl = z1.node()->owner_opr()->input(0)->owner_opr();
- ASSERT_TRUE(y1_repl->same_type<opr::Convolution>());
- ASSERT_EQ(y1_repl->input(0), z1.node()->owner_opr()->input(1));
-
- HostTensorND host_z0, host_z1;
- auto func = graph->compile(
- {make_callback_copy(z0, host_z0), make_callback_copy(z1, host_z1)});
- func->execute();
-
- MGB_ASSERT_TENSOR_NEAR(host_z0, host_z1, 5e-5);
- }
-
- TEST(TestGoptInference, ParamRedistributeMulConvMul) {
- constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
-
- HostTensorGenerator<> gen;
- auto host_x = gen({N, IC, IH, IW}), host_k1 = gen({IC}),
- host_k2 = gen({1, OC, 1, 1}), host_w = gen({OC, IC, KH, KW});
-
- auto graph = ComputingGraph::make();
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- k1 = opr::Dimshuffle::make(
- opr::SharedDeviceTensor::make(*graph, *host_k1),
- {-1, 0, -1, -1}),
- k2 = opr::SharedDeviceTensor::make(*graph, *host_k2),
- w = opr::SharedDeviceTensor::make(*graph, *host_w),
- y0 = opr::Convolution::make(x * k1, w) * k2;
-
- SymbolVar y1;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{y0}})
- .endpoint_vars(),
- y1);
-
- auto y1opr = y1.node()->owner_opr();
- ASSERT_TRUE(y1opr->same_type<opr::Convolution>());
- ASSERT_EQ(y1opr->input(0), x.node());
-
- HostTensorND host_y0, host_y1;
- auto func = graph->compile(
- {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
- func->execute();
-
- MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 5e-6);
- }
-
- TEST(TestGoptInference, ParamRedistributeConvAdd) {
- constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
-
- HostTensorGenerator<> gen;
- auto host_x = gen({N, IC, IH, IW}), host_b = gen({IC}),
- host_w = gen({OC, IC, KH, KW});
-
- auto graph = ComputingGraph::make();
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- b = opr::Dimshuffle::make(
- opr::SharedDeviceTensor::make(*graph, *host_b),
- {-1, 0, -1, -1}),
- w = opr::SharedDeviceTensor::make(*graph, *host_w),
- y0 = opr::Convolution::make(x + b, w);
-
- SymbolVar y1;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{y0}})
- .endpoint_vars(),
- y1);
-
- ASSERT_NE(y0.node(), y1.node());
-
- HostTensorND host_y0, host_y1;
- auto func = graph->compile(
- {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
- func->execute();
-
- MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
- }
-
- TEST(TestGoptInference, ParamRedistributeDistThenReasso) {
- constexpr size_t N = 4, IC0 = 3, IC1 = 6, IH = 5, IW = 4, OC = 4, KH = 3,
- KW = 2;
-
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
- };
- auto x0 = mkvar("x0", {N, IC0, IH, IW}), x1 = mkvar("x1", {N, IC1, IH, IW}),
- k0 = opr::Dimshuffle::make(mkcvar("x1_", {IC0}), {-1, 0, -1, -1})
- .rename("x1"),
- w0 = mkcvar("w0", {OC, IC0, KH, KW}),
- k1 = mkcvar("k1", {1, IC1, 1, 1}),
- w1 = mkcvar("w1", {OC, IC1, KH, KW}), b0 = mkvar("b0", {1, OC, 1, 1}),
- b1 = mkcvar("b1", {1}), k2 = mkcvar("k2", {1}),
- y0 = (opr::Convolution::make(x0 * k0, w0) +
- opr::Convolution::make(x1 + k1, w1) + b0 + b1) *
- k2;
-
- SymbolVar y1;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .add_pass<gopt::ReorderArithChainPass>(
- gopt::ConstVarType::IMMUTABLE_AND_PARAM)
- .add_pass<gopt::ParamFusePass>()
- .apply({{y0}})
- .endpoint_vars(),
- y1);
-
- ASSERT_NE(y0.node(), y1.node());
- HostTensorND host_y0, host_y1;
- auto func = graph->compile(
- {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
- func->execute();
-
- MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
-
- auto chain =
- gopt::extract_opr_leaves(y1.node(), [](cg::OperatorNodeBase* opr) {
- return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
- });
- size_t nr_conv = 0;
- for (auto i : chain) {
- auto opr = i->owner_opr();
- if (opr->same_type<opr::Convolution>()) {
- ++nr_conv;
- ASSERT_TRUE(opr->input(0)
- ->owner_opr()
- ->same_type<opr::Host2DeviceCopy>());
- ASSERT_TRUE(opr->input(1)
- ->owner_opr()
- ->same_type<opr::SharedDeviceTensor>());
- }
- }
- ASSERT_EQ(2u, nr_conv);
- ASSERT_EQ(4u, chain.size());
- }
-
- TEST(TestGoptInference, ParamRedistributeMultiChange) {
- constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
-
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
- };
- auto x = mkvar("x", {N, IC, IH, IW}), k0 = mkcvar("k0", {1, IC, 1, 1}),
- b0 = mkcvar("b0", {1, IC, 1, 1}), k1 = mkcvar("k0", {1}),
- b1 = mkcvar("b0", {1}), w = mkcvar("w", {OC, IC, KH, KW}),
- y0 = (opr::Convolution::make(x * k0 + b0, w) + b1) * k1;
-
- SymbolVar y1;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{y0}})
- .endpoint_vars(),
- y1);
-
- ASSERT_NE(y0.node(), y1.node());
- HostTensorND host_y0, host_y1;
- auto func = graph->compile(
- {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
- func->execute();
-
- MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
-
- auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
- ASSERT_TRUE(y1elem);
- auto yconv = y1elem->input(0)->owner_opr();
- if (!yconv->same_type<opr::Convolution>())
- yconv = y1elem->input(1)->owner_opr();
- ASSERT_TRUE(yconv->same_type<opr::Convolution>());
- ASSERT_EQ(x.node(), yconv->input(0));
- }
-
- TEST(TestGoptInference, ParamRedistributeMultiReader) {
- constexpr size_t N = 4, IC = 3, IH = 5, IW = 4, OC = 4, KH = 3, KW = 2;
-
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
-
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
- };
-
- auto x = mkvar("x", {N, IC, IH, IW}), k = mkcvar("k", {1, OC, 1, 1}),
- w = mkcvar("w", {OC, IC, KH, KW});
-
- auto conv = opr::Convolution::make(x, w);
- auto t = conv * k;
- auto y0 = t * 4.2f + t * 2.4f;
-
- SymbolVar y1;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{y0}})
- .endpoint_vars(),
- y1);
-
- ASSERT_NE(y0.node(), y1.node());
- HostTensorND host_y0, host_y1;
- auto func = graph->compile(
- {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
- func->execute();
-
- MGB_ASSERT_TENSOR_NEAR(host_y0, host_y1, 1e-5);
-
- auto y1elem = gopt::as_elem_opr(y1.node(), opr::Elemwise::Mode::ADD);
- ASSERT_TRUE(y1elem);
- auto ymul0 = gopt::as_elem_opr(y1elem->input(0), opr::Elemwise::Mode::MUL),
- ymul1 = gopt::as_elem_opr(y1elem->input(1), opr::Elemwise::Mode::MUL);
- ASSERT_TRUE(ymul0);
- ASSERT_TRUE(ymul1);
- auto yconv = ymul0->input(0)->owner_opr();
- if (!yconv->same_type<opr::Convolution>()) {
- yconv = ymul0->input(1)->owner_opr();
- }
- ASSERT_TRUE(yconv->same_type<opr::Convolution>());
- if (ymul1->input(0) != yconv->output(0)) {
- ASSERT_EQ(yconv->output(0), ymul1->input(1));
- }
- ASSERT_EQ(x.node(), yconv->input(0));
- }
-
- TEST(TestGoptInference, ParamFuseBiasMerge) {
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
- };
- auto x = mkvar("x", {6, 3, 8, 8}), w1 = mkcvar("w1", {4, 3, 3, 3}),
- w2 = mkcvar("w2", {4, 3, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
- b2 = mkcvar("b2", {1, 4, 1, 1}),
- y1 = opr::Convolution::make(x, w1) + b1,
- y2 = opr::Convolution::make(x, w2) + b2, y = y1 + y2;
-
- SymbolVar y_opt;
- unpack_vector(gopt::optimize_for_inference({y}), y_opt);
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ParamFuseConvMerge.json"));
-
- auto chain = gopt::extract_opr_leaves(
- y_opt.node(), [](cg::OperatorNodeBase* opr) {
- return gopt::as_elem_opr(opr, opr::Elemwise::Mode::ADD);
- });
- ASSERT_EQ(3u, chain.size());
- }
-
- TEST(TestGoptInference, Float16IOFloat32Compute) {
- constexpr size_t INP_H = 10, INP_W = 10;
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- graph->options().graph_opt_level = 0;
- auto a = mkvar("a", {1, 4, INP_H, INP_W}),
- s0 = mkvar("s0", {20, 3, INP_H, INP_W}),
- s1 = mkvar("s1", {4, 3, 1, 1});
- auto b = opr::Convolution::make(s0, s1, {}, {});
- auto y = a + b;
- y = opr::Concat::make({y, -y}, 0);
- y = opr::Reduce::make(y, {}, y.make_scalar(1));
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_f32_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(y_opt.dtype(), dtype::Float32());
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Float16IOFloat32ComputeDeConv) {
- constexpr size_t INP_H = 10, INP_W = 10;
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- graph->options().graph_opt_level = 0;
-
- auto s0 = mkvar("s0", {5, 5, 3, 3}), s1 = mkvar("s1", {1, 5, INP_H, INP_W});
- auto y = opr::ConvolutionBackwardData::make(s0, s1, {}, {});
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_f32_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(
- find_opr<opr::ConvolutionBackwardData>(y_opt).param().compute_mode,
- opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32);
- ASSERT_EQ(y_opt.dtype(), dtype::Float32());
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-2);
- }
-
- TEST(TestGoptInference, Float16IOFloat32ComputeWarpPerspective) {
- constexpr size_t INP_H = 10, INP_W = 10, N = 2;
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
- graph->options().graph_opt_level = 0;
- auto a = mkvar("a", {N, 4, INP_H, INP_W});
- float value1 = M_PI, value2 = 0.6;
- auto gen_mat = [&](HostTensorND& mat) {
- auto ptr = mat.ptr<float>();
- for (size_t i = 0; i < N; ++i) {
- auto rot = value1, scale = value2, sheer = value1, dy = value2,
- dx = value2, ky = value2, kx = value2, kb = value2;
- ptr[0] = ptr[4] = cos(rot) * scale;
- ptr[1] = -(ptr[3] = sin(rot) * scale);
- ptr[3] *= sheer;
- ptr[4] *= sheer;
- ptr[2] = dx;
- ptr[5] = dy;
- ptr[6] = kx;
- ptr[7] = ky;
- ptr[8] = kb;
- ptr += 9;
- }
- mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
- };
- auto mat_host = std::make_shared<HostTensorND>(
- a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
- gen_mat(*mat_host);
- auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
- TensorShape out_shp{20, 20};
- auto y = opr::WarpPerspective::make(a, mat, out_shp);
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_f32_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(y_opt.dtype(), dtype::Float32());
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Float16IOFloat32ComputeRemap) {
- auto cn = CompNode::load("cpu1");
- constexpr size_t INP_H = 10, INP_W = 10, N = 2;
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- graph->options().graph_opt_level = 0;
- auto a = mkvar("a", {N, 4, INP_H, INP_W});
- auto gen_map = [&](HostTensorND& mat) {
- auto ptr = mat.ptr<float>();
- for (size_t n = 0; n < N; ++n) {
- for (int h = 0; h < 5; ++h) {
- for (int w = 0; w < 5; ++w) {
- *ptr++ = (h * 5 * 2) + 5 * 2 + 0;
- *ptr++ = (h * 5 * 2) + 5 * 2 + 1;
- }
- }
- }
- mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
- };
- auto map_host = std::make_shared<HostTensorND>(
- a.node()->comp_node(), TensorShape{N, 5, 5, 2}, dtype::Float32());
- gen_map(*map_host);
- auto map = opr::Host2DeviceCopy::make(*graph, map_host).rename("map");
- auto y = opr::Remap::make(a, map);
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_f32_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(y_opt.dtype(), dtype::Float32());
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Uint8IOFloat16ComputeWarpPerspective) {
- constexpr size_t INP_H = 10, INP_W = 10, N = 2;
- HostTensorGenerator<dtype::Uint8> gen_uint8;
- auto graph = ComputingGraph::make();
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen_uint8(shp)).rename(name);
- };
- graph->options().graph_opt_level = 0;
- auto a = mkvar("a", {N, 4, INP_H, INP_W});
- float value1 = M_PI, value2 = 0.6;
- auto gen_mat = [&](HostTensorND& mat) {
- auto ptr = mat.ptr<float>();
- for (size_t i = 0; i < N; ++i) {
- auto rot = value1, scale = value2, sheer = value1, dy = value2,
- dx = value2, ky = value2, kx = value2, kb = value2;
- ptr[0] = ptr[4] = cos(rot) * scale;
- ptr[1] = -(ptr[3] = sin(rot) * scale);
- ptr[3] *= sheer;
- ptr[4] *= sheer;
- ptr[2] = dx;
- ptr[5] = dy;
- ptr[6] = kx;
- ptr[7] = ky;
- ptr[8] = kb;
- ptr += 9;
- }
- mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems());
- };
- auto mat_host = std::make_shared<HostTensorND>(
- a.node()->comp_node(), TensorShape{N, 3, 3}, dtype::Float32());
- gen_mat(*mat_host);
- auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
- TensorShape out_shp{20, 20};
- auto y = opr::WarpPerspective::make(a, mat, out_shp);
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(y_opt.dtype(), dtype::Uint8());
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Float32TOFloat16) {
- CompNode cn = CompNode::load("cpu0");
- HostTensorGenerator<> gen(0, 1, 0);
- auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
- host_x2 = gen({4, 3, 1, 1}, cn);
- auto graph = ComputingGraph::make();
-
- auto make_f32_to_f16_graph = [&]() {
- graph->options().graph_opt_level = 0;
-
- auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
- d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
- d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
-
- auto b = opr::Convolution::make(d1, d2, {}, {});
- auto y = d0 + b;
- y = opr::Reduce::make(y, {}, y.make_scalar(1));
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- return y_opt;
- };
-
- auto make_f16_graph = [&]() {
- auto d0 = opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, host_x0),
- dtype::Float16{}),
- d1 = opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, host_x1),
- dtype::Float16{}),
- d2 = opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *host_x2),
- dtype::Float16{});
-
- auto b = opr::Convolution::make(d1, d2, {}, {});
- SymbolVar y = d0 + b;
- y = opr::Reduce::make(y, {}, y.make_scalar(1));
- y = opr::TypeCvt::make(y, dtype::Float32{});
-
- return y;
- };
-
- auto y_opt = make_f32_to_f16_graph();
- auto y = make_f16_graph();
- ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
- ASSERT_EQ(y.dtype(), dtype::Float32{});
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Float32TOFloat16C32) {
- CompNode cn = CompNode::load("cpu0");
- HostTensorGenerator<> gen(0, 1, 0);
- auto host_x0 = gen({1, 4, 1, 1}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
- host_x2 = gen({4, 3, 1, 1}, cn);
- auto graph = ComputingGraph::make();
-
- auto make_f32_to_f16_graph = [&]() {
- graph->options().graph_opt_level = 0;
-
- auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
- d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
- d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
-
- auto y = opr::ConvBias::make(d1, d2, d0);
- y = opr::Reduce::make(y, {}, y.make_scalar(1));
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_f32_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- return y_opt;
- };
-
- auto make_f16_graph = [&]() {
- auto d0 = opr::TypeCvt::make(
- opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, host_x0),
- dtype::Float16{}),
- dtype::Float32{}),
- d1 = opr::TypeCvt::make(
- opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, host_x1),
- dtype::Float16{}),
- dtype::Float32{}),
- d2 = opr::TypeCvt::make(
- opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *host_x2),
- dtype::Float16{}),
- dtype::Float32{});
-
- auto y = opr::ConvBias::make(d1, d2, d0);
- y = opr::Reduce::make(y, {}, y.make_scalar(1));
- y = opr::TypeCvt::make(opr::TypeCvt::make(y, dtype::Float16{}),
- dtype::Float32{});
-
- return y;
- };
-
- auto y_opt = make_f32_to_f16_graph();
- auto y = make_f16_graph();
- ASSERT_EQ(find_opr<opr::ConvBias>(y_opt).param().compute_mode,
- opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32);
- ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
- ASSERT_EQ(y.dtype(), dtype::Float32{});
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Float32TOFloat16EndpointElemwise) {
- CompNode cn = CompNode::load("cpu0");
- HostTensorGenerator<> gen(0, 1, 0);
- auto host_x0 = gen({1, 4, 16, 8}, cn), host_x1 = gen({2, 3, 16, 8}, cn),
- host_x2 = gen({4, 3, 1, 1}, cn);
- auto graph = ComputingGraph::make();
-
- auto make_f32_to_f16_graph = [&]() {
- graph->options().graph_opt_level = 0;
-
- auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0),
- d1 = opr::Host2DeviceCopy::make(*graph, host_x1),
- d2 = opr::SharedDeviceTensor::make(*graph, *host_x2);
-
- auto b = opr::Convolution::make(d1, d2, {}, {});
- auto y = d0 + b;
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_comp();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- return y_opt;
- };
-
- auto make_f16_graph = [&]() {
- auto d0 = opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, host_x0),
- dtype::Float16{}),
- d1 = opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, host_x1),
- dtype::Float16{}),
- d2 = opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *host_x2),
- dtype::Float16{});
-
- auto b = opr::Convolution::make(d1, d2, {}, {});
- SymbolVar y = d0 + b;
- y = opr::TypeCvt::make(y, dtype::Float32{});
-
- return y;
- };
-
- auto y_opt = make_f32_to_f16_graph();
- auto y = make_f16_graph();
- ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
- ASSERT_EQ(y.dtype(), dtype::Float32{});
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Float32TOFloat16Linspace) {
- CompNode cn = CompNode::load("cpu0");
- HostTensorGenerator<> gen(0, 1, 0);
- auto host_x = gen({3, 1}, cn);
- auto graph = ComputingGraph::make();
-
- auto make_f32_to_f16_graph = [&]() {
- graph->options().graph_opt_level = 0;
-
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
- auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
- auto y = opr::Reshape::make(lin, shp);
- auto mm = opr::MatrixMul::make(x, y);
-
- SymbolVar mm_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_comp();
- unpack_vector(gopt::optimize_for_inference({mm}, options), mm_opt);
- return mm_opt;
- };
-
- auto make_f16_graph = [&]() {
- auto x = opr::TypeCvt::make(opr::Host2DeviceCopy::make(*graph, host_x),
- dtype::Float16());
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto lin = opr::Linspace::make(cv(0), sub(0) - 1, sub(0), {}, {});
- lin = opr::TypeCvt::make(lin, dtype::Float16());
- auto shp = opr::Concat::make({sub(1), sub(0)}, 0);
- auto y = opr::Reshape::make(lin, shp);
- auto mm = opr::MatrixMul::make(x, y);
-
- mm = opr::TypeCvt::make(mm, dtype::Float32{});
-
- return mm;
- };
-
- auto y_opt = make_f32_to_f16_graph();
- auto y = make_f16_graph();
- ASSERT_EQ(y_opt.dtype(), dtype::Float32{});
- ASSERT_EQ(y.dtype(), dtype::Float32{});
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, Float32TOFloat16Endpoints) {
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
-
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name);
- };
-
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name);
- };
-
- graph->options().graph_opt_level = 0;
- opr::Convolution::Param param;
- param.pad_h = param.pad_w = 0;
-
- auto x = mkvar("x", {8, 8, 8, 8}), y = mkvar("y", {8, 8, 8, 8}),
- w = mkcvar("w", {4, 8, 3, 3}),
- z = opr::Convolution::make(x + y, w, param);
-
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_f16_io_f32_comp();
- SymbolVarArray out = gopt::optimize_for_inference({x + y, z}, options);
-
- ASSERT_EQ(out[0].dtype(), dtype::Float32());
- ASSERT_EQ(out[1].dtype(), dtype::Float32());
- ASSERT_EQ(out[0].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
- ASSERT_EQ(out[1].node()->owner_opr()->input(0)->dtype(), dtype::Float16());
- }
-
- TEST(TestGoptInference, ConvertFormatNHWCD4) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
-
- auto host_x = gen({8, 8, 8, 8}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
-
- opr::Convolution::Param param;
- param.pad_h = param.pad_w = 0;
- auto w1 = mkcvar("w1", {4, 8, 3, 3}),
- conv = opr::Convolution::make(x, w1, param);
- auto shape_of = opr::GetVarShape::make(conv);
- auto subtensor = opr::Subtensor::make(
- shape_of, {opr::Subtensor::AxisIndexer::make_interval(
- 0, x.make_scalar(2), None, x.make_scalar(1))});
-
- opr::Resize::Param param_resize;
- param_resize.format = opr::Resize::Param::Format::NCHW;
- auto resize = opr::ResizeForward::make(conv, subtensor * 2, param_resize);
- auto mat = mkcvar("mat", {8, 3, 3}),
- warp = opr::WarpPerspectiveForward::make(
- resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
-
- auto b = mkvar("b", {1, 4, 1, 1}),
- elem = opr::Elemwise::make({warp + b},
- opr::Elemwise::Param::Mode::RELU);
- param.pad_h = param.pad_w = 1;
- auto w2 = mkcvar("w2", {4, 4, 3, 3}),
- y = opr::Convolution::make(elem, w2, param),
- z = opr::AxisAddRemove::make(
- y, {opr::AxisAddRemove::AxisDesc::make_add(0)});
-
- SymbolVar y_opt, z_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- unpack_vector(gopt::optimize_for_inference({z}, options), z_opt);
-
- ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
- find_opr<opr::Convolution>(y_opt).param().format);
-
- ASSERT_EQ(TensorFormat::Type::DEFAULT,
- find_opr<opr::AxisAddRemove>(z_opt).input(0)->format().type());
- ASSERT_EQ(4, find_opr<opr::AxisAddRemove>(z_opt).input(0)->shape().ndim);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ConvertFormatNHWCD4.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
-
- *host_x = *gen({8, 8, 16, 16}, cn);
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, ConvertFormatNHWCD4Elemwise) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
-
- auto host_x = gen({8, 8, 8, 8}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
-
- opr::Convolution::Param param;
- param.pad_h = param.pad_w = 0;
- auto w1 = mkcvar("w1", {8, 8, 3, 3}),
- conv = opr::Convolution::make(x, w1, param);
-
- auto b = mkvar("b", {1, 1, 1, 1}),
- elem = opr::Elemwise::make({conv + b},
- opr::Elemwise::Param::Mode::RELU);
- param.pad_h = param.pad_w = 1;
- auto w2 = mkcvar("w2", {8, 8, 3, 3}),
- conv2 = opr::Convolution::make(elem, w2, param);
-
- auto b_scaler = mkvar("b", {1}), elem2 = conv2 + b_scaler;
-
- param.pad_h = param.pad_w = 1;
- auto w3 = mkcvar("w2", {8, 8, 3, 3}),
- y = opr::Convolution::make(elem2, w3, param);
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
- find_opr<opr::Convolution>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.ConvertFormatNHWCD4Elemwise.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
-
- *host_x = *gen({8, 8, 16, 16}, cn);
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, ConvertFormatNHWCD4LOCAL) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
-
- auto host_x = gen({2, 8, 8, 16}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
-
- opr::Convolution::Param param;
- param.pad_h = param.pad_w = 1;
- auto w1 = mkcvar("w1", {4, 8, 3, 3}),
- conv1 = opr::Convolution::make(x, w1, param);
-
- auto w2 = mkcvar("w2", {8, 16, 4, 3, 3, 4}),
- local = opr::Local::make(conv1, w2, param);
-
- auto w3 = mkcvar("w3", {4, 4, 3, 3}),
- conv2 = opr::Convolution::make(local, w3, param);
-
- opr::GroupLocal::Param param_group_local;
- param_group_local.pad_h = param_group_local.pad_w = 1;
- auto w4 = mkcvar("w4", {2, 8, 16, 2, 3, 3, 2}),
- group_local = opr::GroupLocal::make(conv2, w4, param_group_local);
-
- auto w5 = mkcvar("w5", {4, 4, 3, 3}),
- y = opr::Convolution::make(group_local, w5, param);
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
- find_opr<opr::Convolution>(y_opt).param().format);
-
- ASSERT_EQ(opr::Local::Param::Format::NCHW,
- find_opr<opr::Local>(y_opt).param().format);
-
- ASSERT_EQ(opr::GroupLocal::Param::Format::NCHW,
- find_opr<opr::GroupLocal>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.ConvertFormatNHWCD4LOCAL.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, ConvertFormatNHWCD4Deconv) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
-
- auto host_x = gen({8, 8, 8, 8}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
-
- opr::Convolution::Param param;
- param.pad_h = param.pad_w = 0;
- auto w0 = mkcvar("w1", {4, 8, 2, 2}),
- conv = opr::Convolution::make(x, w0, param);
-
- auto w1 = mkcvar("w1", {4, 1, 2, 2}),
- y = opr::ConvolutionBackwardData::make(w1, conv, param, {}, {});
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
- find_opr<opr::ConvolutionBackwardData>(y_opt).param().format);
- ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4,
- find_opr<opr::Convolution>(y_opt).param().format);
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
- TEST(TestGoptInference, ConvertFormatNHWCD4Qint8) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- auto host_x = gen({8, 8, 8, 8}, cn);
- auto _x = opr::Host2DeviceCopy::make(*graph, host_x),
- x = opr::TypeCvt::make(_x, dtype::QuantizedS8(0.2f));
-
- opr::ConvBias::Param param;
- param.pad_h = param.pad_w = 0;
- auto w = mkcvar("w", {4, 8, 3, 3}, dtype::QuantizedS8(0.1f)),
- b = mkcvar("b", {1, 4, 1, 1}, dtype::QuantizedS32(0.02f)),
- y = opr::ConvBias::make(x, w, b, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(0.2f)});
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(opr::ConvBias::Param::Format::NHWCD4,
- find_opr<opr::ConvBias>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.ConvertFormatNHWCD4Qint8.json"));
- auto float_y = opr::TypeCvt::make(y, dtype::Float32()),
- float_y_opt = opr::TypeCvt::make(y_opt, dtype::Float32());
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(float_y, host_y),
- make_callback_copy(float_y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
- TEST(TestGoptInference, ConvertFormatPadIC) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
-
- auto host_inp1 = gen({1, 6, 128, 128}, cn),
- host_inp2 = gen({1, 6, 256, 256}, cn);
- auto inp1 = opr::Host2DeviceCopy::make(*graph, host_inp1),
- inp2 = opr::Host2DeviceCopy::make(*graph, host_inp2);
-
- auto shape_tmp = mkcvar("tmp", {256, 256});
- auto shape_of = opr::GetVarShape::make(shape_tmp);
- opr::Resize::Param param_resize;
- param_resize.format = opr::Resize::Param::Format::NCHW;
- auto resize = opr::ResizeForward::make(inp1, shape_of, param_resize);
-
- auto concat = opr::Concat::make({inp2, resize}, 1);
-
- opr::Convolution::Param param;
- param.pad_h = param.pad_w = 1;
- param.sparse = opr::Convolution::Param::Sparse::DENSE;
- auto w1 = mkcvar("w1", {12, 12, 3, 3});
- auto y = opr::Convolution::make(concat, w1, param);
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- TEST(TestGoptInference, ConvertBatchNormPass) {
- auto cn = CompNode::load("cpu0");
-
- HostTensorGenerator<> gen(0, 1, 0);
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
- using Param = opr::BatchNorm::Param;
- Param param(Param::ParamDim::DIM_1C11, Param::FwdMode::INFERENCE);
- TensorShape shp = {1, 3, 1, 1};
- auto x = mkvar("x", {2, 3, 16, 24}), scale = mkcvar("scale", shp),
- bias = mkcvar("bias", shp), mean = mkcvar("mean", shp);
- auto host_variance = gen(shp, cn);
- for (size_t i = 0; i < shp.total_nr_elems(); ++i) {
- host_variance->ptr<float>()[i] =
- std::abs(host_variance->ptr<float>()[i]);
- }
- auto variance = opr::SharedDeviceTensor::make(*graph, *host_variance)
- .rename("variance");
- auto y = opr::BatchNorm::make(x, scale, bias, mean, variance, param)[4];
- SymbolVar y_opt;
- unpack_vector(gopt::optimize_for_inference(
- {y}, gopt::OptimizeForInferenceOptions{}),
- y_opt);
- ASSERT_EQ(0u, find_opr_num<opr::BatchNorm>(y_opt));
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ConvertBatchNormPass.json"));
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
- }
-
- TEST(TestGoptInference, ConvBiasNonlinearityFusePass) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- auto cn = CompNode::load("cpu0");
-
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
- opr::Convolution::Param param;
- auto x = mkvar("x", {5, 8, 16, 24}), w1 = mkcvar("w1", {4, 8, 1, 1}),
- w2 = mkcvar("w2", {4, 4, 3, 3}), b1 = mkcvar("b1", {1, 4, 1, 1}),
- b2 = mkcvar("b2", {1, 4, 1, 1}), w3 = mkcvar("w3", {8, 4, 1, 1}),
- y_cut = opr::Convolution::make(x, w1, param),
- y1 = opr::Elemwise::make({y_cut + b1},
- opr::Elemwise::Param::Mode::RELU);
- param.pad_w = param.pad_h = 1;
- auto y2 = opr::Elemwise::make({opr::Convolution::make(y1, w2, param) + b2},
- opr::Elemwise::Param::Mode::SIGMOID);
- param.pad_w = param.pad_h = 0;
- auto y3 = opr::Convolution::make(y2, w3, param), y_tmp = y3 + x,
- y_expand =
- opr::Elemwise::make({y_cut}, opr::Elemwise::Param::Mode::RELU),
- y_y = opr::Convolution::make(y_expand, w3, param), y = y_y + y_tmp;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4().enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.FuseConvBiasNonlinPass.json"));
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
- }
-
- TEST(TestGoptInference, ConvBiasNonlinearityFusePass_FullBias) {
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- for (int i = 0; i < 2; i++) {
- auto graph = ComputingGraph::make();
- auto cn = CompNode::load("cpu0");
- HostTensorGenerator<> gen;
- auto mkImvar = [&](const char* name, const TensorShape& shp) {
- return opr::ImmutableTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
-
- graph->options().graph_opt_level = 0;
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
- opr::Convolution::Param param;
- auto host_x = gen({1, 8, 16, 24}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- w1 = mkcvar("w1", {4, 8, 1, 1}), w2 = mkcvar("w2", {4, 8, 3, 3}),
- w3 = mkcvar("w3", {4, 4, 1, 1}),
- b = i == 0 ? mkcvar("b", {1, 4, 16, 24})
- : mkImvar("bias", {1, 4, 16, 24}),
- y_cut0 = opr::Convolution::make(x, w1, param);
- param.pad_w = param.pad_h = 1;
- auto y_cut1 = opr::Convolution::make(x, w2, param);
- auto y1 = opr::Elemwise::make({y_cut0 + y_cut1},
- opr::Elemwise::Param::Mode::RELU);
- param.pad_w = param.pad_h = 0;
- auto y2 = opr::Convolution::make(y1, w3, param);
- auto y =
- opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU);
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- ASSERT_EQ(3u, find_opr<opr::ConvBias>(y_opt).input().size());
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.FuseConvBiasNonlinPass_"
- "FulBias.json"));
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
- *host_x = *gen({4, 8, 16, 24}, cn);
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-4);
- }
- }
-
- TEST(TestGoptInference, ParamMerge) {
- auto cns = load_multiple_xpus(2);
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto var0 = opr::SharedDeviceTensor::make(*graph, *gen({2, 3}, cns[0])),
- var1 = opr::SharedDeviceTensor::make(*graph, *gen({1, 3}, cns[1])),
- y = var0 + opr::Copy::make(var1, {cns[0]});
- HostTensorND y_expected_val;
- graph->compile({make_callback_copy(y, y_expected_val)})->execute();
-
- SymbolVar y_opt;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ParamMergePass>()
- .apply({{y}})
- .endpoint_vars(),
- y_opt);
- auto opr = y_opt.node()->owner_opr();
- ASSERT_EQ(2u, opr->input().size());
- ASSERT_EQ(2u,
- find_opr<opr::MultipleDeviceTensorHolder>(y_opt).output().size());
- HostTensorND y_got_val;
- graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
- MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
- }
-
- TEST(TestGoptInference, ParamMergeFormat) {
- auto cns = load_multiple_xpus(2);
-
- auto make_dv = [](const HostTensorND& hv) {
- TensorLayout layout{hv.layout(), hv.layout().dtype,
- megdnn::Image2DPack4TensorFormat::make_raw(1, 64)};
- auto ret = std::make_shared<DeviceTensorND>(hv.comp_node(), layout);
- ret->copy_from_fixlayout(hv).sync();
- return ret;
- };
-
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto var0 = opr::SharedDeviceTensorWithFormat::make(
- *graph, make_dv(*gen({2, 32}, cns[0]))),
- var1 = opr::SharedDeviceTensorWithFormat::make(
- *graph, make_dv(*gen({1, 32}, cns[1]))),
- y = var0 + opr::Copy::make(var1, {cns[0]});
- HostTensorND y_expected_val;
- graph->compile({make_callback_copy(y, y_expected_val)})->execute();
-
- SymbolVar y_opt;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ParamMergePass>()
- .apply({{y}})
- .endpoint_vars(),
- y_opt);
- auto opr = y_opt.node()->owner_opr();
- ASSERT_EQ(2u, opr->input().size());
- ASSERT_EQ(2u, find_opr<opr::MultipleDeviceTensorWithFormatHolder>(y_opt)
- .output()
- .size());
- HostTensorND y_got_val;
- graph->compile({make_callback_copy(y_opt, y_got_val)})->execute();
- MGB_ASSERT_TENSOR_EQ(y_expected_val, y_got_val);
- }
-
- #if MGB_ENABLE_FASTRUN
- TEST(TestGoptInference, AlgoProfile) {
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- y = opr::Host2DeviceCopy::make(*graph, host_y),
- z = opr::Convolution::make(x, y);
- auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
- using S = opr::Convolution::ExecutionPolicy::Strategy;
- ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
- gopt::enable_opr_algo_profiling_inplace({z + 2.3f});
- ASSERT_EQ(S::PROFILE, conv.execution_policy().strategy);
- }
- #endif
-
- TEST(TestGoptInference, ProfileCache) {
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- y = opr::Host2DeviceCopy::make(*graph, host_y),
- z = opr::Convolution::make(x, y);
- auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
- using S = opr::Convolution::ExecutionPolicy::Strategy;
- ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy);
- gopt::enable_opr_use_profiling_cache_inplace({z + 2.3f});
- ASSERT_EQ(S::PROFILE_HEURISTIC, conv.execution_policy().strategy);
- }
-
- TEST(TestGoptInference, AlgoWorkspaceLimit) {
- HostTensorGenerator<> gen;
- auto graph = ComputingGraph::make();
- auto host_x = gen({4, 3, 8, 9}), host_y = gen({2, 3, 3, 3});
- auto x = opr::Host2DeviceCopy::make(*graph, host_x),
- y = opr::Host2DeviceCopy::make(*graph, host_y),
- z = opr::Convolution::make(x, y);
- auto&& conv = z.node()->owner_opr()->cast_final_safe<opr::Convolution>();
- ASSERT_EQ(std::numeric_limits<uint64_t>::max(),
- conv.execution_policy_transient().workspace_limit);
- gopt::set_opr_algo_workspace_limit_inplace({z + 2.3f}, 10000u);
- ASSERT_EQ(10000u, conv.execution_policy().workspace_limit);
- }
-
- TEST_PASS(FuseConvBiasNonlinPass, Basic) {
- auto cn = CompNode::load("xpux");
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- for (auto format : {opr::Convolution::Param::Format::NCHW,
- opr::Convolution::Param::Format::NHWC,
- opr::Convolution::Param::Format::NCHW4}) {
- opr::Convolution::Param param;
- param.format = format;
- SymbolVar x, w, b;
- if (format == opr::Convolution::Param::Format::NHWC) {
- x = mkvar("x", {20, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {24, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 1, 1, 24}, dtype::QuantizedS32(6.25f));
- } else if (format == opr::Convolution::Param::Format::NCHW) {
- x = mkvar("x", {20, 4, 20, 20}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {24, 4, 1, 1}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 24, 1, 1}, dtype::QuantizedS32(6.25f));
- } else {
- mgb_assert(format == opr::Convolution::Param::Format::NCHW4);
- x = mkvar("x", {20, 1, 20, 20, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {24, 1, 1, 1, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 6, 1, 1, 4}, dtype::QuantizedS32(6.25f));
- }
- auto y = opr::Convolution::make(x, w, param);
- y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
- y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
-
- opr::ConvBias::Param conv_bias_param;
- conv_bias_param.format = format;
- conv_bias_param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- auto concret_y = opr::ConvBias::make(
- x, w, b, conv_bias_param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
-
- check(concret_y, y);
- }
- }
-
-
- #if MGB_CUDA
-
- TEST(TestEnableTensorCore, SmallInputShape) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- z = mkcvar("b1", {32, 16, 2, 4, 4}, dtype::QuantizedS8(2.5f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(x, w, b, z, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = opr::ConvBias::make(y, w, b, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = opr::TypeCvt::make(y, dtype::Float32());
-
- SymbolVar y_opt;
- SymbolVar y_no_tc;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
- }
- auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
- ASSERT_EQ(2u, nr_dimshuffle);
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
-
- //! close for cu111 ci, reopen it when bug fixed
- #if 0
- TEST(TestEnableTensorCore, Nchw4Nchw) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C,
- size_t H, size_t W) -> TensorShape {
- mgb_assert(C % 4 == 0);
- if (format == opr::ConvBias::Param::Format::NCHW4) {
- return {N, C / 4, H, W, 4};
- } else {
- mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
- return {N, C, H, W};
- }
- };
-
- for (auto format : {opr::ConvBias::Param::Format::NCHW,
- opr::ConvBias::Param::Format::NCHW4}) {
- auto x = mkvar("x", mkshape(format, 32, 64, 16, 16),
- dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", mkshape(format, 64, 64, 3, 3),
- dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", mkshape(format, 1, 64, 1, 1),
- dtype::QuantizedS32(6.25f)),
- z = mkcvar("b1", mkshape(format, 32, 64, 8, 8),
- dtype::QuantizedS8(2.5f));
- opr::ConvBias::Param param;
- param.format = format;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(
- x, w, b, z, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = opr::ConvBias::make(y, w, b, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = opr::TypeCvt::make(y, dtype::Float32());
-
- SymbolVar y_opt;
- SymbolVar y_no_tc;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
- }
- auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
- std::string json_name;
- ASSERT_EQ(2u, nr_dimshuffle);
- if (format == opr::ConvBias::Param::Format::NCHW4) {
- json_name = "TestGoptInference.Nchw4Nchw.NCHW4.json";
- } else {
- mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
- json_name = "TestGoptInference.Nchw4Nchw.NCHW.json";
- }
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(json_name.c_str()));
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
- }
- #endif
-
- //! close for cu111 ci, reopen it when bug fixed
- #if 0
- TEST(TestEnableTensorCore, ConvBiasWithZ) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(x, w, b, z, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = opr::TypeCvt::make(y, dtype::Float32());
-
- SymbolVar y_opt;
- SymbolVar y_no_tc;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
- }
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
- #endif
-
- //! close for cu111 ci, reopen it when bug fixed
- #if 0
- TEST(TestEnableTensorCore, Pooling) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- z = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(x, w, b, z, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- opr::Pooling::Param pool_param;
- pool_param.format = opr::Pooling::Param::Format::NCHW4;
- y = opr::Pooling::make(y, pool_param);
- y = opr::TypeCvt::make(y, dtype::Float32());
-
- SymbolVar y_opt;
- SymbolVar y_no_tc;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
- ASSERT_EQ(opr::Pooling::Param::Format::NCHW32,
- find_opr<opr::Pooling>(y_opt).param().format);
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
- }
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
- #endif
-
- TEST(TestGoptInference, EnableTensorCore) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
- opr::Convolution::Param param;
- param.format = opr::Convolution::Param::Format::NCHW4;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::Convolution::make(x, w, param);
- y = opr::Elemwise::make({y + b}, opr::Elemwise::Param::Mode::RELU);
- y = opr::TypeCvt::make(y, dtype::QuantizedS8(2.5f));
-
- auto y1 = y + b1, y2 = opr::Convolution::make(y, w, param),
- y3 = opr::Elemwise::make({y - b1}, opr::Elemwise::Param::Mode::RELU);
- y2 = opr::Elemwise::make({y2 + b}, opr::Elemwise::Param::Mode::RELU),
- y2 = opr::TypeCvt::make(y2, dtype::QuantizedS8(2.5f));
- auto y4 = y1 + y2 + y3;
- y4 = opr::TypeCvt::make(y4, dtype::Float32());
- SymbolVar y_opt;
- SymbolVar y_no_tc;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
- unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
- }
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
- unpack_vector(gopt::optimize_for_inference({y4}, options), y_no_tc);
- }
- auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
- ASSERT_EQ(3u, nr_dimshuffle);
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.EnableTensorCorePass.json"));
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
-
- //! close for cu111 ci, reopen it when bug fixed
- #if 0
- TEST(FuseConvBiasZPass, BlockFuse) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 61) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 61);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- using ElemMultiMode = opr::ElemwiseMultiType::Param::Mode;
- using NonlineMode = opr::ConvBias::Param::NonlineMode;
- for (auto mode :
- {ElemMultiMode::QFUSE_ADD_RELU, ElemMultiMode::QFUSE_ADD_H_SWISH}) {
- auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- w1 = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b1 = mkcvar("b1", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- w2 = mkcvar("w2", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b2 = mkcvar("b2", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- w3 = mkcvar("w3", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b3 = mkcvar("b3", {1, 16, 1, 1, 4}, dtype::QuantizedS32(3.0f));
- NonlineMode nonline_mode = NonlineMode::RELU;
- if (mode == ElemMultiMode::QFUSE_ADD_H_SWISH) {
- nonline_mode = NonlineMode::H_SWISH;
- }
-
- opr::ConvBias::Param param;
- param.format = opr::Convolution::Param::Format::NCHW4;
- param.nonlineMode = nonline_mode;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
-
- auto y1 = opr::ConvBias::make(
- x, w1, b1, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY;
- auto y2 = opr::ConvBias::make(
- y1, w2, b2, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
- y3 = opr::ElemwiseMultiType::make(
- {y1, y2}, {mode},
- OperatorNodeConfig{dtype::QuantizedS8(1.2f)});
- param.nonlineMode = nonline_mode;
- auto y4 = opr::ConvBias::make(
- y3, w3, b3, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
- z = opr::ElemwiseMultiType::make(
- {y3, y4}, {opr::ElemwiseMultiType::Param::Mode::QADD},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- z = opr::TypeCvt::make(z, dtype::Float32());
-
- //! fuse z mannually
- auto z0 = opr::ConvBias::make(
- x, w1, b1, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- auto z1 = opr::ConvBias::make(
- z0, w2, b2, z0, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(1.2f)}),
- z2 = opr::ConvBias::make(
- z1, w3, b3, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)}),
- z4 = opr::ElemwiseMultiType::make(
- {z1, z2}, {opr::ElemwiseMultiType::Mode::QADD},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- z4 = opr::TypeCvt::make(z4, dtype::Float32());
-
- SymbolVar z_fuse;
- SymbolVar z_nonfuse;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity()
- .enable_fuse_conv_bias_with_z();
- unpack_vector(gopt::optimize_for_inference({z}, options), z_fuse);
- }
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({z4}, options),
- z_nonfuse);
- }
- auto nr_elem_multi_type =
- find_opr_num<mgb::opr::ElemwiseMultiType>(z_fuse);
- MGB_MARK_USED_VAR(nr_elem_multi_type);
- ASSERT_EQ(1u, nr_elem_multi_type);
- graph->compile({{z_fuse, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("FuseConvBiasZPass.BlockFuse_fuse.json"));
- graph->compile({{z_nonfuse, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "FuseConvBiasZPass.BlockFuse_nonfuse.json"));
-
- HostTensorND host_z_fuse, host_z_nonfuse;
- auto func =
- graph->compile({make_callback_copy(z_nonfuse, host_z_nonfuse),
- make_callback_copy(z_fuse, host_z_fuse)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_z_fuse, host_z_nonfuse);
- }
- }
- #endif
-
- //! close for cu111 ci, reopen it when bug fixed
- #if 0
- TEST(TestEnableTensorCore, ShuffleMerge) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- auto nchw2nchw4 = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp = opr::Concat::make(
- {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
- auto y0 = opr::Reshape::make(x, tshp);
- auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
- return y1;
- };
-
- auto nchw42nchw = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
- auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
- auto y1 = opr::Reshape::make(y0, tshp);
- return y1;
- };
-
- auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 64, 3, 3}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 64, 1, 1}, dtype::QuantizedS32(6.25f)),
- z = mkvar("b1", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f));
- x = nchw2nchw4(x), w = nchw2nchw4(w), b = nchw2nchw4(b), z = nchw2nchw4(z);
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(x, w, b, z, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = nchw42nchw(y);
- y = opr::TypeCvt::make(y, dtype::Float32());
-
- SymbolVar y_opt;
- SymbolVar y_no_tc;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity().enable_nchw32();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc);
- }
- auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
- ASSERT_EQ(3u, nr_dimshuffle);
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y_no_tc, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
- #endif
-
- #endif
-
- TEST(FuseConvBiasZPass, Basic) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- auto format = opr::Convolution::Param::Format::NCHW4;
-
- auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- b1 = mkvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- b2 = mkvar("b2", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f));
-
- opr::ConvBias::Param conv_bias_param;
- conv_bias_param.format = format;
- conv_bias_param.stride_h = conv_bias_param.stride_w = 1;
- conv_bias_param.pad_h = conv_bias_param.pad_w = 1;
-
- auto y = opr::ConvBias::make(x, w, b, conv_bias_param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
-
- SymbolVar y_opt;
-
- // check fuse mode
- for (auto mode : {opr::ElemwiseMultiType::Param::Mode::QADD,
- opr::ElemwiseMultiType::Param::Mode::QMUL,
- opr::ElemwiseMultiType::Param::Mode::QFUSE_ADD_RELU}) {
- auto y1 = opr::ElemwiseMultiType::make(
- {y, b1}, {mode}, OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity()
- .enable_fuse_conv_bias_with_z()
- .enable_nchw32();
- unpack_vector(gopt::optimize_for_inference({y1}, options), y_opt);
- }
- auto nr_elemwisemultitype = find_opr_num<opr::ElemwiseMultiType>(y_opt);
- if (mode == opr::ElemwiseMultiType::Param::Mode::QMUL) {
- ASSERT_NE(0u, nr_elemwisemultitype);
- } else
- ASSERT_EQ(0u, nr_elemwisemultitype);
- // fuse convbiasz and z
- if (mode == opr::ElemwiseMultiType::Param::Mode::QADD) {
- auto y2 = opr::ElemwiseMultiType::make(
- {y1, b2}, {mode},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity()
- .enable_fuse_conv_bias_with_z()
- .enable_nchw32();
- unpack_vector(gopt::optimize_for_inference({y2}, options),
- y_opt);
- }
- auto nr_elemwisemultitype =
- find_opr_num<opr::ElemwiseMultiType>(y_opt);
- ASSERT_NE(0u, nr_elemwisemultitype);
- }
- }
- }
-
- #if MGB_CUDA
- //! close for cu111 ci, reopen it when bug fixed
- #if 0
- TEST(TestGoptInference, EnableCHWN4) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 61) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 61);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
- auto mkshape = [](opr::ConvBias::Param::Format format, size_t N, size_t C,
- size_t H, size_t W) -> TensorShape {
- mgb_assert(C % 4 == 0);
- if (format == opr::ConvBias::Param::Format::NCHW4) {
- return {N, C / 4, H, W, 4};
- } else {
- mgb_assert(format == opr::ConvBias::Param::Format::NCHW);
- return {N, C, H, W};
- }
- };
-
- for (auto format : {opr::ConvBias::Param::Format::NCHW,
- opr::ConvBias::Param::Format::NCHW4}) {
- auto x = mkvar("x", mkshape(format, 32, 64, 16, 16),
- dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", mkshape(format, 64, 64, 3, 3),
- dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", mkshape(format, 1, 64, 1, 1),
- dtype::QuantizedS32(6.25f)),
- b1 = mkvar("b1", mkshape(format, 32, 64, 16, 16),
- dtype::QuantizedS8(2.5f));
- opr::ConvBias::Param param;
- param.format = format;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
-
- auto y = opr::ConvBiasForward::make(
- x, w, b, param, {},
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y1 = opr::ElemwiseMultiType::make(
- {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y2 = opr::ConvBiasForward::make(
- y, w, b, param, {},
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y3 = opr::ElemwiseMultiType::make(
- {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y4 = opr::ElemwiseMultiType::make(
- {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- y4 = opr::ElemwiseMultiType::make(
- {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- y4 = opr::TypeCvt::make(y4, dtype::Float32());
- SymbolVar y_opt;
- SymbolVar y_cudnn;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_chwn4();
- unpack_vector(gopt::optimize_for_inference({y4}, options), y_opt);
- }
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::FuseConvBiasNonlinPass>()
- .add_pass<gopt::FuseConvBiasZPass>()
- .apply({{y4}})
- .endpoint_vars(),
- y_cudnn);
-
- ASSERT_EQ(opr::ConvBias::Param::Format::CHWN4,
- find_opr<opr::ConvBias>(y_opt).param().format);
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
- }
- #endif
-
- //! close for cu111 ci, reopen it when bug fixed
- #if 0
- TEST(TestGoptInference, EnableCHWN4WarpPespective) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 61) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 61);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
- std::shared_ptr<HostTensorND> mat = std::make_shared<HostTensorND>(
- cn, TensorShape{32, 3, 3}, dtype::Float32());
- warp_perspective_mat_gen(*mat, 32, 16, 16);
- auto mat_var = opr::Host2DeviceCopy::make(*graph, mat).rename("mat");
-
- auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
-
- auto y = opr::ConvBiasForward::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
-
- opr::WarpPerspective::Param warp_param;
- warp_param.format = opr::WarpPerspective::Param::Format::NCHW4;
- auto y1 = opr::WarpPerspective::make(y, mat_var, TensorShape{16, 16},
- warp_param);
- y1 = opr::TypeCvt::make(y1, dtype::Float32());
- auto nchw42nchw = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
- auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
- auto y1 = opr::Reshape::make(y0, tshp);
- return y1;
- };
- y1 = nchw42nchw(y1);
- warp_param.format = opr::WarpPerspective::Param::Format::NCHW;
- auto y2 = opr::WarpPerspective::make(y1, mat_var, TensorShape{16, 16},
- warp_param);
- SymbolVar y_opt;
- SymbolVar y_cudnn;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_chwn4();
- unpack_vector(gopt::optimize_for_inference({y2}, options), y_opt);
- }
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::FuseConvBiasNonlinPass>()
- .add_pass<gopt::FuseConvBiasZPass>()
- .apply({{y2}})
- .endpoint_vars(),
- y_cudnn);
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
- #endif
-
- TEST(TestGoptInference, EnableCHWN4Pooling) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 61) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 61);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
-
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {32, 16, 16, 16, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
-
- auto y = opr::ConvBiasForward::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
-
- opr::Pooling::Param pool_param;
- pool_param.format = opr::Pooling::Param::Format::NCHW4;
- y = opr::Pooling::make(y, pool_param);
- y = opr::TypeCvt::make(y, dtype::Float32());
-
- auto nchw42nchw = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
- auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
- auto y1 = opr::Reshape::make(y0, tshp);
- return y1;
- };
- y = nchw42nchw(y);
- pool_param.format = opr::Pooling::Param::Format::NCHW;
- auto y1 = opr::Pooling::make(y, pool_param);
-
- SymbolVar y_opt;
- SymbolVar y_cudnn;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::FuseConvBiasNonlinPass>()
- .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
- .add_pass<gopt::FuseConvBiasZPass>()
- .apply({{y1}})
- .endpoint_vars(),
- y_opt);
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::FuseConvBiasNonlinPass>()
- .add_pass<gopt::FuseConvBiasZPass>()
- .apply({{y1}})
- .endpoint_vars(),
- y_cudnn);
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
-
- //! close for cu111 ci, reopen it when bug fixed
- #if 0
- TEST(TestGoptInference, EnableCHWN4ShuffleRemove) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 61) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 61);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- auto nchw2nchw4 = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp = opr::Concat::make(
- {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
- auto y0 = opr::Reshape::make(x, tshp);
- auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
- return y1;
- };
-
- auto nchw42nchw = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
-
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
- auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
- auto y1 = opr::Reshape::make(y0, tshp);
- return y1;
- };
-
- auto x = mkvar("x", {32, 64, 16, 16}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w1", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- b1 = mkcvar("b1", {32, 16, 16, 16, 4}, dtype::QuantizedS8{2.5f});
- x = nchw2nchw4(x);
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
-
- auto y = opr::ConvBiasForward::make(
- x, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y1 = opr::ElemwiseMultiType::make(
- {y, b1}, opr::ElemwiseMultiType::Mode::QFUSE_ADD_RELU,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y2 = opr::ConvBiasForward::make(
- y, w, b, param, {}, OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y3 = opr::ElemwiseMultiType::make(
- {y, b1}, opr::ElemwiseMultiType::Param::Mode::QSUB,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y4 = opr::ElemwiseMultiType::make(
- {y1, y2}, opr::ElemwiseMultiType::Param::Mode::QADD,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- y4 = opr::ElemwiseMultiType::make(
- {y3, y4}, opr::ElemwiseMultiType::Param::Mode::QADD,
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- y4 = opr::TypeCvt::make(y4, dtype::Float32());
- y4 = nchw42nchw(y4);
-
- SymbolVar y_opt;
- SymbolVar y_cudnn;
- unpack_vector(
- gopt::GraphOptimizer{}
- .add_pass<gopt::ParamRedistributePass>()
- .add_pass<gopt::ParamFusePass>()
- .add_pass<gopt::FuseConvBiasNonlinPass>()
- .add_pass<gopt::FuseConvBiasZPass>()
- .add_pass(gopt::EnableCHWN4Pass::make_chwn4_converter())
- .add_pass<gopt::ShuffleShuffleRemovePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{y4}})
- .endpoint_vars(),
- y_opt);
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.EnableCHWN4ShuffleRemove.json"));
- auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
- ASSERT_EQ(2u, nr_dimshuffle);
- auto nr_reformat = find_opr_num<mgb::opr::RelayoutFormat>(y_opt);
- ASSERT_EQ(0u, nr_reformat);
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::FuseConvBiasNonlinPass>()
- .add_pass<gopt::FuseConvBiasZPass>()
- .apply({{y4}})
- .endpoint_vars(),
- y_cudnn);
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y_cudnn, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
- #endif
-
- //! close for cu111 ci, reopen it when bug fixed
- #if 0
- TEST(TestGoptInference, ConvertFormatNCHW4GPU) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 61) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 61);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
- param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- // dense
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
- b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
- auto conv1 = opr::ConvBiasForward::make(
- x, w1, b1, param_conv_bias, {},
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- // group
- // icpg != 1 && ocpg != 1
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
- b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
- auto conv2 = opr::ConvBiasForward::make(
- conv1, w2, b2, param_conv_bias, {},
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
-
- auto y = opr::TypeCvt::make(conv2, dtype::Float32());
-
- SymbolVar y_opt;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
-
- ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
- find_opr<opr::ConvBias>(y_opt).param().format);
- auto nr_reshape = find_opr_num<mgb::opr::Reshape>(y_opt);
- ASSERT_EQ(2u, nr_reshape);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.ConvertFormatNCHW4GPU.json"));
-
- HostTensorND host_y, host_y_opt;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt);
- }
- #endif
-
- #endif
-
- TEST(TestGoptInference, ConvertFormatNCHW4NonConvOpr) {
- auto cn = CompNode::load("xpu0");
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
- auto mkcvarf32 = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
-
- auto x = mkvar("x", {2, 4, 16, 16}, dtype::QuantizedS8(2.5f));
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.format = opr::ConvBias::Param::Format::NCHW;
- param_conv_bias.stride_h = param_conv_bias.stride_w = 1;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- param_conv_bias.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- // dense
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- auto w1 = mkcvar("w1", {8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
- b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
- auto conv1 = opr::ConvBiasForward::make(
- x, w1, b1, param_conv_bias, {},
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- // test Resize
- auto shape_of = opr::GetVarShape::make(x);
- auto subtensor = opr::Subtensor::make(
- shape_of, {opr::Subtensor::AxisIndexer::make_interval(
- 0, x.make_scalar(2), None, x.make_scalar(1))});
- opr::Resize::Param param_resize;
- param_resize.format = opr::Resize::Param::Format::NCHW;
- auto resize = opr::ResizeForward::make(conv1, subtensor * 2, param_resize);
- // test WarpPerspective
- auto mat = mkcvarf32("mat", {2, 3, 3}),
- warp = opr::WarpPerspectiveForward::make(
- resize, mat, nullptr, cg::var_from_tensor_shape(x, {32, 32}));
- opr::Pooling::Param pool_param;
- pool_param.format = opr::Pooling::Param::Format::NCHW;
- // test Pooling
- auto pool = opr::Pooling::make(warp, pool_param);
- // group
- // icpg != 1 && ocpg != 1
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
- b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
- auto conv2 = opr::ConvBiasForward::make(
- pool, w2, b2, param_conv_bias, {},
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
-
- auto add = opr::ElemwiseMultiType::make(
- {conv1, conv2}, {opr::ElemwiseMultiType::Param::Mode::QADD},
- OperatorNodeConfig{dtype::QuantizedS8{1.2f}});
- auto y = opr::TypeCvt::make(add, dtype::Float32());
-
- SymbolVar y_opt;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
- auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt);
- ASSERT_EQ(2u, nr_dimshuffle);
- ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
- find_opr<opr::ConvBias>(y_opt).param().format);
- ASSERT_EQ(opr::ResizeForward::Param::Format::NCHW4,
- find_opr<opr::ResizeForward>(y_opt).param().format);
- ASSERT_EQ(opr::WarpPerspectiveForward::Param::Format::NCHW4,
- find_opr<opr::WarpPerspectiveForward>(y_opt).param().format);
- ASSERT_EQ(opr::PoolingForward::Param::Format::NCHW4,
- find_opr<opr::PoolingForward>(y_opt).param().format);
- }
-
- TEST(TestGoptInference, ConvertFormatNCHW4) {
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
-
- auto x = mkvar("x", {2, 4, 16, 16});
- // ConvBias test dense
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- auto w1 = mkcvar("w1", {8, 4, 3, 3}), b1 = mkcvar("b1", {1, 8, 1, 1});
- auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1});
- auto conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
- // Convolution
- opr::Convolution::Param param_conv;
- param_conv.pad_h = param_conv.pad_w = 1;
- param_conv.sparse = opr::Convolution::Param::Sparse::DENSE;
- auto w3 = mkcvar("w3", {8, 8, 3, 3});
- auto y = opr::Convolution::make(conv2, w3, param_conv);
-
- SymbolVar y_opt;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
-
- ASSERT_EQ(opr::ConvBias::Param::Format::NCHW,
- find_opr<opr::ConvBias>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ConvertFormatNCHW4.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- //! close for cu111 ci, reopen it when bug fixed
- #if 0
- TEST(TestGoptInference, ConvertFormatNCHW4Ic3) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);
- HostTensorGenerator<dtype::Float32, RandomDistribution::UNIFORM> gen{
- 1.2f, 127 * 127};
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {2, 3, 16, 16}, dtype::QuantizedS8(2.5f));
- // ConvBias test dense
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- auto w1 = mkcvar("w1", {8, 3, 3, 3}, dtype::QuantizedS8(2.5f)),
- b1 = mkcvar("b1", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
- auto conv1 =
- opr::ConvBias::make(x, w1, b1, param_conv_bias, {},
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w2 = mkcvar("w2", {2, 4, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
- b2 = mkcvar("b2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
- auto conv2 =
- opr::ConvBias::make(conv1, w2, b2, param_conv_bias, {},
- OperatorNodeConfig{dtype::QuantizedS8{2.5f}});
- auto y = opr::TypeCvt::make(conv2, dtype::Float32());
-
- SymbolVar y_opt;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
-
- ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4,
- find_opr<opr::ConvBias>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.ConvertFormatNCHW4Ic3.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
- #endif
-
- TEST(TestGoptInference, ConvertFormatNCHW88) {
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
-
- auto host_x = gen({2, 3, 16, 16}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
- //! Hybrid nchw88 mode
- opr::Convolution::Param param_conv;
- param_conv.pad_h = param_conv.pad_w = 1;
- auto w1 = mkcvar("w1", {8, 3, 3, 3}),
- conv1 = opr::Convolution::make(x, w1, param_conv, {},
- OperatorNodeConfig("conv1"));
- //! channel wise
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
- conv2 = opr::ConvBias::make(conv1, w2, b2, param_conv_bias);
- //! group
- auto w3 = mkcvar("w3", {1, 8, 8, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
- conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
-
- auto shape_of = opr::GetVarShape::make(conv3);
- auto subtensor = opr::Subtensor::make(
- shape_of, {opr::Subtensor::AxisIndexer::make_interval(
- 0, x.make_scalar(2), None, x.make_scalar(1))});
- opr::Resize::Param param_resize;
- param_resize.format = opr::Resize::Param::Format::NCHW;
- auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
- auto mat = mkcvar("mat", {2, 3, 3}),
- warp = opr::WarpPerspectiveForward::make(
- resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
-
- auto b = mkvar("b", {1, 8, 1, 1}),
- elem = opr::Elemwise::make({warp + b},
- opr::Elemwise::Param::Mode::RELU);
- //! Dense
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- auto w4 = mkcvar("w4", {2, 6, 4, 3, 3}), b4 = mkcvar("b4", {1, 12, 1, 1}),
- conv4 = opr::ConvBias::make(elem, w4, b4, param_conv_bias);
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- auto w5 = mkcvar("w5", {8, 12, 3, 3}), b5 = mkcvar("b5", {1, 8, 1, 1}),
- conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias);
- auto w6 = mkcvar("w6", {8, 8, 3, 3}), b6 = mkcvar("b6", {1, 8, 1, 1}),
- y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias);
-
- SymbolVar y_opt;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw88();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
- ASSERT_EQ(opr::ConvBias::Param::Format::NCHW88,
- find_opr<opr::Convolution>(y_opt, "conv1").param().format);
- ASSERT_EQ(opr::ConvBias::Param::Format::NCHW88,
- find_opr<opr::ConvBias>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ConvertFormatNCHW88.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
-
- *host_x = *gen({2, 3, 32, 32}, cn);
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
- }
-
- TEST(TestGoptInference, ConvertFormatNCHW44) {
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
- auto mkcvar_dtype = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- auto host_x = gen({2, 3, 16, 16}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
- //! Hybrid nchw44 mode
- opr::Convolution::Param param_conv;
- param_conv.pad_h = param_conv.pad_w = 1;
- auto w1 = mkcvar("w1", {8, 3, 3, 3}),
- conv1 = opr::Convolution::make(x, w1, param_conv, {},
- OperatorNodeConfig("conv1"));
-
- //! no supported hybrid nchw44
- opr::ConvBias::Param param_conv_bias_pad0;
- param_conv_bias_pad0.pad_h = param_conv_bias_pad0.pad_w = 0;
- auto w1_f1 = mkcvar("w1_1", {8, 3, 1, 1});
- auto conv1_f1 = opr::ConvBias::make(x, w1_f1, param_conv_bias_pad0, {},
- OperatorNodeConfig("conv1_f1"));
-
- auto conv1_add = conv1_f1 * conv1;
- auto conv_1_q8 = opr::TypeCvt::make(conv1_add, dtype::QuantizedS8(2.5f));
-
- //! s8 dense conv
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- auto w1_2 = mkcvar_dtype("w1_2", {8, 8, 3, 3}, dtype::QuantizedS8(2.5f));
- auto b1_2 = mkcvar_dtype("b1_2", {1, 8, 1, 1}, dtype::QuantizedS32(6.25f));
- auto conv_1_2 = opr::ConvBias::make(
- conv_1_q8, w1_2, b1_2, param_conv_bias, {},
- OperatorNodeConfig{"conv_1_2", cn, dtype::QuantizedS8{6.25f}});
- auto conv_1_2_fp32 = opr::TypeCvt::make(conv_1_2, dtype::Float32());
-
- //! channel wise
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
- conv2 = opr::ConvBias::make(conv_1_2_fp32, w2, b2, param_conv_bias);
- //! group
- auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
- conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
-
- auto shape_of = opr::GetVarShape::make(conv3);
- auto subtensor = opr::Subtensor::make(
- shape_of, {opr::Subtensor::AxisIndexer::make_interval(
- 0, x.make_scalar(2), None, x.make_scalar(1))});
- opr::Resize::Param param_resize;
- param_resize.format = opr::Resize::Param::Format::NCHW;
- auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
- auto mat = mkcvar("mat", {2, 3, 3}),
- warp = opr::WarpPerspectiveForward::make(
- resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
-
- auto b = mkvar("b", {1, 8, 1, 1}),
- elem = opr::Elemwise::make({warp + b},
- opr::Elemwise::Param::Mode::RELU);
- //! Dense
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- auto w3_2 = mkcvar("w3_2", {16, 8, 3, 3}),
- b3_2 = mkcvar("b3_2", {1, 16, 1, 1}),
- conv3_2 = opr::ConvBias::make(elem, w3_2, b3_2, param_conv_bias, {},
- OperatorNodeConfig("conv3_2"));
- //! s8 group conv
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto conv3_2_q8 = opr::TypeCvt::make(conv3_2, dtype::QuantizedS8(2.5f));
- auto w3_3 = mkcvar_dtype("w3_3", {4, 8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
- b3_3 = mkcvar_dtype("b3_3", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
- conv3_3_q = opr::ConvBias::make(
- conv3_2_q8, w3_3, b3_3, param_conv_bias, {},
- OperatorNodeConfig{"conv_3_3_q", cn,
- dtype::QuantizedS8{6.25f}});
- auto conv3_3 = opr::TypeCvt::make(conv3_3_q, dtype::Float32());
-
- //! Dense
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- auto w4 = mkcvar("w4", {16, 32, 3, 3}), b4 = mkcvar("b4", {1, 16, 1, 1}),
- conv4 = opr::ConvBias::make(conv3_3, w4, b4, param_conv_bias, {},
- OperatorNodeConfig("conv4"));
- auto w4_1 = mkcvar("w4_1", {16, 32, 1, 1}),
- b4_1 = mkcvar("b4_1", {2, 16, 4, 4}),
- conv4_1 =
- opr::ConvBias::make(conv3_3, w4_1, b4_1, param_conv_bias_pad0,
- {}, OperatorNodeConfig("conv4_1"));
- auto conv4_add = conv4 + conv4_1;
-
- auto w5 = mkcvar("w5", {6, 16, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
- conv5 = opr::ConvBias::make(conv4_add, w5, b5, param_conv_bias, {},
- OperatorNodeConfig("conv5"));
- auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
- y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias, {},
- OperatorNodeConfig("conv6"));
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- options.enable_nchw44();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::Convolution>(y_opt, "conv1").param().format);
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
- find_opr<opr::ConvBias>(y_opt, "conv1_f1").param().format);
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::ConvBias>(y_opt, "conv_1_2").param().format);
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::ConvBias>(y_opt, "conv3_2").param().format);
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::ConvBias>(y_opt, "conv_3_3_q").param().format);
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::ConvBias>(y_opt, "conv4").param().format);
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
- find_opr<opr::ConvBias>(y_opt, "conv5").param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.ConvertFormatNCHW44.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
-
- *host_x = *gen({2, 3, 32, 32}, cn);
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
- }
-
- TEST(TestGoptInference, ConvertFormatNCHW44MultiInput) {
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
-
- auto host_x1 = gen({1, 8, 16, 16}, cn);
- auto host_x2 = gen({1, 1, 16, 16}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
- opr::Convolution::Param param_conv;
- param_conv.pad_h = param_conv.pad_w = 1;
- auto w1 = mkcvar("w1", {8, 8, 3, 3}),
- conv1 = opr::Convolution::make(x, w1, param_conv);
-
- auto b = mkvar("b", {1, 1, 16, 16}),
- elem0 = opr::Elemwise::make({conv1 + b + b},
- opr::Elemwise::Param::Mode::RELU);
-
- auto w2 = mkcvar("w2", {8, 8, 3, 3}),
- conv2 = opr::Convolution::make(elem0, w2, param_conv);
-
- auto b1 = mkvar("b1", {1}),
- y = opr::Elemwise::make({conv2 + b1 + b},
- opr::Elemwise::Param::Mode::RELU);
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw44();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::Convolution>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.ConvertFormatNCHW44MultiInput.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
- }
-
- TEST(TestGoptInference, ConvertFormatNCHW44Reshape) {
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
-
- auto host_x1 = gen({1, 8, 16, 16}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
- opr::Convolution::Param param_conv;
- param_conv.pad_h = param_conv.pad_w = 1;
- auto w1 = mkcvar("w1", {8, 8, 3, 3}),
- conv1 = opr::Convolution::make(x, w1, param_conv);
- auto y = opr::Reshape::make(conv1, {8, 16 * 16});
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw44();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::Convolution>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.ConvertFormatNCHW44Reshape.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
- }
-
- TEST(TestGoptInference, ConvertFormatNCHW44_DOT) {
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
- auto mkcvar_dtype = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- auto host_x = gen({2, 3, 16, 16}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x);
- //! Hybrid nchw44 mode
- opr::Convolution::Param param_conv;
- param_conv.pad_h = param_conv.pad_w = 1;
- auto w1 = mkcvar("w1", {8, 3, 3, 3}),
- conv1 = opr::Convolution::make(x, w1, param_conv, {},
- OperatorNodeConfig("conv1"));
- printf("create conv1 %s\n",
- conv1.node()->owner_opr()->dyn_typeinfo()->name);
- param_conv.pad_h = param_conv.pad_w = 1;
- //! no supported hybrid nchw44
- opr::ConvBias::Param param_conv_bias_pad0;
- param_conv_bias_pad0.pad_h = param_conv_bias_pad0.pad_w = 0;
- auto b1 = mkcvar("b1", {1, 8, 1, 1});
- auto w1_f1 = mkcvar("w1_1", {8, 3, 1, 1});
- auto conv1_f1 = opr::ConvBias::make(x, w1_f1, b1, param_conv_bias_pad0, {},
- OperatorNodeConfig("conv1_f1"));
-
- //! hybrid dot
- auto x_s = opr::TypeCvt::make(x, dtype::QuantizedS8(2.5f));
- auto w1_3 = mkcvar_dtype("w1_3", {8, 3, 3, 3}, dtype::QuantizedS8(2.5f));
- auto conv1_3_q = opr::Convolution::make(
- x_s, w1_3, param_conv, {},
- OperatorNodeConfig{"conv1_3_q", cn, dtype::QuantizedS8{6.25f}});
- auto conv1_3 = opr::TypeCvt::make(conv1_3_q, dtype::Float32());
-
- auto conv1_add = conv1_f1 * conv1 * conv1_3;
- auto conv_1_q8 = opr::TypeCvt::make(conv1_add, dtype::QuantizedS8(2.5f));
-
- //! s8 dense conv
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- auto w1_2 = mkcvar_dtype("w1_2", {8, 8, 3, 3}, dtype::QuantizedS8(2.5f));
- auto conv_1_2 = opr::ConvBias::make(
- conv_1_q8, w1_2, param_conv_bias, {},
- OperatorNodeConfig{"conv_1_2", cn, dtype::QuantizedS8{6.25f}});
- auto conv_1_2_fp32 = opr::TypeCvt::make(conv_1_2, dtype::Float32());
-
- //! channel wise
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w2 = mkcvar("w2", {8, 1, 1, 3, 3}), b2 = mkcvar("b2", {1, 8, 1, 1}),
- conv2 = opr::ConvBias::make(conv_1_2_fp32, w2, b2, param_conv_bias);
- //! group
- auto w3 = mkcvar("w3", {2, 4, 4, 3, 3}), b3 = mkcvar("b3", {1, 8, 1, 1}),
- conv3 = opr::ConvBias::make(conv2, w3, b3, param_conv_bias);
-
- auto shape_of = opr::GetVarShape::make(conv3);
- auto subtensor = opr::Subtensor::make(
- shape_of, {opr::Subtensor::AxisIndexer::make_interval(
- 0, x.make_scalar(2), None, x.make_scalar(1))});
- opr::Resize::Param param_resize;
- param_resize.format = opr::Resize::Param::Format::NCHW;
- auto resize = opr::ResizeForward::make(conv3, subtensor * 2, param_resize);
- auto mat = mkcvar("mat", {2, 3, 3}),
- warp = opr::WarpPerspectiveForward::make(
- resize, mat, nullptr, cg::var_from_tensor_shape(x, {4, 4}));
-
- auto b = mkvar("b", {1, 8, 1, 1}),
- elem = opr::Elemwise::make({warp + b},
- opr::Elemwise::Param::Mode::RELU);
- //! Dense
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- auto w3_2 = mkcvar("w3_2", {16, 8, 3, 3}),
- b3_2 = mkcvar("b3_2", {1, 16, 1, 1}),
- conv3_2 = opr::ConvBias::make(elem, w3_2, b3_2, param_conv_bias, {},
- OperatorNodeConfig("conv3_2"));
- //! s8 group conv
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto conv3_2_q8 = opr::TypeCvt::make(conv3_2, dtype::QuantizedS8(2.5f));
- auto w3_3 = mkcvar_dtype("w3_3", {4, 8, 4, 3, 3}, dtype::QuantizedS8(2.5f)),
- b3_3 = mkcvar_dtype("b3_3", {1, 32, 1, 1}, dtype::QuantizedS32(6.25f)),
- conv3_3_q = opr::ConvBias::make(
- conv3_2_q8, w3_3, b3_3, param_conv_bias, {},
- OperatorNodeConfig{"conv_3_3_q", cn,
- dtype::QuantizedS8{6.25f}});
- auto conv3_3 = opr::TypeCvt::make(conv3_3_q, dtype::Float32());
-
- //! Dense
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::DENSE;
- auto w4 = mkcvar("w4", {4, 32, 3, 3}), b4 = mkcvar("b4", {1, 4, 1, 1}),
- conv4 = opr::ConvBias::make(conv3_3, w4, b4, param_conv_bias, {},
- OperatorNodeConfig("conv4"));
-
- auto w5 = mkcvar("w5", {6, 4, 3, 3}), b5 = mkcvar("b5", {1, 6, 1, 1}),
- conv5 = opr::ConvBias::make(conv4, w5, b5, param_conv_bias, {},
- OperatorNodeConfig("conv5"));
- auto w6 = mkcvar("w6", {4, 6, 3, 3}), b6 = mkcvar("b6", {1, 4, 1, 1}),
- y = opr::ConvBias::make(conv5, w6, b6, param_conv_bias, {},
- OperatorNodeConfig("conv6"));
-
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_conv_bias_nonlinearity();
- options.enable_nchw44_dot();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::Convolution>(y_opt, "conv1").param().format);
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW44_DOT,
- find_opr<opr::Convolution>(y_opt, "conv1_3_q").param().format);
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
- find_opr<opr::ConvBias>(y_opt, "conv1_f1").param().format);
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW44_DOT,
- find_opr<opr::ConvBias>(y_opt, "conv_1_2").param().format);
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::ConvBias>(y_opt, "conv3_2").param().format);
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW44_DOT,
- find_opr<opr::ConvBias>(y_opt, "conv_3_3_q").param().format);
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW44,
- find_opr<opr::ConvBias>(y_opt, "conv4").param().format);
- ASSERT_EQ(opr::Convolution::Param::Format::NCHW,
- find_opr<opr::ConvBias>(y_opt, "conv5").param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.ConvertFormatNCHW44_DOT.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
-
- *host_x = *gen({2, 3, 32, 32}, cn);
- func->execute();
- //! meybe go to winograd in x86-32, so set error 1e-1
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-1);
- }
-
- TEST(TestGoptInference, ConvertFormatCD4GroupOneConv) {
- // hwcd4 is only supported in naive handle
- NaiveMegDNNHandleScope naive_megdnn_handle;
-
- HostTensorGenerator<> gen;
- auto cn = CompNode::load("cpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp) {
- return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp) {
- return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name);
- };
-
- auto x = mkvar("x", {1, 3, 128, 128});
- // ConvBias
- opr::ConvBias::Param param_conv_bias;
- param_conv_bias.pad_h = param_conv_bias.pad_w = 1;
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- auto w1 = mkcvar("w1", {1, 16, 3, 3, 3}), b1 = mkcvar("b1", {1, 16, 1, 1});
- auto conv1 = opr::ConvBias::make(x, w1, b1, param_conv_bias);
- param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP;
- // Convolution
- opr::Convolution::Param param_conv;
- param_conv.pad_h = param_conv.pad_w = 1;
- param_conv.sparse = opr::Convolution::Param::Sparse::GROUP;
- auto w3 = mkcvar("w3", {1, 16, 16, 3, 3});
- auto y = opr::Convolution::make(conv1, w3, param_conv);
-
- SymbolVar y_opt;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nhwcd4();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
- }
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3);
- }
-
- #if MGB_CUDA
- TEST(TestGoptInference, PreProcessCase0) {
- REQUIRE_GPU(1);
- HostTensorGenerator<dtype::Quantized8Asymm, RandomDistribution::UNIFORM>
- gen(dt_quint8(0), dt_quint8(50), 1, 128, 1234);
- auto cn = CompNode::load("gpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- size_t n = 1;
- size_t c = 3;
- size_t h = 16;
- size_t w = 16;
- auto host_x1 = gen({n, c, h, w}, cn);
-
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
- auto x_q8 = opr::TypeCvt::make(x, dtype::QuantizedS8(1.f), cn);
- auto zero = DTypeScalar(dtype::QuantizedS8(1.f));
- auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
- auto pad_channel_tensor =
- opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
- auto paded_x = opr::Concat::make({x_q8, pad_channel_tensor}, 1, cn)
- .reshape({n, 1, 4, h, w});
-
- auto result = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
-
- auto y = result;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_preprocess();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.PreProcessCase0.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
-
- ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::RelayoutFormat>());
- }
-
- TEST(TestGoptInference, PreProcessCase1) {
- REQUIRE_GPU(1);
- HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
- auto cn = CompNode::load("gpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- size_t n = 1;
- size_t c = 3;
- size_t h = 16;
- size_t w = 16;
- auto host_x1 = gen({n, c, h, w}, cn);
-
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
- auto x_u8 = opr::TypeCvt::make(x, dtype::Float32(), cn);
- auto x_s8 = x_u8 - 128;
- auto zero = DTypeScalar(dtype::Float32());
- auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
- auto pad_channel_tensor =
- opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
- auto paded_x = opr::Concat::make({x_s8, pad_channel_tensor}, 1, cn)
- .reshape({n, 1, 4, h, w});
-
- auto nchw4_out = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
- auto result = opr::TypeCvt::make(nchw4_out, dtype::QuantizedS8(1.f));
-
- auto y = result;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_preprocess();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(
- output_file("TestGoptInference.PreProcessCase1.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
-
- ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::RelayoutFormat>());
- }
-
- TEST(TestGoptInference, WarpAndPreProcessCase0) {
- REQUIRE_GPU(1);
- HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
- auto cn = CompNode::load("gpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- size_t n = 1;
- size_t c = 3;
- size_t h = 16;
- size_t w = 16;
- auto host_x1 = gen({n, h, w, c}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
-
- auto mat_host = std::make_shared<HostTensorND>(cn, TensorShape{n, 3, 3},
- dtype::Float32());
- warp_perspective_mat_gen(*mat_host, n, h, w);
- auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
-
- opr::WarpPerspective::Param warp_param;
- warp_param.format = opr::WarpPerspective::Param::Format::NHWC;
- auto x_warp =
- opr::WarpPerspective::make(x, mat, TensorShape{h, w}, warp_param);
- auto x_nchw = opr::Dimshuffle::make(x_warp, {0, 3, 1, 2}, 4, cn);
-
- auto x_u8 = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
- auto x_s8 = x_u8 - 128;
- auto zero = DTypeScalar(dtype::Float32());
- auto zero_tensor = opr::ImmutableTensor::make(*graph, zero, cn);
- auto pad_channel_tensor =
- opr::Broadcast::make(zero_tensor, {n, 1, h, w}, cn);
- auto paded_x = opr::Concat::make({x_s8, pad_channel_tensor}, 1, cn)
- .reshape({n, 1, 4, h, w});
-
- auto nchw4_out = opr::Dimshuffle::make(paded_x, {0, 1, 3, 4, 2}, 5, cn);
- auto result = opr::TypeCvt::make(nchw4_out, dtype::QuantizedS8(1.f));
-
- auto y = result;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_preprocess();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::WarpPerspective>());
-
- ASSERT_EQ(opr::WarpPerspective::Param::Format::NHWC_NCHW4_IC_SMALL,
- find_opr<opr::WarpPerspective>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.WarpAndPreProcessCase0.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
- }
-
- TEST(TestGoptInference, WarpAndPreProcessCase1) {
- REQUIRE_GPU(1);
- HostTensorGenerator<dtype::Uint8, RandomDistribution::UNIFORM> gen(0, 255);
- auto cn = CompNode::load("gpu0");
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
-
- size_t n = 1;
- size_t c = 3;
- size_t h = 16;
- size_t w = 16;
- auto host_x1 = gen({n, h, w, c}, cn);
- auto x = opr::Host2DeviceCopy::make(*graph, host_x1);
-
- auto mat_host = std::make_shared<HostTensorND>(cn, TensorShape{n, 3, 3},
- dtype::Float32());
- warp_perspective_mat_gen(*mat_host, n, h, w);
- auto mat = opr::Host2DeviceCopy::make(*graph, mat_host).rename("mat");
-
- opr::WarpPerspective::Param warp_param;
- warp_param.format = opr::WarpPerspective::Param::Format::NHWC;
- auto x_warp =
- opr::WarpPerspective::make(x, mat, TensorShape{h, w}, warp_param);
- auto x_nchw = opr::Dimshuffle::make(x_warp, {0, 3, 1, 2}, 4, cn);
-
- auto result = opr::TypeCvt::make(x_nchw, dtype::Float32(), cn);
-
- auto y = result;
- SymbolVar y_opt;
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_fuse_preprocess();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_opt);
-
- ASSERT_TRUE(y_opt.node()->owner_opr()->same_type<opr::WarpPerspective>());
-
- ASSERT_EQ(opr::WarpPerspective::Param::Format::NHWC_NCHW,
- find_opr<opr::WarpPerspective>(y_opt).param().format);
-
- graph->compile({{y_opt, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.WarpAndPreProcessCase1.json"));
-
- HostTensorND host_y_opt, host_y;
- auto func = graph->compile({make_callback_copy(y, host_y),
- make_callback_copy(y_opt, host_y_opt)});
- func->execute();
- MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-5);
- }
-
- TEST(TestGoptInference, FoldingConvDimshuffle) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 61) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 61);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
- auto nchw42nchw = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp0 = opr::Concat::make({sub(0), sub(1) * 4, sub(2), sub(3)}, 0);
- auto y0 = opr::Dimshuffle::make(x, {0, 1, 4, 2, 3});
- auto y1 = opr::Reshape::make(y0, tshp0);
- return y1;
- };
-
- auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(x, w, b, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = opr::TypeCvt::make(y, dtype::Float32());
- y = nchw42nchw(y);
- SymbolVar y_fuse, y_non_fuse;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::ShuffleShuffleRemovePass>()
- .add_pass<gopt::FoldingConvBiasDimshufflePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{y}})
- .endpoint_vars(),
- y_fuse);
- gopt::modify_opr_algo_strategy_inplace(
- {y_fuse},
- opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy::PROFILE);
- graph->compile({{y_fuse, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.FoldingConvDimshuffle.json"));
- ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4_NCHW,
- find_opr<opr::ConvBias>(y_fuse).param().format);
- ASSERT_EQ(0u, find_opr_num<opr::Dimshuffle>(y_fuse));
- unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(),
- y_non_fuse);
- HostTensorND host_y_fuse, host_y_non_fuse;
- auto func =
- graph->compile({make_callback_copy(y_fuse, host_y_fuse),
- make_callback_copy(y_non_fuse, host_y_non_fuse)});
- func->execute();
- }
-
- //! close for cu111 ci, reopen it when bug fixed
- #if 0
- TEST(TestGoptInference, FoldingConvDimshuffleNCHW4NCHW32) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 61) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 61);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
- auto nchw42nchw32 = [](SymbolVar x) {
- auto xshp = opr::GetVarShape::make(x);
- auto cv = [&x](int v) { return x.make_scalar(v); };
- auto sub = [&xshp, &cv](int idx) {
- return opr::IndexAt::make(xshp, {{0, cv(idx)}});
- };
- auto tshp0 = opr::Concat::make(
- {sub(0), sub(1) / 8, cv(8), sub(2), sub(3), sub(4)}, 0),
- tshp1 = opr::Concat::make(
- {sub(0), sub(1) / 8, sub(2), sub(3), sub(4) * 8}, 0);
- auto y0 = opr::Reshape::make(x, tshp0);
- auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2, 5});
- auto y2 = opr::Reshape::make(y1, tshp1);
- return y2;
- };
-
- auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(x, w, b, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = nchw42nchw32(y);
- y = opr::TypeCvt::make(y, dtype::Float32());
- SymbolVar y_fuse, y_non_fuse;
- unpack_vector(gopt::GraphOptimizer{}
- .add_pass<gopt::FoldingConvBiasDimshufflePass>()
- .add_pass<gopt::ParamFusePass>()
- .apply({{y}})
- .endpoint_vars(),
- y_fuse);
- gopt::modify_opr_algo_strategy_inplace(
- {y_fuse},
- opr::mixin::AlgoChooserHelper::ExecutionPolicy::Strategy::PROFILE);
- graph->compile({{y_fuse, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.FoldingConvDimshuffleNCHW4NCHW32.json"));
- ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4_NCHW32,
- find_opr<opr::ConvBias>(y_fuse).param().format);
- ASSERT_EQ(0u, find_opr_num<opr::Dimshuffle>(y_fuse));
- unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(),
- y_non_fuse);
- HostTensorND host_y_fuse, host_y_non_fuse;
- auto func =
- graph->compile({make_callback_copy(y_fuse, host_y_fuse),
- make_callback_copy(y_non_fuse, host_y_non_fuse)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
- }
- #endif
-
- #if CUDA_VERSION >= 10020
- TEST(TestGoptInference, FoldingConvDimshuffleNCHW32NCHW4) {
- REQUIRE_GPU(1);
- auto cn = CompNode::load("gpu0");
- cn.activate();
- auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop;
- auto sm_ver = prop.major * 10 + prop.minor;
- if (sm_ver < 75) {
- printf("This testcast ignored due to insufficient cuda cap(got: %d, "
- "expected: %d)\n",
- sm_ver, 75);
- return;
- }
-
- HostTensorGenerator<dtype::Int8> gen;
- auto graph = ComputingGraph::make();
- graph->options().graph_opt_level = 0;
- auto mkvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
- dtype);
- };
- auto mkcvar = [&](const char* name, const TensorShape& shp,
- const DType& dtype) {
- return opr::TypeCvt::make(
- opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
- .rename(name),
- dtype);
- };
-
- auto x = mkvar("x", {32, 16, 4, 8, 4}, dtype::QuantizedS8(2.5f)),
- w = mkcvar("w", {64, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b = mkcvar("b", {1, 16, 1, 1, 4}, dtype::QuantizedS32(6.25f)),
- w1 = mkcvar("w1", {16, 16, 3, 3, 4}, dtype::QuantizedS8(2.5f)),
- b1 = mkcvar("b1", {1, 4, 1, 1, 4}, dtype::QuantizedS32(6.25f));
- opr::ConvBias::Param param;
- param.format = opr::ConvBias::Param::Format::NCHW4;
- param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
-
- auto y = opr::ConvBias::make(x, w, b, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- param.stride_h = param.stride_w = 1;
- y = opr::ConvBias::make(y, w1, b1, param, {},
- OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
- y = opr::TypeCvt::make(y, dtype::Float32());
- SymbolVar y_fuse, y_non_fuse;
- {
- auto options = gopt::OptimizeForInferenceOptions{};
- options.enable_nchw32().enable_fuse_conv_bias_nonlinearity();
- unpack_vector(gopt::optimize_for_inference({y}, options), y_fuse);
- }
- graph->compile({{y_fuse, {}}})
- ->to_json()
- ->writeto_fpath(output_file(
- "TestGoptInference.FoldingConvDimshuffleNCHW32NCHW4.json"));
- ASSERT_EQ(1u, find_opr_num<opr::Dimshuffle>(y_fuse));
- bool found = false;
- cg::DepOprIter{[&found](cg::OperatorNodeBase* opr) {
- if (!found && opr->same_type<opr::ConvBias>()) {
- opr::ConvBias* cb = &opr->cast_final_safe<opr::ConvBias>();
- if (cb->param().format ==
- opr::ConvBias::Param::Format::NCHW32_NCHW4)
- found = true;
- }
- }}
- .add(y_fuse.node()->owner_opr());
- EXPECT_TRUE(found);
- unpack_vector(gopt::GraphOptimizer{}.apply({{y}}).endpoint_vars(),
- y_non_fuse);
- HostTensorND host_y_fuse, host_y_non_fuse;
- auto func =
- graph->compile({make_callback_copy(y_fuse, host_y_fuse),
- make_callback_copy(y_non_fuse, host_y_non_fuse)});
- func->execute();
- MGB_ASSERT_TENSOR_EQ(host_y_fuse, host_y_non_fuse);
- }
- #endif
- #endif
-
- // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
|