|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466 |
- /**
- * \file dnn/test/arm_common/conv_bias_multi_thread.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
- #include "test/arm_common/fixture.h"
- #include "test/common/benchmarker.h"
- #include "test/common/conv_bias.h"
-
- using namespace megdnn;
- using namespace test;
- using namespace conv_bias;
-
- std::vector<conv_bias::TestArg> get_int8_quint8_conv_bias_args(
- std::vector<size_t> kernel, size_t stride, bool no_pad, bool no_bias,
- bool no_nonlinemode) {
- using namespace conv_bias;
- using Param = param::ConvBias;
- using NLMode = param::ConvBias::NonlineMode;
- std::vector<TestArg> args;
-
- auto pack = [&](size_t n, size_t oc, size_t ic, size_t w, size_t h,
- size_t kernel, size_t stride, NLMode nlmode) {
- Param param;
- param.stride_h = stride;
- param.stride_w = stride;
- if (!no_pad) {
- param.pad_h = kernel / 2;
- param.pad_w = kernel / 2;
- } else {
- param.pad_h = 0;
- param.pad_w = 0;
- }
- param.nonlineMode = nlmode;
-
- args.emplace_back(param, TensorShape{n, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- if (!no_bias) {
- args.emplace_back(param, TensorShape{n, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- }
- };
-
- std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
- if (!no_nonlinemode) {
- nonlinemode.emplace_back(NLMode::RELU);
- nonlinemode.emplace_back(NLMode::H_SWISH);
- }
-
- for (size_t n : {1, 2}) {
- for (auto nlmode : nonlinemode) {
- for (size_t ic : {1, 3, 7}) {
- for (size_t oc : {1, 3, 7}) {
- for (size_t size : {4, 6, 8, 14, 16, 18}) {
- for (size_t kern : kernel) {
- pack(n, oc, ic, size, size, kern, stride, nlmode);
- }
- }
- }
- }
- }
- }
- return args;
- }
- std::vector<conv_bias::TestArg> get_nchw44_conv_bias_args(
- std::vector<size_t> kernel_vec, size_t stride, bool no_pad = false,
- bool no_bias = false, bool no_nonlinemode = false,
- bool is_input_nchw = false, bool support_full_bias = false) {
- using namespace conv_bias;
- using NLMode = param::ConvBias::NonlineMode;
- std::vector<TestArg> args;
-
- auto pack = [&](size_t n, size_t oc, size_t ic, size_t h, size_t w,
- size_t kernel, size_t stride, size_t group, NLMode nlmode,
- megdnn::BiasMode bias_mode, int any_pad = -1) {
- constexpr int pack_c = 4;
- const size_t pad = any_pad >= 0 ? any_pad : kernel / 2;
- auto oc_per_group = oc / group;
- auto ic_per_group = ic / group;
- bool ok_group = (oc % group == 0 && ic % group == 0) &&
- oc_per_group % pack_c == 0 && oc_per_group > 0 &&
- ic_per_group > 0;
- bool nchw_disable = group > 1 || ic_per_group >= 4;
- bool nchw44_disable = ic_per_group % pack_c != 0;
- bool invalid_pad = (w + 2 * pad < kernel) || (h + 2 * pad < kernel);
- if (!(ok_group) || invalid_pad) {
- return;
- }
- if ((is_input_nchw && nchw_disable) ||
- (!is_input_nchw && nchw44_disable)) {
- return;
- }
-
- size_t kernel_h = kernel;
- size_t kernel_w = kernel;
- param::ConvBias param;
- param.format = param::ConvBias::Format::NCHW44;
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = pad;
- param.pad_w = pad;
- param.nonlineMode = nlmode;
-
- auto src_tensor_shape = TensorShape{n, ic / pack_c, h, w, pack_c};
- auto weight_tensor_shape = TensorShape{
- oc / pack_c, ic / pack_c, kernel_h, kernel_w, pack_c, pack_c};
- auto bias_tensor_shape = TensorShape{};
- if (bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
- bias_tensor_shape = {1, oc / pack_c, 1, 1, pack_c};
- } else if (bias_mode == megdnn::BiasMode::BIAS) {
- bias_tensor_shape = {n, oc / pack_c,
- (h + 2 * pad - kernel) / stride + 1,
- (w + 2 * pad - kernel) / stride + 1, pack_c};
- }
- if (group == 1) {
- param.sparse = param::ConvBias::Sparse::DENSE;
- } else if (group > 1 && ic / group == 1 && oc / group == 1) {
- megdnn_assert(0, "not support channel wise");
- param.sparse = param::ConvBias::Sparse::GROUP;
- weight_tensor_shape = TensorShape{group / pack_c, 1, 1,
- kernel_h, kernel_w, pack_c};
- } else if (group > 1 && oc_per_group % pack_c == 0 && oc / group > 0 &&
- ic_per_group % pack_c == 0 && ic / group > 0) {
- param.sparse = param::ConvBias::Sparse::GROUP;
- weight_tensor_shape = TensorShape{group,
- oc_per_group / pack_c,
- ic_per_group / pack_c,
- kernel_h,
- kernel_w,
- pack_c,
- pack_c};
- }
- if (is_input_nchw) {
- src_tensor_shape = TensorShape{n, ic, h, w};
- weight_tensor_shape =
- TensorShape{oc / pack_c, kernel_h, kernel_w, ic, pack_c};
- }
- args.emplace_back(param, src_tensor_shape, weight_tensor_shape,
- bias_tensor_shape);
- };
-
- std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
- if (!no_nonlinemode) {
- nonlinemode.emplace_back(NLMode::RELU);
- nonlinemode.emplace_back(NLMode::H_SWISH);
- }
-
- std::vector<megdnn::BiasMode> bias_mode = {
- megdnn::BiasMode::BROADCAST_CHANNEL_BIAS};
- if (no_bias) {
- bias_mode.emplace_back(megdnn::BiasMode::NO_BIAS);
- }
- if (support_full_bias) {
- bias_mode.emplace_back(megdnn::BiasMode::BIAS);
- }
- for (auto bias : bias_mode)
- for (auto nlmode : nonlinemode)
- for (size_t n : {1, 2})
- for (size_t kernel : kernel_vec)
- for (size_t oc : {4, 12, 32})
- for (size_t ic : {1, 3, 4, 12, 32})
- for (size_t h : {3, 5, 12})
- for (size_t w : {7, 16, 23}) {
- for (size_t group = 1;
- group <= std::min(oc, ic); ++group) {
- pack(n, oc, ic, h, w, kernel, stride,
- group, nlmode, bias);
- }
- }
- return args;
- }
-
- std::vector<conv_bias::TestArg> get_int8_quint8_nchw44_channel_wise_args(
- std::vector<size_t> kernel, size_t stride, bool no_bias,
- bool no_nonlinemode) {
- using namespace conv_bias;
- using Param = param::ConvBias;
- using NLMode = param::ConvBias::NonlineMode;
- std::vector<TestArg> args;
-
- auto pack = [&](size_t n, size_t group, size_t w, size_t h, size_t kernel,
- size_t stride, NLMode nlmode, bool pad) {
- Param param;
- param.stride_h = stride;
- param.stride_w = stride;
- if (pad) {
- param.pad_h = kernel / 2;
- param.pad_w = kernel / 2;
- } else {
- param.pad_h = 0;
- param.pad_w = 0;
- }
- param.nonlineMode = nlmode;
- param.format = param::ConvBias::Format::NCHW44;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- args.emplace_back(param, TensorShape{n, group, h, w, 4},
- TensorShape{group, 1, 1, kernel, kernel, 4},
- TensorShape{});
- if (!no_bias) {
- args.emplace_back(param, TensorShape{n, group, h, w, 4},
- TensorShape{group, 1, 1, kernel, kernel, 4},
- TensorShape{1, group, 1, 1, 4});
- }
- };
-
- std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
- if (!no_nonlinemode) {
- nonlinemode.emplace_back(NLMode::RELU);
- nonlinemode.emplace_back(NLMode::H_SWISH);
- }
- for (size_t n : {1, 2}) {
- for (auto nlmode : nonlinemode) {
- for (bool pad : {true}) {
- for (size_t group : {1, 2, 4, 7, 128}) {
- for (size_t size : {4, 5, 6, 7, 8, 9, 10, 15, 40}) {
- for (size_t kern : kernel) {
- pack(n, group, size, size, kern, stride, nlmode,
- pad);
- }
- }
- }
- }
- for (bool pad : {false}) {
- for (size_t group : {1, 2, 7, 128}) {
- for (size_t size : {7, 8, 9, 10, 15, 40}) {
- for (size_t kern : kernel) {
- pack(n, group, size, size, kern, stride, nlmode,
- pad);
- }
- }
- }
- }
- }
- }
- return args;
- }
-
- void checker_conv_bias_qint8x8x8(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- #if MEGDNN_ARMV7
- checker.set_epsilon(1);
- #endif
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(0.41113496f))
- .set_dtype(1, dtype::QuantizedS8(0.01887994f))
- .set_dtype(2, dtype::QuantizedS32(0.41113496f * 0.01887994f))
- .set_dtype(4, dtype::QuantizedS8(0.49550694f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
- void checker_conv_bias_qint8x8x32(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- Checker<ConvBias> checker(handle);
-
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, {});
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
- void checker_conv_bias_quint8x8x8(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- UniformIntRNG rng(0, 255);
- checker.set_dtype(0, dtype::Quantized8Asymm(0.2f, 100))
- .set_dtype(1, dtype::Quantized8Asymm(0.2f, 120))
- .set_dtype(2, dtype::QuantizedS32(0.04f))
- .set_dtype(4, dtype::Quantized8Asymm(1.4f, 110))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
- void checker_conv_bias_quint8x8x32(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
-
- NormalRNG rng(128.f);
- checker.set_rng(0, &rng).set_rng(1, &rng);
- checker.set_dtype(0, dtype::Quantized8Asymm(1.2f, (uint8_t)127))
- .set_dtype(1, dtype::Quantized8Asymm(1.3f, (uint8_t)129))
- .set_dtype(2, dtype::QuantizedS32(1.2 * 1.3))
- .set_dtype(4, {});
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
- void checker_conv_bias_int8x8x32_multi(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- checker.set_dtype(0, dtype::Int8());
- checker.set_dtype(1, dtype::Int8());
- checker.set_dtype(2, dtype::Int32());
- checker.set_dtype(4, dtype::Int32());
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
-
- /**********************************F32 direct************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_LARGE_GROUP) {
- check_conv_bias(
- get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
- handle(), "F32DIRECT_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_SMALL_GROUP) {
- check_conv_bias(
- get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
- handle(), "F32DIRECT_SMALL_GROUP");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S2) {
- check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false,
- false, false, true),
- handle(), "F32_CONV_NCHW44_DIRECT_S2");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR1_LARGE_GROUP) {
- check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
- handle(), "F32STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR1_SMALL_GROUP) {
- check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
- handle(), "F32STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR2_LARGE_GROUP) {
- check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
- handle(), "F32STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR2_SMALL_GROUP) {
- check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
- handle(), "F32STRD2_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_NCHW_NCHW44_F32) {
- check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false,
- false, true),
- handle(), "F32_CONV_NCHW_NCHW44");
- }
- /**********************************F16 direct************************/
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_LARGE_GROUP) {
- NormalRNG rng(1);
- checker_conv_bias_f16(
- get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
- handle(), rng, "F16DIRECT_LARGE_GROUP", 0.03);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_SMALL_GROUP) {
- NormalRNG rng(1);
- checker_conv_bias_f16(
- get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
- handle(), rng, "F16DIRECT_SMALL_GROUP", 0.03);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_STR1_LARGE_GROUP) {
- NormalRNG rng(1);
- checker_conv_bias_f16(get_conv_bias_args({2, 3, 5}, 1, false, false, false),
- handle(), rng, "F16STRD1_LARGE_GROUP", 0.03);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_STR1_SMALL_GROUP) {
- NormalRNG rng(1);
- checker_conv_bias_f16(get_conv_bias_args({2, 3, 5}, 1, false, false, false),
- handle(), rng, "F16STRD1_SMALL_GROUP", 0.03);
- }
- #endif
-
- /**********************************algo 8816 direct************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_DIRECT_LARGE_GROUP) {
- checker_conv_bias_int8x8x16(
- get_conv_bias_args({2, 3, 5}, 1, false, true, true), handle(),
- "I8816DIRECT_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_DIRECT_SMALL_GROUP) {
- checker_conv_bias_int8x8x16(
- get_conv_bias_args({2, 3, 5}, 1, false, true, true), handle(),
- "I8816DIRECT_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_STRIDE2_LARGE_GROUP) {
- checker_conv_bias_int8x8x16(
- get_conv_bias_args({2, 3, 5}, 2, false, true, true), handle(),
- "I8816STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_STRIDE2_SMALL_GROUP) {
- checker_conv_bias_int8x8x16(
- get_conv_bias_args({2, 3, 5}, 2, false, true, true), handle(),
- "I8816STRD2_SMALL_GROUP");
- }
-
- /**********************************algo 8-8-32 direct************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE1_LARGE_GROUP) {
- checker_conv_bias_int8x8x32_multi(
- get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
- "S8STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE1_SMALL_GROUP) {
- checker_conv_bias_int8x8x32_multi(
- get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
- "S8STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE2_LARGE_GROUP) {
- checker_conv_bias_int8x8x32_multi(
- get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
- "S8STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE2_SMALL_GROUP) {
- checker_conv_bias_int8x8x32_multi(
- get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
- "S8STRD2_SMALL_GROUP");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_INT8_INT8_INT32_CHANNEL_WISE_DIRECT1_NCHW44) {
- checker_conv_bias_int8x8x32_multi(
- get_int8_quint8_nchw44_channel_wise_args({2, 3, 5}, 1, false, true),
- handle(), "S8_CHAN_WISE_STRD1_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_INT8_INT8_INT32_CHANNEL_WISE_DIRECT2_NCHW44) {
- checker_conv_bias_int8x8x32_multi(
- get_int8_quint8_nchw44_channel_wise_args({2, 3, 5}, 2, false, true),
- handle(), "S8_CHAN_WISE_STRD2_NCHW44");
- }
-
- /********************************qint8 direct******************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_LARGE_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "S8STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_SMALL_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "S8STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_LARGE_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 2, false, false, false),
- handle(), "S8STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_SMALL_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 2, false, false, false),
- handle(), "S8STRD2_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_NCHW44) {
- checker_conv_bias_qint8x8x8(
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
- handle(), "S8_NCHW44_DIRECT_STRD1");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_NCHW44) {
- checker_conv_bias_qint8x8x8(
- get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
- handle(), "S8_NCHW44_DIRECT_STRD2");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QS8_CHANNEL_WISE_DIRECT1_NCHW44) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_nchw44_channel_wise_args(
- {2, 3, 5}, 1, false, false),
- handle(), "S8_CHAN_WISE_STRD1_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QS8_CHANNEL_WISE_DIRECT2_NCHW44) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_nchw44_channel_wise_args(
- {2, 3, 5}, 2, false, false),
- handle(), "S8_CHAN_WISE_STRD2_NCHW44");
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_NCHW_NCHW44) {
- checker_conv_bias_qint8x8x8(
- get_nchw44_conv_bias_args({3, 5, 7}, 2, false, false, false, true),
- handle(), "S8_CONV_NCHW_NCHW44");
- }
-
- /*****************************quint8 direct****************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE1_LARGE_GROUP) {
- checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "QU8STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE1_SMALL_GROUP) {
- checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "QU8STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE2_LARGE_GROUP) {
- checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 2, false, false, false),
- handle(), "QU8STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE2_SMALL_GROUP) {
- checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 2, false, false, false),
- handle(), "QU8STRD2_SMALL_GROUP");
- }
-
- /****************************dot qint8 direct*************************/
- #if __ARM_FEATURE_DOTPROD
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_INT8_STRIDE1_WITHDOTPROD_LARGE_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "ARMDOTS8STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_INT8_STRIDE1_WITHDOTPROD_SMALL_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "ARMDOTS8STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_INT8_STRIDE2_WITHDOTPROD_LARGE_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 2, false, false, false),
- handle(), "ARMDOTS8STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_INT8_STRIDE2_WITHDOTPROD_SMALL_GROUP) {
- checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 2, false, false, false),
- handle(), "ARMDOTS8STRD2_SMALL_GROUP");
- }
-
- /****************************dot 8-8-32 direct*************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD1_WITHDOT_LARGE_GROUP) {
- checker_conv_bias_qint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
- "ARMDOTS8STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD1_WITHDOT_SMALL_GROUP) {
- checker_conv_bias_qint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
- "ARMDOTS8STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD2_WITHDOT_LARGE_GROUP) {
- checker_conv_bias_qint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
- "ARMDOTS8STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD2_WITHDOT_SMALL_GROUP) {
- checker_conv_bias_qint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
- "ARMDOTS8STRD2_SMALL_GROUP");
- }
- /******************************dot quint8*****************************/
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_QUINT8_STRIDE1_WITHDOTPROD_LARGE_GROUP) {
- checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "ARMDOTU8STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_QUINT8_STRIDE1_WITHDOTPROD_SMALL_GROUP) {
- checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
- {2, 3, 5, 7}, 1, false, false, false),
- handle(), "ARMDOTU8STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_QUINT8_STRIDE2_WITHDOTPROD_LARGE_GROUP) {
- checker_conv_bias_quint8x8x8(
- get_int8_quint8_conv_bias_args({2, 5, 7}, 2, false, false, false),
- handle(), "ARMDOTU8STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_QUINT8_STRIDE2_WITHDOTPROD_SMALL_GROUP) {
- checker_conv_bias_quint8x8x8(
- get_int8_quint8_conv_bias_args({2, 5, 7}, 2, false, false, false),
- handle(), "ARMDOTU8STRD2_SMALL_GROUP");
- }
-
- /******************************dot quint8x8x32***********************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE1_LARGE_GROUP) {
- checker_conv_bias_quint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
- "ARMDOTU8STRD1_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE1_SMALL_GROUP) {
- checker_conv_bias_quint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
- "ARMDOTU8STRD1_SMALL_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE2_LARGE_GROUP) {
- checker_conv_bias_quint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
- "ARMDOTU8STRD2_LARGE_GROUP");
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE2_SMALL_GROUP) {
- checker_conv_bias_quint8x8x32(
- get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
- "ARMDOTU8STRD2_SMALL_GROUP");
- }
- #endif
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F23_4) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args();
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("4:2:32", checker, args, param::MatrixMul::Format::MK4);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(3);
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("1:6:32", checker, args);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args();
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("4:6:32", checker, args, param::MatrixMul::Format::MK4);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F54) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(4);
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("1:5:32", checker, args);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F45) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(5);
- Checker<ConvBiasForward> checker(handle());
-
- check_winograd("1:4:32", checker, args);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(3);
-
- Checker<ConvBiasForward> checker(handle());
-
- auto extra_impl = [](const TensorNDArray& tensors, uint32_t m,
- param::ConvBias param, Handle* handle) {
- megdnn_assert(param.format == param::ConvBias::Format::NCHW);
- auto winograd_preprocess_opr =
- handle->create_operator<WinogradFilterPreprocess>();
- winograd_preprocess_opr->param().output_block_size = m;
- TensorLayout filter_transform_layout;
- winograd_preprocess_opr->deduce_layout(tensors[1].layout,
- filter_transform_layout);
- size_t winograd_preprocess_workspace_in_bytes =
- winograd_preprocess_opr->get_workspace_in_bytes(
- tensors[1].layout, filter_transform_layout);
-
- auto conv_bias_opr = handle->create_operator<ConvBias>();
- conv_bias_opr->param() = param;
- conv_bias_opr->param().format = param::ConvBias::Format::NCHW_WINOGRAD;
- conv_bias_opr->param().output_block_size = m;
- size_t conv_bias_workspace_in_bytes =
- conv_bias_opr->get_workspace_in_bytes(
- tensors[0].layout, filter_transform_layout,
- tensors[2].layout, tensors[3].layout,
- tensors[4].layout, nullptr);
-
- WorkspaceBundle wb(nullptr, {filter_transform_layout.span().dist_byte(),
- conv_bias_workspace_in_bytes,
- winograd_preprocess_workspace_in_bytes});
- wb.set(malloc(wb.total_size_in_bytes()));
-
- TensorND filter_transform_tensor(wb.get(0),
- std::move(filter_transform_layout));
- winograd_preprocess_opr->exec(tensors[1], filter_transform_tensor,
- wb.get_workspace(2));
- conv_bias_opr->exec(tensors[0], filter_transform_tensor, tensors[2],
- tensors[3], tensors[4], nullptr,
- wb.get_workspace(1));
-
- free(wb.ptr());
- };
-
- auto run = [&checker, &extra_impl](
- Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- const float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(extra_impl,
- std::placeholders::_1, m,
- arg.param, handle));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
- run(handle(), args, {6}, dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32(), 1e-3f);
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng);
- run(handle(), args, {6}, dtype::Float16(), dtype::Float16(),
- dtype::Float16(), dtype::Float16(), 0.35f);
- #endif
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_1) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_first_half(args.begin(),
- args.begin() + args.size() / 2);
- run(handle(), args_first_half, {2, 6}, dtype::Float32{}, dtype::Float32{},
- dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4,
- 1e-3f);
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_2) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_second_half(args.begin() + args.size() / 2,
- args.end());
- run(handle(), args_second_half, {2, 6}, dtype::Float32{}, dtype::Float32{},
- dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4,
- 1e-3f);
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F16) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng);
- run(handle(), args, {2}, dtype::Float16{}, dtype::Float16{},
- dtype::Float16{}, dtype::Float16{}, param::MatrixMul::Format::MK8,
- 0.25);
- }
- #endif
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_INT8) {
- using namespace conv_bias;
-
- Checker<ConvBiasForward> checker(handle());
- auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- param::MatrixMul::Format format, float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(
- winograd_algo_extra_impl, std::placeholders::_1, m,
- arg.param, handle, format));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
-
- #if MEGDNN_AARCH64
- const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
- #else
- const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
- #endif
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD:%s:8:2:32", matmul_name).c_str()));
-
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> quantized_args =
- get_quantized_winograd_mk_packed_args(8);
- UniformIntRNG int_rng{-50, 50};
- checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
- run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f),
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),
- dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3);
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F23) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args();
- Checker<ConvBiasForward> checker(handle());
- check_winograd_fp16("1:2:32", checker, args, NULL, 0.08);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F45_1) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(5);
- std::vector<TestArg> args_head_half(args.begin(),
- args.begin() + args.size() / 2);
- Checker<ConvBiasForward> checker(handle());
- //! fp16 range -1.0 ~ 1.0
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("1:4:32", checker, args_head_half, rng, 0.25);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F45_2) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(5);
- std::vector<TestArg> args_back_half(args.begin() + args.size() / 2,
- args.end());
- Checker<ConvBiasForward> checker(handle());
- //! fp16 range -1.0 ~ 1.0
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("1:4:32", checker, args_back_half, rng, 0.25);
- }
- //! FIXME: This test may be failed if run `ARM_COMMON.CONV_BIAS_WINOGRAD*`, but
- //! it will pass when run single testcase
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F63) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_args(3);
- Checker<ConvBiasForward> checker(handle());
- //! fp16 range -1.0 ~ 1.0
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("1:6:32", checker, args, rng, 0.3);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_8x8_1) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_head_half(args.begin(),
- args.begin() + args.size() / 2);
- Checker<ConvBiasForward> checker(handle());
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("8:2:32", checker, args_head_half, rng, 0.25,
- param::MatrixMul::Format::MK8);
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_8x8_2) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_packed_args(8);
- std::vector<TestArg> args_back_half(args.begin() + args.size() / 2,
- args.end());
- Checker<ConvBiasForward> checker(handle());
- Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
- check_winograd_fp16("8:2:32", checker, args_back_half, rng, 0.25,
- param::MatrixMul::Format::MK8);
- }
- #endif
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_INT8_8X8) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_quantized_winograd_mk_packed_args(8);
- Checker<ConvBiasForward> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- check_winograd("8:2:32", checker, args, param::MatrixMul::Format::MK8);
- }
-
- void checker_conv_bias(std::vector<conv_bias::TestArg> args, Handle* handle,
- RNG* rng, float epsilon, DType type0, DType type1,
- DType type2, DType type3, const char* algo_name) {
- using namespace conv_bias;
-
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- checker.set_dtype(0, type0);
- checker.set_dtype(1, type1);
- checker.set_dtype(2, type2);
- checker.set_dtype(4, type3);
- checker.set_epsilon(epsilon);
- if (NULL != rng) {
- checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng).set_rng(3, rng);
- }
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- // clang-format off
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE2) {
- #define cb(name) \
- check_conv_bias( \
- get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 2, false, false, false), \
- handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F32K8X12X1")
- cb("IM2COLMATMUL:AARCH64_F32K4X16X1")
- cb("IM2COLMATMUL:FB_F32_K8X12X1")
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_F32")
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE1) {
- #define cb(name) \
- check_conv_bias( \
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false), \
- handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F32K8X12X1")
- cb("IM2COLMATMUL:AARCH64_F32K4X16X1")
- cb("IM2COLMATMUL:FB_F32_K8X12X1")
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_F32")
- cb("IM2COLMATMUL:FB_F32_K8X12X1")
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias(get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
- false, true, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name); \
- checker_conv_bias( \
- get_conv_bias_args({1}, 2, false, false, false, true, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
-
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8");
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16");
- #endif
- #elif MEGDNN_ARMV7
- epsilon = 1;
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8");
- #endif
- #undef cb
- }
- // clang-format on
- #if MEGDNN_AARCH64 || MEGDNN_ARMV7
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDASYM) {
- NormalRNG rng(128.f);
-
- #define cb(name) \
- checker_conv_bias(get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
- false, true, true), \
- handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), \
- dtype::Quantized8Asymm(50.3f, (uint8_t)120), name); \
- checker_conv_bias( \
- get_conv_bias_args({1}, 2, false, false, false, true, true), \
- handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), \
- dtype::Quantized8Asymm(50.3f, (uint8_t)120), name);
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8");
- #endif
- #elif MEGDNN_ARMV7
- epsilon = 1;
- cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8");
- #endif
- #undef cb
- }
- #endif
-
- #if MEGDNN_AARCH64 || MEGDNN_ARMV7
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUINT8x8x32) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- checker_conv_bias( \
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \
- handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), {}, name); \
- checker_conv_bias(get_conv_bias_args({1}, 2, false, true, true), handle(), \
- &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), {}, name);
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8");
- #endif
- #elif MEGDNN_ARMV7
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH32_QUINT8_K4X8X4");
- #endif
- cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8");
- #endif
- #undef cb
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COLMATMUL_INT8x8x16) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- checker_conv_bias( \
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \
- handle(), &rng, epsilon, dtype::Int8{}, dtype::Int8{}, \
- dtype::Int16{}, dtype::Int16{}, name); \
- checker_conv_bias(get_conv_bias_args({1}, 2, false, true, true), handle(), \
- &rng, epsilon, dtype::Int8{}, dtype::Int8{}, \
- dtype::Int16{}, dtype::Int16{}, name);
-
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X16_K8X8X8");
- cb("IM2COLMATMUL:AARCH64_INT8X8X16_K4X4X16");
- cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16");
- cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X8X8");
- cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X2X16");
- #endif
- #undef cb
- }
- #endif
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP16) {
- using namespace conv_bias;
-
- param::ConvBias cur_param;
-
- std::vector<conv_bias::TestArg> args =
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false);
- std::vector<conv_bias::TestArg> args1 =
- get_conv_bias_args({1}, 2, false, false, false);
- args.insert(args.begin(), args1.begin(), args1.end());
-
- NormalRNG rng(1);
- #define cb(name) \
- checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{}, \
- dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, \
- name);
-
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_F16_K8X24X1");
- #elif MEGDNN_ARMV7
- cb("IM2COLMATMUL:AARCH32_F16_K4X16X1");
- #endif
- #undef cb
- }
- #endif
-
- void checker_conv_bias_mul_int8x8x32(std::vector<conv_bias::TestArg> args,
- Handle* handle, const char* algo_name) {
- using namespace conv_bias;
-
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- checker.set_dtype(0, dtype::Int8());
- checker.set_dtype(1, dtype::Int8());
- checker.set_dtype(2, dtype::Int32());
- checker.set_dtype(4, dtype::Int32());
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
- }
-
- UniformIntRNG rng{-50, 50};
- for (auto&& arg : args) {
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, {})
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, {}, {}, {}});
- }
- }
-
- #if MEGDNN_AARCH64 || MEGDNN_ARMV7
- #if !__ARM_FEATURE_DOTPROD
- TEST_F(ARM_COMMON, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true);
-
- #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_MULTI) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true);
-
- #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
-
- #undef cb
- }
-
- TEST_F(ARM_COMMON, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias(get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_MULTI) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias(get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #else
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
- #endif
- #undef cb
- }
-
- #if MEGDNN_AARCH64
- TEST_F(ARM_COMMON_MULTI_THREADS,
- CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_FUSE) {
- UniformIntRNG rng{-50, 50};
-
- #define cb(name) \
- checker_conv_bias(get_nchw44_conv_bias_args({3}, 1), handle(), &rng, \
- epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- float epsilon = 0.001;
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
- #undef cb
- }
- #endif
-
- #endif
- #endif
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true);
- std::vector<conv_bias::TestArg> args1 =
- get_conv_bias_args({1}, 2, false, true, true);
- args.insert(args.begin(), args1.begin(), args1.end());
-
- #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD");
- #else
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8");
- cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16");
- #endif
- #elif MEGDNN_ARMV7
- #if __ARM_FEATURE_DOTPROD
- cb("IM2COLMATMUL:AARCH32_INT8_K6X8X4");
- #endif
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8");
- #endif
-
- #if MEGDNN_ARMV7
- cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X2X16");
- #endif
- #undef cb
- }
-
- /***************************** Conv1x1 Algo Test ***********************/
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_F32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(false, false);
- #if MEGDNN_AARCH64
- check_conv_bias(args, handle(), "CONV1x1:AARCH64_F32K8X12X1:24");
- #elif MEGDNN_ARMV7
- check_conv_bias(args, handle(), "CONV1x1:ARMV7_F32:48");
- #endif
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_F16) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(false, false);
- NormalRNG rng(1);
- #if MEGDNN_AARCH64
- checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{},
- dtype::Float16{}, dtype::Float16{}, dtype::Float16{},
- "CONV1x1:AARCH64_F16_K8X24X1:48");
- #elif MEGDNN_ARMV7
- checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{},
- dtype::Float16{}, dtype::Float16{}, dtype::Float16{},
- "CONV1x1:AARCH32_F16_K4X16X1:24");
- #endif
- }
- #endif
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUANTIZEDSYM) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- checker_conv_bias(get_conv_bias_1x1_args(false, false, true, true), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH64_INT8X8X32_K8X12X4_DOTPROD:24");
- #else
- cb("CONV1x1:AARCH64_INT8X8X32_K8X8X8:24");
- cb("CONV1x1:AARCH64_INT8X8X32_K4X4X16:48");
- #endif
- #elif MEGDNN_ARMV7
- epsilon = 1;
- cb("CONV1x1:ARMV7_INT8X8X32_K4X8X8:48");
- #endif
- #undef cb
- }
-
- #if MEGDNN_AARCH64 || MEGDNN_ARMV7
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUANTIZEDASYM) {
- NormalRNG rng(128.f);
- #define cb(name) \
- checker_conv_bias(get_conv_bias_1x1_args(false, false, true, true), \
- handle(), &rng, epsilon, \
- dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), \
- dtype::Quantized8Asymm(50.3f, (uint8_t)120), name);
- float epsilon = 0.001;
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH64_QUINT8_K8X8X4_DOTPROD:48");
- #else
- cb("CONV1x1:AARCH64_QUINT8_K8X8X8:24");
- #endif
- #elif MEGDNN_ARMV7
- epsilon = 1;
- cb("CONV1x1:ARMV7_QUINT8_K4X8X8:48");
- #endif
- #undef cb
- }
- #endif
-
- #if MEGDNN_AARCH64 || MEGDNN_ARMV7
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUINT8x8x32) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- checker_conv_bias(get_conv_bias_1x1_args(true, true), handle(), &rng, \
- epsilon, dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
- dtype::QuantizedS32(1.2 * 1.3), {}, name);
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH64_QUINT8_K8X8X4_DOTPROD:24");
- #else
- cb("CONV1x1:AARCH64_QUINT8_K8X8X8:48");
- #endif
- #elif MEGDNN_ARMV7
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH32_QUINT8_K4X8X4:48");
- #endif
- cb("CONV1x1:ARMV7_QUINT8_K4X8X8:24");
- #endif
- #undef cb
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_1X1_S1_INT8x8x16) {
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- checker_conv_bias(get_conv_bias_1x1_args(true, true), handle(), &rng, \
- epsilon, dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, \
- dtype::Int16{}, name);
-
- #if MEGDNN_AARCH64
- cb("CONV1x1:AARCH64_INT8X8X16_K8X8X8:24");
- cb("CONV1x1:AARCH64_INT8X8X16_K4X4X16:24");
- #elif MEGDNN_ARMV7
- cb("CONV1x1:ARMV7_INT8X8X16_K4X8X8:24");
- cb("CONV1x1:ARMV7_INT8X8X16_K4X2X16:48");
- #endif
- cb("CONV1x1:ARM_COMMON_INT8X8X16:48");
- #undef cb
- }
- #endif
-
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_INT8x8x32) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(true, true);
-
- #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
-
- #if MEGDNN_AARCH64
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH64_INT8X8X32_K8X12X4_DOTPROD:48");
- #else
- cb("CONV1x1:AARCH64_INT8X8X32_K8X8X8:24");
- cb("CONV1x1:AARCH64_INT8X8X32_K4X4X16:24");
- #endif
- #elif MEGDNN_ARMV7
- #if __ARM_FEATURE_DOTPROD
- cb("CONV1x1:AARCH32_INT8_K6X8X4:48");
- #endif
- cb("CONV1x1:ARMV7_INT8X8X32_K4X8X8:24");
- #endif
-
- #if MEGDNN_ARMV7
- cb("CONV1x1:ARMV7_INT8X8X32_K4X2X16:48");
- #endif
- #undef cb
- }
-
- #ifndef __ARM_FEATURE_DOTPROD
- TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_INT8x8x32_MK4) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args =
- get_nchw44_conv_bias_args({1}, 1, true, true, true);
-
- #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
-
- #if MEGDNN_AARCH64
- cb("CONV1x1:AARCH64_INT8X8X32_MK4_4X4X16:24");
- #elif MEGDNN_ARMV7
- cb("CONV1x1:ARMV7_INT8X8X32_MK4_4X2X16:24");
- #endif
- #undef cb
-
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- #define cb(name) \
- checker_conv_bias(get_nchw44_conv_bias_args({1}, 1, true, false, false), \
- handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
- dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
- dtype::QuantizedS8(60.25f), name);
- #if MEGDNN_AARCH64
- cb("CONV1x1:AARCH64_INT8X8X32_MK4_4X4X16:24");
- #elif MEGDNN_ARMV7
- cb("CONV1x1:ARMV7_INT8X8X32_MK4_4X2X16:24");
- #endif
- #undef cb
- }
- #endif
-
- // vim: syntax=cpp.doxygen
|