You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_network.cpp 53 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502
  1. /**
  2. * \file test/test_network.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "lite_build_config.h"
  12. #if LITE_BUILD_WITH_MGE
  13. #include "./test_common.h"
  14. #include "megbrain/tensor.h"
  15. #ifndef WIN32
  16. #include <dirent.h>
  17. #include <string.h>
  18. #endif
  19. #include <chrono>
  20. #include <memory>
  21. #include <random>
  22. #include <unordered_map>
  23. using namespace lite;
  24. namespace {
  25. class CheckAllocator : public lite::Allocator {
  26. public:
  27. //! allocate memory of size in the given device with the given align
  28. void* allocate(LiteDeviceType device, int, size_t size, size_t align) override {
  29. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  30. m_nr_left++;
  31. m_nr_allocated++;
  32. #ifdef WIN32
  33. return _aligned_malloc(size, align);
  34. #elif defined(__ANDROID__) || defined(ANDROID)
  35. return memalign(align, size);
  36. #else
  37. void* ptr = nullptr;
  38. auto err = posix_memalign(&ptr, align, size);
  39. mgb_assert(!err, "failed to malloc %zubytes with align %zu", size, align);
  40. return ptr;
  41. #endif
  42. };
  43. //! free the memory pointed by ptr in the given device
  44. void free(LiteDeviceType device, int, void* ptr) override {
  45. m_nr_left--;
  46. LITE_ASSERT(device == LiteDeviceType::LITE_CPU);
  47. #ifdef WIN32
  48. _aligned_free(ptr);
  49. #else
  50. ::free(ptr);
  51. #endif
  52. };
  53. std::atomic_size_t m_nr_left{0};
  54. std::atomic_size_t m_nr_allocated{0};
  55. };
  56. } // namespace
  57. TEST(TestNetWork, Basic) {
  58. Config config;
  59. auto lite_tensor = get_input_data("./input_data.npy");
  60. std::string model_path = "./shufflenet.mge";
  61. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  62. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  63. compare_lite_tensor<float>(result_lite, result_mgb);
  64. }
  65. TEST(TestNetWork, RefCount) {
  66. Config config;
  67. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 0);
  68. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  69. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 1);
  70. std::shared_ptr<Network> network_s = std::make_shared<Network>(config);
  71. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 2);
  72. network.reset();
  73. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 1);
  74. network_s.reset();
  75. ASSERT_EQ(NetworkRefCount::Instance().refcount(), 0);
  76. }
  77. TEST(TestNetWork, SetDeviceId) {
  78. Config config;
  79. auto lite_tensor = get_input_data("./input_data.npy");
  80. std::string model_path = "./shufflenet.mge";
  81. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  82. network->set_device_id(4);
  83. network->load_model(model_path);
  84. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  85. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  86. network->forward();
  87. network->wait();
  88. ASSERT_EQ(input_tensor->get_device_id(), 4);
  89. ASSERT_EQ(output_tensor->get_device_id(), 4);
  90. }
  91. TEST(TestNetWork, GetAllName) {
  92. Config config;
  93. auto lite_tensor = get_input_data("./input_data.npy");
  94. std::string model_path = "./shufflenet.mge";
  95. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  96. network->load_model(model_path);
  97. auto input_names = network->get_all_input_name();
  98. auto output_names = network->get_all_output_name();
  99. auto output_tensor = network->get_output_tensor(0);
  100. auto out_layout = output_tensor->get_layout();
  101. ASSERT_EQ(out_layout.ndim, 2);
  102. ASSERT_EQ(out_layout.shapes[0], 1);
  103. ASSERT_EQ(out_layout.shapes[1], 1000);
  104. ASSERT_EQ(input_names.size(), 1);
  105. ASSERT_EQ(output_names.size(), 1);
  106. ASSERT_TRUE(input_names[0] == "data");
  107. ASSERT_TRUE(output_names[0] == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  108. }
  109. TEST(TestNetWork, GetAllIoInfoAhead) {
  110. Config config;
  111. std::string model_path = "./shufflenet.mge";
  112. auto ios = Runtime::get_model_io_info(model_path);
  113. FILE* fin = fopen(model_path.c_str(), "rb");
  114. ASSERT_TRUE(fin);
  115. fseek(fin, 0, SEEK_END);
  116. size_t size = ftell(fin);
  117. fseek(fin, 0, SEEK_SET);
  118. void* ptr = malloc(size);
  119. std::shared_ptr<void> buf{ptr, ::free};
  120. auto nr = fread(buf.get(), 1, size, fin);
  121. LITE_ASSERT(nr == size);
  122. fclose(fin);
  123. auto ios_mem = Runtime::get_model_io_info(ptr, size);
  124. ASSERT_EQ(ios.inputs.size(), ios_mem.inputs.size());
  125. ASSERT_EQ(ios.inputs.size(), 1);
  126. ASSERT_EQ(ios.outputs.size(), ios_mem.outputs.size());
  127. ASSERT_EQ(ios.outputs.size(), 1);
  128. ASSERT_TRUE(ios.inputs[0].name == "data");
  129. ASSERT_TRUE(ios.outputs[0].name == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  130. ASSERT_TRUE(ios_mem.inputs[0].name == "data");
  131. ASSERT_TRUE(
  132. ios_mem.outputs[0].name == "TRUE_DIV(EXP[12065],reduce0[12067])[12077]");
  133. ASSERT_EQ(ios.inputs[0].config_layout.ndim, 4);
  134. ASSERT_EQ(ios.inputs[0].config_layout.shapes[1], 3);
  135. ASSERT_EQ(ios.inputs[0].config_layout.shapes[2], 224);
  136. ASSERT_EQ(ios.outputs[0].config_layout.ndim, 2);
  137. ASSERT_EQ(ios.outputs[0].config_layout.shapes[0], 1);
  138. ASSERT_EQ(ios.outputs[0].config_layout.shapes[1], 1000);
  139. ASSERT_EQ(ios_mem.inputs[0].config_layout.ndim, 4);
  140. ASSERT_EQ(ios_mem.inputs[0].config_layout.shapes[1], 3);
  141. ASSERT_EQ(ios_mem.inputs[0].config_layout.shapes[2], 224);
  142. ASSERT_EQ(ios_mem.outputs[0].config_layout.ndim, 2);
  143. ASSERT_EQ(ios_mem.outputs[0].config_layout.shapes[0], 1);
  144. ASSERT_EQ(ios_mem.outputs[0].config_layout.shapes[1], 1000);
  145. }
  146. TEST(TestNetWork, LoadFBSModel) {
  147. Config config;
  148. std::string model_path = "./ax.mge";
  149. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  150. network->load_model(model_path);
  151. auto output_tensor = network->get_output_tensor(0);
  152. auto out_layout = output_tensor->get_layout();
  153. ASSERT_EQ(out_layout.ndim, 4);
  154. ASSERT_EQ(out_layout.shapes[0], 1);
  155. ASSERT_EQ(out_layout.shapes[1], 1);
  156. ASSERT_EQ(out_layout.shapes[2], 40);
  157. ASSERT_EQ(out_layout.shapes[3], 180);
  158. }
  159. TEST(TestNetWork, BasicInplaceAndSingleThreadAffinity) {
  160. Config config;
  161. auto lite_tensor = get_input_data("./input_data.npy");
  162. std::string model_path = "./shufflenet.mge";
  163. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  164. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  165. Runtime::set_cpu_inplace_mode(network);
  166. network->load_model(model_path);
  167. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  168. int affinity_set = false;
  169. Runtime::set_runtime_thread_affinity(network, [&affinity_set](int id) {
  170. ASSERT_EQ(id, 0);
  171. affinity_set = true;
  172. });
  173. auto src_ptr = lite_tensor->get_memory_ptr();
  174. auto src_layout = lite_tensor->get_layout();
  175. input_tensor->reset(src_ptr, src_layout);
  176. //! inplace mode not support async mode
  177. ASSERT_THROW(network->set_async_callback([]() {}), std::exception);
  178. network->forward();
  179. network->wait();
  180. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  181. ASSERT_EQ(affinity_set, true);
  182. compare_lite_tensor<float>(output_tensor, result_mgb);
  183. }
  184. namespace {
  185. void test_multi_thread(bool multi_thread_compnode) {
  186. Config config;
  187. auto lite_tensor = get_input_data("./input_data.npy");
  188. std::string model_path = "./shufflenet.mge";
  189. size_t nr_threads = 2;
  190. std::vector<size_t> thread_ids_user(nr_threads);
  191. std::vector<size_t> thread_ids_worker(nr_threads);
  192. auto runner = [&](size_t i) {
  193. thread_ids_user[i] = std::hash<std::thread::id>{}(std::this_thread::get_id());
  194. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  195. Runtime::set_cpu_inplace_mode(network);
  196. if (multi_thread_compnode) {
  197. Runtime::set_cpu_threads_number(network, 2);
  198. }
  199. network->load_model(model_path);
  200. Runtime::set_runtime_thread_affinity(
  201. network, [&multi_thread_compnode, &thread_ids_worker, i](int id) {
  202. if (multi_thread_compnode) {
  203. if (id == 1) {
  204. thread_ids_worker[i] = std::hash<std::thread::id>{}(
  205. std::this_thread::get_id());
  206. }
  207. } else {
  208. thread_ids_worker[i] = std::hash<std::thread::id>{}(
  209. std::this_thread::get_id());
  210. }
  211. });
  212. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  213. auto src_ptr = lite_tensor->get_memory_ptr();
  214. auto src_layout = lite_tensor->get_layout();
  215. input_tensor->reset(src_ptr, src_layout);
  216. network->forward();
  217. network->wait();
  218. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  219. };
  220. std::vector<std::thread> threads;
  221. for (size_t i = 0; i < nr_threads; i++) {
  222. threads.emplace_back(runner, i);
  223. threads[i].join();
  224. }
  225. for (size_t i = 0; i < nr_threads; i++) {
  226. ASSERT_EQ(thread_ids_user[i], thread_ids_worker[i]);
  227. }
  228. }
  229. } // namespace
  230. TEST(TestNetWork, InplaceAndUserMultithreadThread) {
  231. test_multi_thread(false);
  232. }
  233. TEST(TestNetWork, InplaceAndMultithread) {
  234. test_multi_thread(true);
  235. }
  236. TEST(TestNetWork, NetworkShareWeights) {
  237. Config config;
  238. auto lite_tensor = get_input_data("./input_data.npy");
  239. std::string model_path = "./shufflenet.mge";
  240. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  241. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  242. network->load_model(model_path);
  243. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  244. std::shared_ptr<Network> network2 = std::make_shared<Network>(config);
  245. Runtime::set_cpu_inplace_mode(network2);
  246. Runtime::shared_weight_with_network(network2, network);
  247. std::shared_ptr<Tensor> input_tensor2 = network2->get_input_tensor(0);
  248. auto src_ptr = lite_tensor->get_memory_ptr();
  249. auto src_layout = lite_tensor->get_layout();
  250. input_tensor->reset(src_ptr, src_layout);
  251. input_tensor2->reset(src_ptr, src_layout);
  252. ASSERT_NE(input_tensor, input_tensor2);
  253. network->forward();
  254. network->wait();
  255. network2->forward();
  256. network2->wait();
  257. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  258. std::shared_ptr<Tensor> output_tensor2 = network2->get_output_tensor(0);
  259. ASSERT_NE(output_tensor->get_memory_ptr(), output_tensor2->get_memory_ptr());
  260. compare_lite_tensor<float>(output_tensor, result_mgb);
  261. compare_lite_tensor<float>(output_tensor2, result_mgb);
  262. }
  263. TEST(TestNetWork, SharedRuntimeMem) {
  264. Config config;
  265. auto lite_tensor = get_input_data("./input_data.npy");
  266. std::string model_path = "./shufflenet.mge";
  267. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  268. std::shared_ptr<Network> network_src = std::make_shared<Network>(config);
  269. std::shared_ptr<Network> network_dst = std::make_shared<Network>(config);
  270. Runtime::share_runtime_memory_with(network_dst, network_src);
  271. network_src->load_model(model_path);
  272. network_dst->load_model(model_path);
  273. }
  274. TEST(TestNetWork, UserAllocator) {
  275. auto allocator = std::make_shared<CheckAllocator>();
  276. {
  277. Config config;
  278. auto lite_tensor = get_input_data("./input_data.npy");
  279. std::string model_path = "./shufflenet.mge";
  280. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  281. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  282. Runtime::set_memory_allocator(network, allocator);
  283. network->load_model(model_path);
  284. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  285. auto src_ptr = lite_tensor->get_memory_ptr();
  286. auto src_layout = lite_tensor->get_layout();
  287. input_tensor->reset(src_ptr, src_layout);
  288. network->forward();
  289. network->wait();
  290. ASSERT_GE(allocator->m_nr_allocated, 1);
  291. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  292. compare_lite_tensor<float>(output_tensor, result_mgb);
  293. }
  294. ASSERT_EQ(allocator->m_nr_left, 0);
  295. }
  296. TEST(TestNetWork, BasicMultiThread) {
  297. Config config;
  298. auto lite_tensor = get_input_data("./input_data.npy");
  299. std::string model_path = "./shufflenet.mge";
  300. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  301. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  302. Runtime::set_cpu_threads_number(network, 2);
  303. network->load_model(model_path);
  304. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  305. auto src_ptr = lite_tensor->get_memory_ptr();
  306. auto src_layout = lite_tensor->get_layout();
  307. input_tensor->reset(src_ptr, src_layout);
  308. network->forward();
  309. network->wait();
  310. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  311. compare_lite_tensor<float>(output_tensor, result_mgb);
  312. }
  313. TEST(TestNetWork, ThreadAffinity) {
  314. size_t nr_threads = 4;
  315. Config config;
  316. auto lite_tensor = get_input_data("./input_data.npy");
  317. std::string model_path = "./shufflenet.mge";
  318. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  319. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  320. Runtime::set_cpu_threads_number(network, nr_threads);
  321. ASSERT_THROW(
  322. Runtime::set_runtime_thread_affinity(network, [](int) {}), std::exception);
  323. network->load_model(model_path);
  324. std::vector<std::thread::id> thread_ids(nr_threads);
  325. auto affinity = [&](int id) { thread_ids[id] = std::this_thread::get_id(); };
  326. Runtime::set_runtime_thread_affinity(network, affinity);
  327. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  328. auto src_ptr = lite_tensor->get_memory_ptr();
  329. auto src_layout = lite_tensor->get_layout();
  330. input_tensor->reset(src_ptr, src_layout);
  331. network->forward();
  332. network->wait();
  333. for (size_t i = 0; i < nr_threads; i++) {
  334. for (size_t j = i + 1; j < nr_threads; j++) {
  335. ASSERT_NE(thread_ids[i], thread_ids[j]);
  336. }
  337. }
  338. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  339. compare_lite_tensor<float>(output_tensor, result_mgb);
  340. }
  341. TEST(TestNetWork, BasicCryptAes) {
  342. Config config;
  343. auto lite_tensor = get_input_data("./input_data.npy");
  344. std::string model_path = "./shufflenet.mge";
  345. std::string model_crypt_path = "./shufflenet_crypt_aes.mge";
  346. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  347. config.bare_model_cryption_name = "AES_default";
  348. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  349. compare_lite_tensor<float>(result_lite, result_mgb);
  350. }
  351. TEST(TestNetWork, BasicCryptRc4) {
  352. Config config;
  353. auto lite_tensor = get_input_data("./input_data.npy");
  354. std::string model_path = "./shufflenet.mge";
  355. std::string model_crypt_path = "./shufflenet_crypt_rc4.mge";
  356. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  357. config.bare_model_cryption_name = "RC4_default";
  358. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  359. compare_lite_tensor<float>(result_lite, result_mgb);
  360. }
  361. TEST(TestNetWork, PackedCryptRc4) {
  362. Config config;
  363. auto lite_tensor = get_input_data("./input_data.npy");
  364. std::string model_path = "./shufflenet.mge";
  365. std::string model_crypt_path = "./test_packed_model_rc4.lite";
  366. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  367. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  368. compare_lite_tensor<float>(result_lite, result_mgb);
  369. }
  370. TEST(TestNetWork, BasicCryptSfRc4) {
  371. Config config;
  372. auto lite_tensor = get_input_data("./input_data.npy");
  373. std::string model_path = "./shufflenet.mge";
  374. std::string model_crypt_path = "./shufflenet_crypt_sfrc4.mge";
  375. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  376. config.bare_model_cryption_name = "SIMPLE_FAST_RC4_default";
  377. auto result_lite = mgelite_lar(model_crypt_path, config, "data", lite_tensor);
  378. compare_lite_tensor<float>(result_lite, result_mgb);
  379. }
  380. TEST(TestNetWork, ResetInput) {
  381. Config config;
  382. auto tensor = get_input_data("./input_data.npy");
  383. std::string model_path = "./shufflenet.mge";
  384. std::string input_name = "data";
  385. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  386. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  387. network->load_model(model_path);
  388. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  389. auto src_ptr = tensor->get_memory_ptr();
  390. auto src_layout = tensor->get_layout();
  391. input_tensor->reset(src_ptr, src_layout);
  392. network->forward();
  393. network->wait();
  394. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  395. compare_lite_tensor<float>(output_tensor, result_mgb);
  396. }
  397. TEST(TestNetWork, ChangeInputShape) {
  398. Config config;
  399. auto tensor = get_input_data("./input_data.npy");
  400. std::string model_path = "./shufflenet.mge";
  401. std::string input_name = "data";
  402. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  403. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  404. network->load_model(model_path);
  405. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  406. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  407. input_tensor->set_layout(src_layout);
  408. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  409. //! Check memory is equal
  410. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  411. network->forward();
  412. network->wait();
  413. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  414. auto output_layout = output_tensor->get_layout();
  415. ASSERT_EQ(output_layout.shapes[0], 2);
  416. ASSERT_EQ(output_layout.shapes[1], 1000);
  417. }
  418. TEST(TestNetWork, ResetOutput) {
  419. Config config;
  420. auto tensor = get_input_data("./input_data.npy");
  421. std::string model_path = "./shufflenet.mge";
  422. std::string input_name = "data";
  423. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  424. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  425. network->load_model(model_path);
  426. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  427. auto src_ptr = tensor->get_memory_ptr();
  428. auto src_layout = tensor->get_layout();
  429. input_tensor->reset(src_ptr, src_layout);
  430. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  431. auto result_tensor = std::make_shared<Tensor>(
  432. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  433. void* out_data = result_tensor->get_memory_ptr();
  434. output_tensor->reset(out_data, result_tensor->get_layout());
  435. network->forward();
  436. network->wait();
  437. compare_lite_tensor<float>(output_tensor, result_mgb);
  438. }
  439. namespace {
  440. void test_output_no_copy(int record) {
  441. Config config;
  442. config.options.force_output_use_user_specified_memory = true;
  443. config.options.comp_node_seq_record_level = record;
  444. auto tensor = get_input_data("./input_data.npy");
  445. std::string model_path = "./shufflenet.mge";
  446. std::string input_name = "data";
  447. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  448. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  449. network->load_model(model_path);
  450. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  451. auto src_ptr = tensor->get_memory_ptr();
  452. auto src_layout = tensor->get_layout();
  453. input_tensor->reset(src_ptr, src_layout);
  454. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  455. size_t times = 5;
  456. std::vector<std::shared_ptr<Tensor>> result_tensors;
  457. for (size_t i = 0; i < times; i++) {
  458. auto tmp = std::make_shared<Tensor>(
  459. LiteDeviceType::LITE_CPU,
  460. Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  461. result_tensors.push_back(tmp);
  462. }
  463. for (size_t i = 0; i < times; i++) {
  464. void* out_data = result_tensors[i]->get_memory_ptr();
  465. output_tensor->reset(out_data, result_tensors[i]->get_layout());
  466. network->forward();
  467. network->wait();
  468. ASSERT_EQ(output_tensor->get_memory_ptr(), out_data);
  469. compare_lite_tensor<float>(output_tensor, result_mgb);
  470. }
  471. for (size_t i = 0; i < times; i++) {
  472. compare_lite_tensor<float>(result_tensors[i], result_mgb);
  473. }
  474. }
  475. void test_input_no_copy(int record) {
  476. Config config;
  477. config.options.force_output_use_user_specified_memory = true;
  478. config.options.comp_node_seq_record_level = record;
  479. std::string model_path = "./shufflenet.mge";
  480. std::string input_name = "data";
  481. Layout layout_in{{1, 3, 224, 224}, 4};
  482. std::vector<std::shared_ptr<Tensor>> inputs;
  483. std::vector<std::shared_ptr<Tensor>> outputs;
  484. for (int i = 0; i < 3; i++) {
  485. auto tmp_in = std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, layout_in);
  486. auto ptr = static_cast<float*>(tmp_in->get_memory_ptr());
  487. for (size_t id = 0; id < 2 * 224 * 224; id++) {
  488. ptr[id] = i + 1;
  489. }
  490. inputs.push_back(tmp_in);
  491. outputs.push_back(mgb_lar(model_path, config, input_name, tmp_in));
  492. }
  493. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  494. network->load_model(model_path);
  495. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  496. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  497. for (int i = 0; i < 3; i++) {
  498. auto ptr = inputs[i]->get_memory_ptr();
  499. input_tensor->reset(ptr, layout_in);
  500. auto tmp_out = std::make_shared<Tensor>(
  501. LiteDeviceType::LITE_CPU,
  502. Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  503. output_tensor->reset(tmp_out->get_memory_ptr(), output_tensor->get_layout());
  504. network->forward();
  505. network->wait();
  506. compare_lite_tensor<float>(output_tensor, outputs[i]);
  507. }
  508. }
  509. void test_io_no_copy_ax(std::string model_name, int record = 1) {
  510. std::string model_path = model_name;
  511. std::vector<std::string> input_names, output_names;
  512. std::vector<std::vector<std::shared_ptr<Tensor>>> inputs;
  513. std::vector<std::vector<std::shared_ptr<Tensor>>> outputs;
  514. Config config;
  515. config.options.graph_opt_level = 0;
  516. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  517. network->load_model(model_path);
  518. input_names = network->get_all_input_name();
  519. output_names = network->get_all_output_name();
  520. // prepare test data
  521. for (int i = 0; i < 3; i++) {
  522. std::vector<std::shared_ptr<Tensor>> net_inputs;
  523. std::vector<std::shared_ptr<Tensor>> net_outputs;
  524. for (size_t j = 0; j < input_names.size(); j++) {
  525. auto in_tesnor = network->get_io_tensor(input_names[j]);
  526. auto in_layout = in_tesnor->get_layout();
  527. auto tmp_in = std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, in_layout);
  528. auto size = in_tesnor->get_tensor_total_size_in_byte() /
  529. in_layout.get_elem_size();
  530. if (in_layout.data_type == LiteDataType::LITE_INT16) {
  531. auto ptr = static_cast<short*>(tmp_in->get_memory_ptr());
  532. for (size_t id = 0; id < size; id++) {
  533. ptr[id] = i + 1;
  534. }
  535. } else if (in_layout.data_type == LiteDataType::LITE_UINT8) {
  536. auto ptr = static_cast<uint8_t*>(tmp_in->get_memory_ptr());
  537. for (size_t id = 0; id < size; id++) {
  538. ptr[id] = i + 1;
  539. }
  540. }
  541. net_inputs.push_back(tmp_in);
  542. in_tesnor->copy_from(*tmp_in);
  543. }
  544. inputs.push_back(net_inputs);
  545. network->forward();
  546. network->wait();
  547. for (size_t j = 0; j < output_names.size(); j++) {
  548. auto out_tesnor = network->get_io_tensor(output_names[j]);
  549. auto out_layout = out_tesnor->get_layout();
  550. auto tmp_out =
  551. std::make_shared<Tensor>(LiteDeviceType::LITE_CPU, out_layout);
  552. tmp_out->copy_from(*out_tesnor);
  553. net_outputs.push_back(tmp_out);
  554. }
  555. outputs.push_back(net_outputs);
  556. }
  557. config.options.force_output_use_user_specified_memory = true;
  558. config.options.comp_node_seq_record_level = record;
  559. config.options.const_shape = true;
  560. config.options.graph_opt_level = 2;
  561. std::shared_ptr<Network> network_record = std::make_shared<Network>(config);
  562. network_record->load_model(model_path);
  563. for (int i = 0; i < 3; i++) {
  564. for (size_t j = 0; j < inputs[i].size(); j++) {
  565. auto input_tensor = network_record->get_io_tensor(input_names[j]);
  566. input_tensor->reset(
  567. inputs[i][j]->get_memory_ptr(), inputs[i][j]->get_layout());
  568. }
  569. std::vector<std::shared_ptr<Tensor>> net_outputs;
  570. for (size_t j = 0; j < outputs[i].size(); j++) {
  571. auto output_tensor = network_record->get_io_tensor(output_names[j]);
  572. auto tmp_out = std::make_shared<Tensor>(
  573. LiteDeviceType::LITE_CPU, output_tensor->get_layout());
  574. output_tensor->reset(
  575. tmp_out->get_memory_ptr(), output_tensor->get_layout());
  576. net_outputs.push_back(tmp_out);
  577. }
  578. network_record->forward();
  579. network_record->wait();
  580. for (size_t j = 0; j < outputs[i].size(); j++) {
  581. auto output_tensor = network_record->get_io_tensor(output_names[j]);
  582. compare_lite_tensor<float>(output_tensor, outputs[i][j]);
  583. }
  584. }
  585. printf("profile the model %s run\n", model_path.c_str());
  586. std::vector<std::shared_ptr<Tensor>> net_outputs;
  587. for (size_t j = 0; j < outputs[0].size(); j++) {
  588. auto output_tensor = network_record->get_io_tensor(output_names[j]);
  589. auto tmp_out = std::make_shared<Tensor>(
  590. LiteDeviceType::LITE_CPU, output_tensor->get_layout());
  591. output_tensor->reset(tmp_out->get_memory_ptr(), output_tensor->get_layout());
  592. net_outputs.push_back(tmp_out);
  593. }
  594. lite::Timer timer("profile");
  595. for (int i = 0; i < 10; i++) {
  596. network_record->forward();
  597. network_record->wait();
  598. }
  599. auto sum_time = timer.get_used_time();
  600. printf("model %s used time average %f ms\n", model_path.c_str(), sum_time / 10);
  601. }
  602. } // namespace
  603. TEST(TestNetWork, OutputNoCopy) {
  604. test_output_no_copy(0);
  605. }
  606. TEST(TestNetWork, OutputNoCopyRecord) {
  607. test_output_no_copy(1);
  608. }
  609. TEST(TestNetWork, IONoCopy) {
  610. test_input_no_copy(0);
  611. }
  612. TEST(TestNetWork, IONoCopyRecord) {
  613. test_input_no_copy(1);
  614. }
  615. TEST(TestNetWork, IONoCopyRecordAx) {
  616. std::vector<std::string> file_names;
  617. #ifndef WIN32
  618. DIR* dirptr = NULL;
  619. struct dirent* dirp;
  620. std::string model_dir = "./ax_models";
  621. dirptr = opendir(model_dir.c_str());
  622. while (dirptr != NULL && (dirp = readdir(dirptr)) != NULL) {
  623. std::string file_name(dirp->d_name);
  624. if (file_name.find(".axe", 0) != std::string::npos) {
  625. file_names.push_back(model_dir + "/" + file_name);
  626. }
  627. }
  628. closedir(dirptr);
  629. #endif
  630. for (auto file_name : file_names) {
  631. printf("test model: %s\n", file_name.c_str());
  632. test_io_no_copy_ax(file_name);
  633. }
  634. }
  635. TEST(TestNetWork, OutputDynamicAlloc) {
  636. Config config;
  637. config.options.force_output_dynamic_alloc = true;
  638. auto tensor = get_input_data("./input_data.npy");
  639. std::string model_path = "./shufflenet.mge";
  640. std::string input_name = "data";
  641. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  642. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  643. network->load_model(model_path);
  644. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  645. auto src_ptr = tensor->get_memory_ptr();
  646. auto src_layout = tensor->get_layout();
  647. input_tensor->reset(src_ptr, src_layout);
  648. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  649. size_t times = 5;
  650. for (size_t i = 0; i < times; i++) {
  651. network->forward();
  652. network->wait();
  653. compare_lite_tensor<float>(output_tensor, result_mgb);
  654. }
  655. }
  656. TEST(TestNetWork, AsyncExec) {
  657. Config config;
  658. config.options.var_sanity_check_first_run = false;
  659. auto tensor = get_input_data("./input_data.npy");
  660. std::string model_path = "./shufflenet.mge";
  661. std::string input_name = "data";
  662. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  663. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  664. network->load_model(model_path);
  665. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  666. auto src_ptr = tensor->get_memory_ptr();
  667. auto src_layout = tensor->get_layout();
  668. input_tensor->reset(src_ptr, src_layout);
  669. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  670. auto result_tensor = std::make_shared<Tensor>(
  671. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  672. void* out_data = result_tensor->get_memory_ptr();
  673. output_tensor->reset(out_data, result_tensor->get_layout());
  674. //! set async mode and callback
  675. volatile bool finished = false;
  676. network->set_async_callback([&finished]() { finished = true; });
  677. network->forward();
  678. size_t count = 0;
  679. while (finished == false) {
  680. count++;
  681. }
  682. ASSERT_GT(count, 0);
  683. compare_lite_tensor<float>(output_tensor, result_mgb);
  684. }
  685. TEST(TestNetWork, CPUDeviceInput) {
  686. auto tensor = get_input_data("./input_data.npy");
  687. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  688. std::string model_path = "./shufflenet.mge";
  689. std::string input_name = "data";
  690. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  691. NetworkIO IO;
  692. bool is_host = false;
  693. IO.inputs.push_back({input_name, is_host});
  694. std::shared_ptr<Network> network = std::make_shared<Network>(IO);
  695. network->load_model(model_path);
  696. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  697. auto src_ptr = tensor->get_memory_ptr();
  698. input_tensor->reset(src_ptr, layout);
  699. network->forward();
  700. network->wait();
  701. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  702. compare_lite_tensor<float>(output_tensor, result_mgb);
  703. }
  704. TEST(TestNetWork, ShareTensorWith) {
  705. auto tensor = get_input_data("./input_data.npy");
  706. std::string model_path = "./shufflenet.mge";
  707. std::string input_name = "data";
  708. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  709. std::shared_ptr<Network> network = std::make_shared<Network>();
  710. network->load_model(model_path);
  711. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  712. input_tensor->share_memory_with(*tensor);
  713. network->forward();
  714. network->wait();
  715. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  716. compare_lite_tensor<float>(output_tensor, result_mgb);
  717. }
  718. TEST(TestNetWork, InputCallBack) {
  719. auto tensor = get_input_data("./input_data.npy");
  720. std::string model_path = "./shufflenet.mge";
  721. std::string input_name = "data";
  722. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  723. NetworkIO ios;
  724. bool is_host = false;
  725. ios.inputs.push_back({input_name, is_host});
  726. std::shared_ptr<Network> network = std::make_shared<Network>(ios);
  727. network->load_model(model_path);
  728. volatile bool finised_check_input = false;
  729. auto input_callback =
  730. [&tensor, &finised_check_input,
  731. input_name](const std::unordered_map<
  732. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  733. input_map) {
  734. ASSERT_EQ(input_map.size(), 1);
  735. auto tensor_input = input_map.at(input_name).second;
  736. compare_lite_tensor<float>(tensor_input, tensor);
  737. finised_check_input = true;
  738. };
  739. network->set_start_callback(input_callback);
  740. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  741. input_tensor->share_memory_with(*tensor);
  742. network->forward();
  743. network->wait();
  744. ASSERT_TRUE(finised_check_input);
  745. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  746. compare_lite_tensor<float>(output_tensor, result_mgb);
  747. }
  748. TEST(TestNetWork, OutputCallBack) {
  749. auto tensor = get_input_data("./input_data.npy");
  750. std::string model_path = "./shufflenet.mge";
  751. std::string input_name = "data";
  752. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  753. std::shared_ptr<Network> network = std::make_shared<Network>();
  754. network->load_model(model_path);
  755. auto output_name = network->get_output_name(0);
  756. volatile bool finised_check_output = false;
  757. auto output_callback =
  758. [&result_mgb, &finised_check_output,
  759. output_name](const std::unordered_map<
  760. std::string, std::pair<IO, std::shared_ptr<Tensor>>>&
  761. output_map) {
  762. ASSERT_EQ(output_map.size(), 1);
  763. auto tensor_output = output_map.at(output_name).second;
  764. compare_lite_tensor<float>(tensor_output, result_mgb);
  765. finised_check_output = true;
  766. };
  767. network->set_finish_callback(output_callback);
  768. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  769. input_tensor->share_memory_with(*tensor);
  770. network->forward();
  771. network->wait();
  772. ASSERT_TRUE(finised_check_output);
  773. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  774. compare_lite_tensor<float>(output_tensor, result_mgb);
  775. }
  776. TEST(TestNetWork, OutputShapeOnly) {
  777. auto tensor = get_input_data("./input_data.npy");
  778. std::string model_path = "./shufflenet.mge";
  779. std::string input_name = "data";
  780. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  781. NetworkIO IO;
  782. bool is_host = true;
  783. IO.outputs.push_back({output_name, is_host, LiteIOType::LITE_IO_SHAPE});
  784. Config config;
  785. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  786. network->load_model(model_path);
  787. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  788. std::shared_ptr<Tensor> output_tensor = network->get_io_tensor(output_name);
  789. auto src_ptr = tensor->get_memory_ptr();
  790. auto src_layout = tensor->get_layout();
  791. input_tensor->reset(src_ptr, src_layout);
  792. network->forward();
  793. network->wait();
  794. ASSERT_EQ(output_tensor->get_tensor_total_size_in_byte() / sizeof(float), 1000);
  795. }
  796. TEST(TestNetWork, ProfileIOdump) {
  797. auto tensor = get_input_data("./input_data.npy");
  798. std::string model_path = "./shufflenet.mge";
  799. std::string input_name = "data";
  800. NetworkIO IO;
  801. Config config;
  802. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  803. network->enable_profile_performance("./profile.json");
  804. network->load_model(model_path);
  805. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  806. auto src_ptr = tensor->get_memory_ptr();
  807. auto src_layout = tensor->get_layout();
  808. input_tensor->reset(src_ptr, src_layout);
  809. network->forward();
  810. network->wait();
  811. ASSERT_TRUE(fopen("./profile.json", "r"));
  812. Runtime::enable_io_txt_dump(network, "./io_txt_dump.txt");
  813. network->forward();
  814. network->wait();
  815. ASSERT_TRUE(fopen("./io_txt_dump.txt", "r"));
  816. }
  817. TEST(TestNetWork, LoadPackedModel) {
  818. auto tensor = get_input_data("./input_data.npy");
  819. std::string model_path = "./test_packed_model.lite";
  820. std::string input_name = "data";
  821. NetworkIO IO;
  822. Config config;
  823. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  824. network->load_model(model_path);
  825. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  826. auto src_ptr = tensor->get_memory_ptr();
  827. auto src_layout = tensor->get_layout();
  828. input_tensor->reset(src_ptr, src_layout);
  829. network->forward();
  830. network->wait();
  831. }
  832. TEST(TestNetWork, LoadPackedCacheModel) {
  833. auto tensor = get_input_data("./input_data.npy");
  834. std::string model_path = "./test_pack_cache_to_model.lite";
  835. std::string input_name = "data";
  836. NetworkIO IO;
  837. Config config;
  838. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  839. network->load_model(model_path);
  840. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  841. auto src_ptr = tensor->get_memory_ptr();
  842. auto src_layout = tensor->get_layout();
  843. input_tensor->reset(src_ptr, src_layout);
  844. network->forward();
  845. network->wait();
  846. }
  847. TEST(TestNetWork, GlabalLayoutTransform) {
  848. auto tensor = get_input_data("./input_data.npy");
  849. std::string model_path = "./shufflenet.mge";
  850. std::string input_name = "data";
  851. std::string dump_model_name = "./shufflenet_after_trans.mge";
  852. NetworkIO IO;
  853. Config config;
  854. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  855. Runtime::enable_global_layout_transform(network);
  856. network->load_model(model_path);
  857. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  858. auto src_ptr = tensor->get_memory_ptr();
  859. auto src_layout = tensor->get_layout();
  860. input_tensor->reset(src_ptr, src_layout);
  861. Runtime::dump_layout_transform_model(network, dump_model_name);
  862. network->forward();
  863. network->wait();
  864. ASSERT_TRUE(fopen(dump_model_name.c_str(), "r"));
  865. remove(dump_model_name.c_str());
  866. }
  867. TEST(TestNetWork, GetDeviceType) {
  868. auto tensor = get_input_data("./input_data.npy");
  869. std::string model_path = "./shufflenet.mge";
  870. Config config;
  871. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  872. network->load_model(model_path);
  873. ASSERT_TRUE(network->get_device_type() == LiteDeviceType::LITE_CPU);
  874. }
  875. TEST(TestNetWork, GetModelExtraInfo) {
  876. std::string model_path = "./track_640_320_pack_model_rc4_with_info.lite";
  877. Config config;
  878. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  879. network->load_model(model_path);
  880. auto& extra_info = network->get_model_extra_info();
  881. ASSERT_TRUE(extra_info.size() > 0);
  882. printf("extra_info %s \n", extra_info.c_str());
  883. }
  884. #ifndef __IN_TEE_ENV__
  885. #if MGB_ENABLE_JSON
  886. TEST(TestNetWork, GetMemoryInfo) {
  887. Config config;
  888. auto lite_tensor = get_input_data("./input_data.npy");
  889. std::string model_path = "./shufflenet.mge";
  890. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  891. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  892. Runtime::set_cpu_threads_number(network, 2);
  893. network->load_model(model_path);
  894. network->get_static_memory_alloc_info();
  895. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  896. auto src_ptr = lite_tensor->get_memory_ptr();
  897. auto src_layout = lite_tensor->get_layout();
  898. input_tensor->reset(src_ptr, src_layout);
  899. network->forward();
  900. network->wait();
  901. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  902. compare_lite_tensor<float>(output_tensor, result_mgb);
  903. }
  904. #endif
  905. #endif
  906. #if LITE_WITH_CUDA
  907. TEST(TestNetWork, BasicDevice) {
  908. auto lite_tensor = get_input_data("./input_data.npy");
  909. Config config;
  910. config.device_type = LiteDeviceType::LITE_CUDA;
  911. std::string model_path = "./shufflenet.mge";
  912. auto result_lite = mgelite_lar(model_path, config, "data", lite_tensor);
  913. auto result_mgb = mgb_lar(model_path, config, "data", lite_tensor);
  914. compare_lite_tensor<float>(result_lite, result_mgb);
  915. }
  916. TEST(TestNetWork, DeviceInput) {
  917. auto tensor = get_input_data("./input_data.npy");
  918. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  919. std::string model_path = "./shufflenet.mge";
  920. std::string input_name = "data";
  921. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  922. NetworkIO IO;
  923. bool is_host = false;
  924. IO.inputs.push_back({input_name, is_host});
  925. Config config;
  926. config.device_type = LiteDeviceType::LITE_CUDA;
  927. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  928. network->load_model(model_path);
  929. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  930. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  931. tensor_cuda.copy_from(*tensor);
  932. auto src_ptr = tensor_cuda.get_memory_ptr();
  933. input_tensor->reset(src_ptr, layout);
  934. network->forward();
  935. network->wait();
  936. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  937. compare_lite_tensor<float>(output_tensor, result_mgb);
  938. }
  939. TEST(TestNetWork, ChangeInputShapeDevice) {
  940. Config config;
  941. auto tensor = get_input_data("./input_data.npy");
  942. std::string model_path = "./shufflenet.mge";
  943. std::string input_name = "data";
  944. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  945. config.device_type = LiteDeviceType::LITE_CUDA;
  946. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  947. network->load_model(model_path);
  948. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  949. auto src_layout = Layout{{2, 3, 200, 200}, 4, LiteDataType::LITE_FLOAT};
  950. input_tensor->set_layout(src_layout);
  951. std::shared_ptr<Tensor> input_tensor2 = network->get_io_tensor(input_name);
  952. //! Check memory is equal
  953. ASSERT_EQ(input_tensor->get_memory_ptr(), input_tensor2->get_memory_ptr());
  954. network->forward();
  955. network->wait();
  956. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  957. auto output_layout = output_tensor->get_layout();
  958. ASSERT_EQ(output_layout.shapes[0], 2);
  959. ASSERT_EQ(output_layout.shapes[1], 1000);
  960. }
  961. TEST(TestNetWork, DeviceOutput) {
  962. auto tensor = get_input_data("./input_data.npy");
  963. std::string model_path = "./shufflenet.mge";
  964. std::string input_name = "data";
  965. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  966. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  967. NetworkIO IO;
  968. bool is_host = false;
  969. IO.outputs.push_back({output_name, is_host});
  970. Config config;
  971. config.device_type = LiteDeviceType::LITE_CUDA;
  972. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  973. network->load_model(model_path);
  974. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  975. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  976. auto src_ptr = tensor->get_memory_ptr();
  977. auto src_layout = tensor->get_layout();
  978. input_tensor->reset(src_ptr, src_layout);
  979. network->forward();
  980. network->wait();
  981. auto output_tensor = std::make_shared<Tensor>();
  982. output_tensor->copy_from(*output_tensor_cuda);
  983. compare_lite_tensor<float>(output_tensor, result_mgb);
  984. }
  985. TEST(TestNetWork, WrongIONameDevice) {
  986. auto tensor = get_input_data("./input_data.npy");
  987. Layout layout{{1, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT};
  988. std::string model_path = "./shufflenet.mge";
  989. std::string input_name = "data";
  990. std::string input_name_wrong = "data0";
  991. std::string output_name = "TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  992. std::string output_name_wrong = "w_TRUE_DIV(EXP[12065],reduce0[12067])[12077]";
  993. auto result_mgb = mgb_lar(model_path, {}, input_name, tensor);
  994. NetworkIO IO;
  995. bool is_host = false;
  996. IO.inputs.push_back({input_name, is_host});
  997. IO.outputs.push_back({output_name, is_host});
  998. IO.outputs.push_back({output_name_wrong, is_host});
  999. Config config;
  1000. config.device_type = LiteDeviceType::LITE_CUDA;
  1001. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  1002. network->load_model(model_path);
  1003. auto tensor_cuda = Tensor(LiteDeviceType::LITE_CUDA, layout);
  1004. tensor_cuda.copy_from(*tensor);
  1005. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  1006. auto src_ptr = tensor_cuda.get_memory_ptr();
  1007. auto src_layout = tensor_cuda.get_layout();
  1008. input_tensor->reset(src_ptr, src_layout);
  1009. std::shared_ptr<Tensor> output_tensor_cuda = network->get_io_tensor(output_name);
  1010. network->forward();
  1011. network->wait();
  1012. auto output_tensor = std::make_shared<Tensor>();
  1013. output_tensor->copy_from(*output_tensor_cuda);
  1014. compare_lite_tensor<float>(output_tensor, result_mgb);
  1015. }
  1016. TEST(TestNetWork, ConfigIONameDevice) {
  1017. std::string model_path = "./model.mgb";
  1018. NetworkIO IO;
  1019. bool is_host = false;
  1020. IO.outputs.push_back({"clsfy", is_host});
  1021. Config config;
  1022. config.device_type = LiteDeviceType::LITE_CUDA;
  1023. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  1024. network->compute_only_configured_output();
  1025. network->load_model(model_path);
  1026. ASSERT_EQ(network->get_all_output_name().size(), 1);
  1027. ASSERT_EQ(network->get_all_output_name()[0], "clsfy");
  1028. std::shared_ptr<Network> network2 = std::make_shared<Network>(config, IO);
  1029. network2->load_model(model_path);
  1030. ASSERT_EQ(network2->get_all_output_name().size(), 2);
  1031. }
  1032. TEST(TestNetWork, SetDeviceIdDeviceTest) {
  1033. #if LITE_WITH_CUDA
  1034. if (get_device_count(LITE_CUDA) <= 1)
  1035. return;
  1036. #endif
  1037. std::string model_path = "./model.mgb";
  1038. NetworkIO IO;
  1039. bool is_host = false;
  1040. IO.inputs.push_back({"data", is_host});
  1041. IO.outputs.push_back({"clsfy", is_host});
  1042. Config config;
  1043. config.device_type = LiteDeviceType::LITE_CUDA;
  1044. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  1045. network->set_device_id(1);
  1046. network->load_model(model_path);
  1047. auto inputs_names = network->get_all_input_name();
  1048. for (auto name : inputs_names) {
  1049. auto tensor = network->get_io_tensor(name);
  1050. ASSERT_EQ(tensor->get_device_id(), 1);
  1051. if (name == "idx") {
  1052. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  1053. for (int i = 0; i < 23; i++) {
  1054. index_ptr[i] = i % 3;
  1055. }
  1056. }
  1057. if (name == "landmark") {
  1058. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  1059. for (int i = 0; i < 23 * 18 * 2; i++) {
  1060. landmakrk_ptr[i] = 0.1f;
  1061. }
  1062. }
  1063. }
  1064. auto outputs_names = network->get_all_output_name();
  1065. for (auto name : outputs_names) {
  1066. auto tensor = network->get_io_tensor(name);
  1067. ASSERT_EQ(tensor->get_device_id(), 1);
  1068. }
  1069. network->forward();
  1070. network->wait();
  1071. }
  1072. TEST(TestNetWork, SetStreamIdDeviceTest) {
  1073. std::string model_path = "./model.mgb";
  1074. NetworkIO IO;
  1075. bool is_host = false;
  1076. IO.inputs.push_back({"data", is_host});
  1077. IO.outputs.push_back({"clsfy", is_host});
  1078. Config config;
  1079. config.device_type = LiteDeviceType::LITE_CUDA;
  1080. std::shared_ptr<Network> network = std::make_shared<Network>(config, IO);
  1081. network->set_stream_id(1);
  1082. network->load_model(model_path);
  1083. auto inputs_names = network->get_all_input_name();
  1084. for (auto name : inputs_names) {
  1085. auto tensor = network->get_io_tensor(name);
  1086. if (name == "idx") {
  1087. int* index_ptr = static_cast<int*>(tensor->get_memory_ptr());
  1088. for (int i = 0; i < 23; i++) {
  1089. index_ptr[i] = i % 3;
  1090. }
  1091. }
  1092. if (name == "landmark") {
  1093. float* landmakrk_ptr = static_cast<float*>(tensor->get_memory_ptr());
  1094. for (int i = 0; i < 23 * 18 * 2; i++) {
  1095. landmakrk_ptr[i] = 0.1f;
  1096. }
  1097. }
  1098. }
  1099. network->forward();
  1100. network->wait();
  1101. }
  1102. #if CUDART_VERSION >= 10000
  1103. TEST(TestNetWork, DeviceAsyncExec) {
  1104. auto tensor = get_input_data("./input_data.npy");
  1105. Config config;
  1106. config.device_type = LiteDeviceType::LITE_CUDA;
  1107. config.options.var_sanity_check_first_run = false;
  1108. std::string model_path = "./shufflenet.mge";
  1109. std::string input_name = "data";
  1110. auto result_mgb = mgb_lar(model_path, config, input_name, tensor);
  1111. std::shared_ptr<Network> network = std::make_shared<Network>(config);
  1112. network->load_model(model_path);
  1113. std::shared_ptr<Tensor> input_tensor = network->get_io_tensor(input_name);
  1114. auto src_ptr = tensor->get_memory_ptr();
  1115. auto src_layout = tensor->get_layout();
  1116. input_tensor->reset(src_ptr, src_layout);
  1117. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  1118. auto result_tensor = std::make_shared<Tensor>(
  1119. LiteDeviceType::LITE_CPU, Layout{{1, 1000}, 2, LiteDataType::LITE_FLOAT});
  1120. void* out_data = result_tensor->get_memory_ptr();
  1121. output_tensor->reset(out_data, result_tensor->get_layout());
  1122. //! set async mode and callback
  1123. volatile bool finished = false;
  1124. network->set_async_callback([&finished]() { finished = true; });
  1125. network->forward();
  1126. size_t count = 0;
  1127. while (finished == false) {
  1128. count++;
  1129. }
  1130. ASSERT_GT(count, 0);
  1131. compare_lite_tensor<float>(output_tensor, result_mgb);
  1132. }
  1133. #endif
  1134. #endif
  1135. #if MGB_ATLAS || MGB_CAMBRICON
  1136. namespace {
  1137. void load_no_device(LiteDeviceType device_type, const std::string& model_path) {
  1138. lite::Config config;
  1139. config.device_type = device_type;
  1140. auto network = std::make_shared<lite::Network>(config);
  1141. network->load_model(model_path);
  1142. network->forward();
  1143. network->wait();
  1144. }
  1145. void load_device_input(
  1146. LiteDeviceType device_type, const std::string& model_path,
  1147. const std::vector<std::string>& inputs) {
  1148. lite::NetworkIO networkio;
  1149. lite::IO input_data_io = {};
  1150. input_data_io.name = inputs[0];
  1151. input_data_io.is_host = false;
  1152. networkio.inputs.emplace_back(input_data_io);
  1153. lite::IO input_input0_io = {};
  1154. input_input0_io.name = inputs[1];
  1155. input_input0_io.is_host = false;
  1156. networkio.inputs.emplace_back(input_input0_io);
  1157. lite::Config config;
  1158. config.device_type = device_type;
  1159. auto network = std::make_shared<lite::Network>(config, networkio);
  1160. network->load_model(model_path);
  1161. network->forward();
  1162. network->wait();
  1163. }
  1164. void load_device_id(
  1165. LiteDeviceType device_type, int device_id, const std::string& model_path) {
  1166. lite::Config config;
  1167. config.device_type = device_type;
  1168. auto network = std::make_shared<lite::Network>(config);
  1169. network->set_device_id(device_id);
  1170. network->load_model(model_path);
  1171. std::shared_ptr<Tensor> input_tensor = network->get_input_tensor(0);
  1172. std::shared_ptr<Tensor> output_tensor = network->get_output_tensor(0);
  1173. network->forward();
  1174. network->wait();
  1175. ASSERT_EQ(output_tensor->get_device_id(), device_id);
  1176. }
  1177. } // namespace
  1178. #endif
  1179. #if MGB_ATLAS
  1180. TEST(TestNetWork, AtlasLoadNoDevice) {
  1181. load_no_device(LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_atlas.mgb");
  1182. }
  1183. TEST(TestNetWork, AtlasLoadDeviceInput) {
  1184. load_device_input(
  1185. LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_atlas.mgb",
  1186. {"data", "input0"});
  1187. }
  1188. TEST(TestNetWork, AtlasLoadAtlas) {
  1189. load_no_device(LiteDeviceType::LITE_ATLAS, "./model_atlas.mgb");
  1190. }
  1191. TEST(TestNetWork, AtlasLoadAtlasDeviceInput) {
  1192. load_device_input(
  1193. LiteDeviceType::LITE_ATLAS, "./model_atlas.mgb", {"data", "input0"});
  1194. }
  1195. TEST(TestNetWork, AtlasDeviceID) {
  1196. load_device_id(LiteDeviceType::LITE_ATLAS, 1, "./model_atlas.mgb");
  1197. }
  1198. #endif
  1199. #if MGB_CAMBRICON
  1200. TEST(TestNetWork, CambriconLoadNoDevice) {
  1201. load_no_device(LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_magicmind.mgb");
  1202. }
  1203. TEST(TestNetWork, CambriconLoadDeviceInput) {
  1204. load_device_input(
  1205. LiteDeviceType::LITE_DEVICE_DEFAULT, "./model_magicmind.mgb",
  1206. {"data", "input0"});
  1207. }
  1208. TEST(TestNetWork, CambriconLoadCambricon) {
  1209. load_no_device(LiteDeviceType::LITE_CAMBRICON, "./model_magicmind.mgb");
  1210. }
  1211. TEST(TestNetWork, CambriconLoadCambriconDeviceInput) {
  1212. load_device_input(
  1213. LiteDeviceType::LITE_CAMBRICON, "./model_magicmind.mgb",
  1214. {"data", "input0"});
  1215. }
  1216. TEST(TestNetWork, CambriconDeviceID) {
  1217. load_device_id(LiteDeviceType::LITE_CAMBRICON, 0, "./model_magicmind.mgb");
  1218. }
  1219. #endif
  1220. #endif
  1221. // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}