You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

matrix_mul.cpp 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454
  1. /**
  2. * \file dnn/test/arm_common/matrix_mul.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. */
  11. #include "test/arm_common/fixture.h"
  12. #include "test/common/benchmarker.h"
  13. #include "test/common/checker.h"
  14. #include "test/common/matrix_mul.h"
  15. #include "test/common/rng.h"
  16. using namespace megdnn;
  17. using namespace test;
  18. TEST_F(ARM_COMMON, MATRIX_MUL_INT8x8x32) {
  19. matrix_mul::check_matrix_mul(dtype::Int8{}, dtype::Int8{}, dtype::Int32{},
  20. handle());
  21. }
  22. TEST_F(ARM_COMMON, MATRIX_MUL_INT8x8x16) {
  23. matrix_mul::check_matrix_mul(dtype::Int8{}, dtype::Int8{}, dtype::Int16{},
  24. handle());
  25. }
  26. TEST_F(ARM_COMMON, MATRIX_MUL_QUINT8) {
  27. matrix_mul::check_matrix_mul(dtype::Quantized8Asymm(1.2f, (uint8_t)127),
  28. dtype::Quantized8Asymm(1.3f, (uint8_t)129),
  29. {},
  30. handle());
  31. }
  32. TEST_F(ARM_COMMON, MATRIX_MUL_FP32) {
  33. Checker<MatrixMul> checker(handle());
  34. using Param = MatrixMul::Param;
  35. auto run = [&](size_t M, size_t K, size_t N) {
  36. Param param;
  37. param.transposeA = false;
  38. param.transposeB = false;
  39. TensorShape A, B;
  40. A = TensorShape{M, K};
  41. B = TensorShape{K, N};
  42. checker.set_param(param)
  43. .set_dtype(0, dtype::Float32())
  44. .set_dtype(1, dtype::Float32())
  45. .set_dtype(2, dtype::Float32())
  46. .execs({A, B, {}});
  47. };
  48. checker.set_before_exec_callback(
  49. AlgoChecker<MatrixMul>("ARM_COMMON_F32_GEMV"));
  50. // M < 8
  51. for (size_t M : {1, 2, 3, 4, 5, 6, 7})
  52. for (size_t K : {7, 1024, 2048})
  53. for (size_t N : {7, 1024, 2056})
  54. run(M, K, N);
  55. // M = 8,K = 1, 2
  56. for (size_t M : {8})
  57. for (size_t K : {1, 2})
  58. for (size_t N : {7, 1024, 2056})
  59. run(M, K, N);
  60. // N = 1
  61. for (size_t M : {1, 2, 3, 4, 5, 6, 7})
  62. for (size_t K : {7, 1024, 2048})
  63. for (size_t N : {1})
  64. run(M, K, N);
  65. }
  66. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  67. TEST_F(ARM_COMMON, MATRIX_MUL_FP16) {
  68. Checker<MatrixMul> checker(handle());
  69. checker.set_epsilon(1e-2);
  70. NormalRNG rng(2.f);
  71. checker.set_rng(0, &rng).set_rng(1, &rng);
  72. using Param = MatrixMul::Param;
  73. auto args = matrix_mul::get_matmul_args_no_mask();
  74. for (auto& arg : args) {
  75. size_t m = arg.m, n = arg.n, k = arg.k;
  76. Param param;
  77. param.transposeA = false;
  78. param.transposeB = false;
  79. TensorShape A, B;
  80. A = TensorShape{m, k};
  81. B = TensorShape{k, n};
  82. checker.set_param(param)
  83. .set_dtype(0, dtype::Float16())
  84. .set_dtype(1, dtype::Float16())
  85. .set_dtype(2, dtype::Float16())
  86. .execs({A, B, {}});
  87. }
  88. }
  89. TEST_F(ARM_COMMON, MATRIX_MUL_FP16_TEST) {
  90. Checker<MatrixMul> checker(handle());
  91. using Param = MatrixMul::Param;
  92. checker.set_epsilon(1e-2);
  93. NormalRNG rng(2.f);
  94. checker.set_rng(0, &rng).set_rng(1, &rng);
  95. auto run = [&](size_t M, size_t K, size_t N) {
  96. Param param;
  97. param.transposeA = false;
  98. param.transposeB = false;
  99. TensorShape A, B;
  100. A = TensorShape{M, K};
  101. B = TensorShape{K, N};
  102. checker.set_param(param)
  103. .set_dtype(0, dtype::Float16())
  104. .set_dtype(1, dtype::Float16())
  105. .set_dtype(2, dtype::Float16())
  106. .execs({A, B, {}});
  107. };
  108. checker.set_before_exec_callback(
  109. AlgoChecker<MatrixMul>("ARM_COMMON_F16_GEMV"));
  110. // M = 1, 2, 3, 4
  111. for (size_t M : {1, 2, 3, 4})
  112. for (size_t K : {7, 512, 1024})
  113. for (size_t N : {13, 1024, 2048})
  114. run(M, K, N);
  115. // N = 1
  116. for (size_t M : {1, 2, 3, 4})
  117. for (size_t K : {7, 512, 1024})
  118. for (size_t N : {1})
  119. run(M, K, N);
  120. }
  121. #endif
  122. TEST_F(ARM_COMMON, QINT8x8x32_GEMV) {
  123. Checker<MatrixMul> checker(handle());
  124. using Param = MatrixMul::Param;
  125. checker.set_before_exec_callback(
  126. AlgoChecker<MatrixMul>("ARM_COMMON_INT8X8X32_GEMV"));
  127. std::unique_ptr<RNG> rng = std::make_unique<UniformIntRNG>(-127, 127);
  128. checker.set_rng(0, rng.get()).set_rng(1, rng.get());
  129. auto run = [&](size_t M, size_t K, size_t N) {
  130. Param param;
  131. param.transposeA = false;
  132. param.transposeB = false;
  133. TensorShape A, B;
  134. A = TensorShape{M, K};
  135. B = TensorShape{K, N};
  136. checker.set_param(param)
  137. .set_dtype(0, dtype::QuantizedS8(2.5f))
  138. .set_dtype(1, dtype::QuantizedS8(2.5f))
  139. .set_dtype(2, dtype::QuantizedS32(6.25f))
  140. .execs({A, B, {}});
  141. };
  142. // N = 1
  143. for (size_t M : {1, 10, 16, 33, 64})
  144. for (size_t K : {7, 512, 1024})
  145. for (size_t N : {1})
  146. run(M, K, N);
  147. }
  148. TEST_F(ARM_COMMON, QINT8x8x32_GEVM) {
  149. Checker<MatrixMul> checker(handle());
  150. using Param = MatrixMul::Param;
  151. checker.set_before_exec_callback(
  152. AlgoChecker<MatrixMul>("ARM_COMMON_GEVM"));
  153. std::unique_ptr<RNG> rng = std::make_unique<UniformIntRNG>(-127, 127);
  154. checker.set_rng(0, rng.get()).set_rng(1, rng.get());
  155. auto run = [&](size_t M, size_t K, size_t N) {
  156. Param param;
  157. param.transposeA = false;
  158. param.transposeB = true;
  159. TensorShape A, B;
  160. A = TensorShape{M, K};
  161. B = TensorShape{N, K};
  162. checker.set_param(param)
  163. .set_dtype(0, dtype::QuantizedS8(2.5f))
  164. .set_dtype(1, dtype::QuantizedS8(2.5f))
  165. .set_dtype(2, dtype::QuantizedS32(6.25f))
  166. .execs({A, B, {}});
  167. };
  168. // M = 1
  169. for (size_t N : {1, 10, 16, 33, 64})
  170. for (size_t K : {7, 512, 1024})
  171. for (size_t M : {1})
  172. run(M, K, N);
  173. }
  174. TEST_F(ARM_COMMON, FP32_GEVM) {
  175. Checker<MatrixMul> checker(handle());
  176. using Param = MatrixMul::Param;
  177. checker.set_before_exec_callback(
  178. AlgoChecker<MatrixMul>("ARM_COMMON_GEVM"));
  179. checker.set_epsilon(1e-2);
  180. auto run = [&](size_t M, size_t K, size_t N) {
  181. Param param;
  182. param.transposeA = false;
  183. param.transposeB = true;
  184. TensorShape A, B;
  185. A = TensorShape{M, K};
  186. B = TensorShape{N, K};
  187. checker.set_param(param).execs({A, B, {}});
  188. };
  189. // M = 1
  190. for (size_t M : {1})
  191. for (size_t K : {1000, 4096, 25088})
  192. for (size_t N : {1000, 4096})
  193. run(M, K, N);
  194. }
  195. #if MEGDNN_WITH_BENCHMARK
  196. TEST_F(ARM_COMMON, BENCHMARK_SGEMV) {
  197. int exec_times = 10;
  198. Benchmarker<MatrixMul> benchmarker(handle());
  199. benchmarker.set_times(exec_times);
  200. auto run = [&](size_t M, size_t K, size_t N) {
  201. std::cout << "SGEMV: (" << M << ", " << K << ", " << N << ")"
  202. << std::endl;
  203. benchmarker.set_dtype(0, dtype::Float32())
  204. .set_dtype(1, dtype::Float32());
  205. auto time = benchmarker.exec({{M, K}, {K, N}, {}}) / exec_times;
  206. auto computations = 2.f * M * K * N * 1e-6;
  207. auto perf = computations / time;
  208. std::cout << "gemv fp32, Performance is " << perf << " Gflops"
  209. << std::endl;
  210. };
  211. std::cout << "warm up:\n";
  212. for (int i = 0; i < 50; i++) {
  213. benchmarker.set_dtype(0, dtype::Float32())
  214. .set_dtype(1, dtype::Float32())
  215. .set_display(false)
  216. .exec({{2, 1024}, {1024, 512}, {}});
  217. benchmarker.set_display(true);
  218. }
  219. // run gemv
  220. for (size_t M : {1, 2, 4, 8})
  221. for (size_t K : {1024, 1536, 2048})
  222. for (size_t N : {512, 1024})
  223. run(M, K, N);
  224. }
  225. TEST_F(ARM_COMMON, BENCHMARK_SGEMV_FP16) {
  226. int exec_times = 50;
  227. Benchmarker<MatrixMul> benchmarker(handle());
  228. benchmarker.set_times(exec_times);
  229. benchmarker.set_before_exec_callback(
  230. AlgoChecker<MatrixMul>("ARM_COMMON_F16_GEMV"));
  231. auto run = [&](size_t M, size_t K, size_t N) {
  232. std::cout << "SGEMV: (" << M << ", " << K << ", " << N << ")"
  233. << std::endl;
  234. benchmarker.set_dtype(0, dtype::Float16())
  235. .set_dtype(1, dtype::Float16())
  236. .set_dtype(2, dtype::Float16());
  237. auto time = benchmarker.exec({{M, K}, {K, N}, {}}) / exec_times;
  238. auto computations = 2 * M * K * N * 1e-6;
  239. auto perf = computations / time;
  240. std::cout << "gemv fp16, Performance is " << perf << " Gflops"
  241. << std::endl;
  242. };
  243. std::cout << "warm up:\n";
  244. for (int i = 0; i < 50; i++) {
  245. benchmarker.set_dtype(0, dtype::Float16())
  246. .set_dtype(1, dtype::Float16())
  247. .set_dtype(2, dtype::Float16())
  248. .set_display(false)
  249. .exec({{2, 1024}, {1024, 512}, {}});
  250. benchmarker.set_display(true);
  251. }
  252. // run gemv
  253. for (size_t M : {1, 2, 3, 4})
  254. for (size_t K : {1024, 1536, 2048})
  255. for (size_t N : {512, 1024})
  256. run(M, K, N);
  257. }
  258. TEST_F(ARM_COMMON, BENCHMARK_SGEMM) {
  259. int exec_times = 10;
  260. Benchmarker<MatrixMul> benchmarker(handle());
  261. benchmarker.set_times(exec_times);
  262. float mod = 1000 * exec_times / 1e9;
  263. auto run = [&](size_t M, size_t K, size_t N) {
  264. float time = 1.f, perf = 1.f;
  265. std::cout << "SGEMM: (" << M << ", " << K << ", " << N << ")"
  266. << std::endl;
  267. benchmarker.set_dtype(0, dtype::Float32())
  268. .set_dtype(1, dtype::Float32());
  269. time = benchmarker.exec({{M, K}, {K, N}, {}});
  270. perf = 2.f * M * K * N / time * mod;
  271. std::cout << "gemm fp32, Performance is " << perf << " Gflops"
  272. << std::endl;
  273. };
  274. std::cout << "warm up:\n";
  275. for (int i = 0; i < 50; i++) {
  276. benchmarker.set_dtype(0, dtype::Float32())
  277. .set_dtype(1, dtype::Float32())
  278. .set_display(false)
  279. .exec({{2, 1024}, {1024, 512}, {}});
  280. benchmarker.set_display(true);
  281. }
  282. run(256, 12 * 24, 256);
  283. //////////////////////// gemv //////////////////////////
  284. for (size_t M : {8, 64, 112, 256}) {
  285. for (size_t K : {8, 64, 112, 256}) {
  286. run (M, 1, K);
  287. }
  288. }
  289. //////////////////////// gemm //////////////////////////
  290. for (size_t M : {8, 64, 112, 256}) {
  291. for (size_t K : {8, 16, 32, 64, 112, 256}) {
  292. for (size_t N : {8, 64, 112, 256}) {
  293. run(M, N, K);
  294. }
  295. }
  296. }
  297. }
  298. TEST_F(ARM_COMMON, BENCHMARK_MATRIX_MUL_INT8x8x32) {
  299. constexpr size_t RUNS = 50;
  300. param::MatrixMul param;
  301. Benchmarker<MatrixMul> benchmarker_int(handle());
  302. benchmarker_int.set_times(RUNS)
  303. .set_dtype(0, dtype::Int8{})
  304. .set_dtype(1, dtype::Int8{})
  305. .set_dtype(2, dtype::Int32{})
  306. .set_param(param).set_display(false);
  307. Benchmarker<MatrixMul> benchmarker_float(handle());
  308. benchmarker_float.set_display(false).set_times(RUNS);
  309. auto run = [&](size_t M, size_t N, size_t K) {
  310. auto int_used = benchmarker_int.exec({{M, K}, {K, N}, {}}) / RUNS;
  311. auto float_used = benchmarker_float.exec({{M, K}, {K, N}, {}}) / RUNS;
  312. float computations = 2.f * M * K * N * 1e-6;
  313. printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops int: %f ms "
  314. "%f Gflops speedup: %f\n",
  315. M, K, N, float_used, computations / float_used, int_used,
  316. computations / int_used, float_used / int_used);
  317. };
  318. run(256, 12 * 24, 256);
  319. //////////////////////// gemv //////////////////////////
  320. for (size_t M : {8, 64, 112, 256}) {
  321. for (size_t K : {8, 64, 112, 256}) {
  322. run (M, 1, K);
  323. }
  324. }
  325. //////////////////////// gemm //////////////////////////
  326. for (size_t M : {8, 64, 112, 256}) {
  327. for (size_t K : {8, 16, 32, 64, 112, 256}) {
  328. for (size_t N : {8, 64, 112, 256}) {
  329. run(M, N, K);
  330. }
  331. }
  332. }
  333. }
  334. TEST_F(ARM_COMMON, BENCHMARK_MATRIX_MUL_QUINT8) {
  335. constexpr size_t RUNS = 50;
  336. param::MatrixMul param;
  337. Benchmarker<MatrixMul> benchmarker_int(handle());
  338. benchmarker_int.set_times(RUNS)
  339. .set_dtype(0, dtype::Quantized8Asymm(1.2f, (uint8_t)127))
  340. .set_dtype(1, dtype::Quantized8Asymm(1.3f, (uint8_t)129))
  341. .set_dtype(2, {})
  342. .set_param(param)
  343. .set_display(false);
  344. Benchmarker<MatrixMul> benchmarker_float(handle());
  345. benchmarker_float.set_display(false).set_times(RUNS);
  346. auto run = [&](size_t M, size_t N, size_t K) {
  347. auto int_used = benchmarker_int.exec({{M, K}, {K, N}, {}}) / RUNS;
  348. auto float_used = benchmarker_float.exec({{M, K}, {K, N}, {}}) / RUNS;
  349. float computations = 2.f * M * K * N * 1e-6;
  350. printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops int: %f ms "
  351. "%f Gflops speedup: %f\n",
  352. M, K, N, float_used, computations / float_used, int_used,
  353. computations / int_used, float_used / int_used);
  354. };
  355. run(256, 12 * 24, 256);
  356. for (size_t M : {8, 64, 112, 256}) {
  357. for (size_t K : {8, 64, 112, 256}) {
  358. for (size_t N : {8, 64, 112, 256}) {
  359. run(M, N, K);
  360. }
  361. }
  362. }
  363. }
  364. TEST_F(ARM_COMMON, BENCHMARK_TRANSPOSED_MATRIX_MUL_QUINT8) {
  365. constexpr size_t RUNS = 50;
  366. param::MatrixMul param;
  367. param.transposeA = param.transposeB = true;
  368. Benchmarker<MatrixMul> benchmarker_int(handle());
  369. benchmarker_int.set_times(RUNS)
  370. .set_dtype(0, dtype::Quantized8Asymm(1.2f, (uint8_t)127))
  371. .set_dtype(1, dtype::Quantized8Asymm(1.3f, (uint8_t)129))
  372. .set_dtype(2, {})
  373. .set_param(param)
  374. .set_display(false);
  375. Benchmarker<MatrixMul> benchmarker_float(handle());
  376. benchmarker_float.set_param(param).set_display(false).set_times(RUNS);
  377. auto run = [&](size_t M, size_t N, size_t K) {
  378. auto int_used = benchmarker_int.exec({{K, M}, {N, K}, {}}) / RUNS;
  379. auto float_used = benchmarker_float.exec({{K, M}, {N, K}, {}}) / RUNS;
  380. float computations = 2.f * M * K * N * 1e-6;
  381. printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops int: %f ms "
  382. "%f Gflops speedup: %f\n",
  383. M, K, N, float_used, computations / float_used, int_used,
  384. computations / int_used, float_used / int_used);
  385. };
  386. run(256, 12 * 24, 256);
  387. for (size_t M : {8, 64, 112, 256}) {
  388. for (size_t K : {8, 64, 112, 256}) {
  389. for (size_t N : {8, 64, 112, 256}) {
  390. run(M, N, K);
  391. }
  392. }
  393. }
  394. }
  395. #endif
  396. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台