|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244 |
- /**
- * \file dnn/test/cuda/conv_bias_int8.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
- #include "megdnn/oprs/nn.h"
-
- #include "src/common/utils.h"
- #include "src/cuda/cudnn_with_check.h"
- #include "test/common/checker.h"
- #include "test/common/conv_bias.h"
- #include "test/cuda/benchmark.h"
- #include "test/cuda/fixture.h"
- #include "test/cuda/utils.h"
-
- #define V1(x) #x
- #define V(x) V1(x)
-
- namespace megdnn {
- namespace test {
- namespace {
-
- #if MEGDNN_WITH_BENCHMARK
- struct BenchArgs {
- size_t n, ci, hi, wi, co, f, s;
- };
-
- std::vector<BenchArgs> get_resnet50_bench_args(size_t batch = 64) {
- std::vector<BenchArgs> args;
- args.emplace_back(BenchArgs{batch, 64, 56, 56, 256, 1, 1});
-
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 32, 3, 2});
- args.emplace_back(BenchArgs{batch, 4, 256, 256, 32, 7, 2});
-
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 64, 1, 1});
- args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 1, 1});
- args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 3, 2});
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 64, 3, 2});
- args.emplace_back(BenchArgs{batch, 64, 56, 56, 256, 1, 1});
-
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 512, 1, 2});
- args.emplace_back(BenchArgs{batch, 256, 56, 56, 128, 1, 2});
- args.emplace_back(BenchArgs{batch, 512, 28, 28, 128, 1, 1});
- args.emplace_back(BenchArgs{batch, 128, 28, 28, 128, 3, 1});
- args.emplace_back(BenchArgs{batch, 128, 28, 28, 512, 1, 1});
-
- args.emplace_back(BenchArgs{batch, 512, 28, 28, 1024, 1, 2});
- args.emplace_back(BenchArgs{batch, 512, 28, 28, 256, 1, 2});
- args.emplace_back(BenchArgs{batch, 1024, 14, 14, 256, 1, 1});
- args.emplace_back(BenchArgs{batch, 256, 14, 14, 256, 3, 1});
- args.emplace_back(BenchArgs{batch, 256, 14, 14, 1024, 1, 1});
-
- args.emplace_back(BenchArgs{batch, 1024, 14, 14, 2048, 1, 2});
- args.emplace_back(BenchArgs{batch, 1024, 14, 14, 512, 1, 2});
- args.emplace_back(BenchArgs{batch, 2048, 7, 7, 512, 1, 1});
- args.emplace_back(BenchArgs{batch, 512, 7, 7, 512, 3, 1});
- args.emplace_back(BenchArgs{batch, 512, 7, 7, 2048, 1, 1});
- return args;
- }
-
- std::vector<BenchArgs> get_detection_bench_args(size_t batch = 16) {
- std::vector<BenchArgs> args;
- args.emplace_back(BenchArgs{batch, 4, 736, 1280, 8, 3, 2});
- args.emplace_back(BenchArgs{batch, 32, 184, 320, 16, 3, 1});
- args.emplace_back(BenchArgs{batch, 16, 184, 320, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 8, 184, 320, 16, 3, 1});
- args.emplace_back(BenchArgs{batch, 8, 184, 320, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 92, 160, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 32, 184, 320, 64, 3, 2});
- args.emplace_back(BenchArgs{batch, 32, 184, 320, 32, 3, 2});
- args.emplace_back(BenchArgs{batch, 32, 92, 160, 64, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 92, 160, 8, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 92, 160, 128, 3, 2});
- args.emplace_back(BenchArgs{batch, 128, 46, 80, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 128, 46, 80, 256, 3, 2});
- args.emplace_back(BenchArgs{batch, 128, 46, 80, 8, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 92, 160, 32, 3, 2});
- args.emplace_back(BenchArgs{batch, 32, 46, 80, 128, 3, 1});
- args.emplace_back(BenchArgs{batch, 8, 46, 80, 32, 3, 1});
- args.emplace_back(BenchArgs{batch, 64, 23, 40, 256, 3, 1});
- args.emplace_back(BenchArgs{batch, 256, 23, 40, 64, 3, 1});
- args.emplace_back(BenchArgs{batch, 128, 46, 80, 64, 3, 2});
- args.emplace_back(BenchArgs{batch, 256, 23, 40, 8, 3, 1});
- args.emplace_back(BenchArgs{batch, 8, 23, 40, 32, 3, 2});
- args.emplace_back(BenchArgs{batch, 8, 12, 20, 8, 3, 1});
- args.emplace_back(BenchArgs{batch, 8, 12, 20, 8, 3, 2});
- args.emplace_back(BenchArgs{batch, 8, 6, 10, 8, 3, 1});
- return args;
- }
-
- void benchmark_target_algo(
- Handle* handle, const std::vector<BenchArgs>& args, DType src_dtype,
- DType filter_dtype, DType bias_dtype, DType dst_dtype,
- const char* algo = nullptr,
- param::ConvBias::Format format = param::ConvBias::Format::NCHW4) {
- megdnn_assert(src_dtype.enumv() == filter_dtype.enumv());
- CUBenchmarker<ConvBiasForward> benchmarker(handle);
- CUBenchmarker<ConvBiasForward> benchmarker_cudnn(handle);
- size_t RUNS = 1000;
- benchmarker.set_display(false).set_times(RUNS);
- benchmarker_cudnn.set_display(false).set_times(RUNS);
-
- if (algo) {
- benchmarker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(algo));
- }
-
- #define CUDNN_VERSION_STRING \
- "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL)
- benchmarker_cudnn.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "DEFAULT:CUDNN:ConvBiasActivation:CUDNN_CONVOLUTION_FWD_"
- "ALGO_IMPLICIT_PRECOMP_"
- "GEMM" CUDNN_VERSION_STRING));
-
- benchmarker.set_dtype(0, src_dtype)
- .set_dtype(1, filter_dtype)
- .set_dtype(2, bias_dtype)
- .set_dtype(3, dst_dtype)
- .set_dtype(4, dst_dtype);
- benchmarker_cudnn.set_dtype(0, src_dtype)
- .set_dtype(1, filter_dtype)
- .set_dtype(2, bias_dtype)
- .set_dtype(3, dst_dtype)
- .set_dtype(4, dst_dtype);
-
- using Param = ConvBias::Param;
- using Format = Param::Format;
- if (format == Format::NCHW4) {
- for (auto&& arg : args) {
- Param param;
- param.pad_h = param.pad_w = arg.f / 2;
- param.stride_h = param.stride_w = arg.s;
- param.format = Format::NCHW4;
-
- size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2);
- size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2);
-
- benchmarker.set_param(param);
- auto time_in_ms =
- benchmarker.execs({{arg.n, arg.ci / 4, arg.hi, arg.wi, 4},
- {arg.co, arg.ci / 4, arg.f, arg.f, 4},
- {1, arg.co / 4, 1, 1, 4},
- {},
- {}}) /
- RUNS;
- param.nonlineMode = Param::NonlineMode::IDENTITY;
- benchmarker_cudnn.set_param(param);
- auto time_in_ms_cudnn =
- benchmarker_cudnn.execs(
- {{arg.n, arg.ci / 4, arg.hi, arg.wi, 4},
- {arg.co, arg.ci / 4, arg.f, arg.f, 4},
- {1, arg.co / 4, 1, 1, 4},
- {},
- {}}) /
- RUNS;
- float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f *
- arg.f / (1e12);
- TensorShape src{arg.n, arg.ci, arg.hi, arg.wi},
- filter{arg.co, arg.ci, arg.f, arg.f};
- printf("src=%s, filter=%s, time(algo=%s)=%.2f %.2fTops, "
- "time(cudnn)=%.2f %.2fTops, "
- "perf(algo=%s)/perf(cudnn)=%.2f\n",
- src.to_string().c_str(), filter.to_string().c_str(), algo,
- time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn,
- (flo / (time_in_ms_cudnn * 1e-3)), algo,
- time_in_ms_cudnn / time_in_ms);
- }
- printf("bench with z tensor\n");
- for (auto&& arg : args) {
- Param param;
- param.pad_h = param.pad_w = arg.f / 2;
- param.stride_h = param.stride_w = arg.s;
- param.format = Format::NCHW4;
-
- size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2);
- size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2);
-
- benchmarker.set_param(param);
- auto time_in_ms =
- benchmarker.execs({{arg.n, arg.ci / 4, arg.hi, arg.wi, 4},
- {arg.co, arg.ci / 4, arg.f, arg.f, 4},
- {1, arg.co / 4, 1, 1, 4},
- {arg.n, arg.co / 4, ho, wo, 4},
- {}}) /
- RUNS;
- param.format = Format::NCHW4;
- param.nonlineMode = Param::NonlineMode::IDENTITY;
- benchmarker_cudnn.set_param(param);
- auto time_in_ms_cudnn =
- benchmarker_cudnn.execs(
- {{arg.n, arg.ci / 4, arg.hi, arg.wi, 4},
- {arg.co, arg.ci / 4, arg.f, arg.f, 4},
- {1, arg.co / 4, 1, 1, 4},
- {arg.n, arg.co / 4, ho, wo, 4},
- {}}) /
- RUNS;
- float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f *
- arg.f / (1e12);
- TensorShape src{arg.n, arg.ci, arg.hi, arg.wi},
- filter{arg.co, arg.ci, arg.f, arg.f};
- printf("src=%s, filter=%s, time(algo=%s)=%.2f %.2fTops, "
- "time(cudnn)=%.2f %.2fTops, "
- "perf(algo=%s)/perf(cudnn)=%.2f\n",
- src.to_string().c_str(), filter.to_string().c_str(), algo,
- time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn,
- (flo / (time_in_ms_cudnn * 1e-3)), algo,
- time_in_ms_cudnn / time_in_ms);
- }
- } else if (format == Format::CHWN4) {
- for (auto&& arg : args) {
- Param param;
- param.pad_h = param.pad_w = arg.f / 2;
- param.stride_h = param.stride_w = arg.s;
- param.format = Format::CHWN4;
-
- size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2);
- size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2);
-
- benchmarker.set_param(param);
- auto time_in_ms =
- benchmarker.execs({{arg.ci / 4, arg.hi, arg.wi, arg.n, 4},
- {arg.ci / 4, arg.f, arg.f, arg.co, 4},
- {arg.co / 4, 1, 1, 1, 4},
- {},
- {}}) /
- RUNS;
- param.format = Format::NCHW4;
- benchmarker_cudnn.set_param(param);
- auto time_in_ms_cudnn =
- benchmarker_cudnn.execs(
- {{arg.n, arg.ci / 4, arg.hi, arg.wi, 4},
- {arg.co, arg.ci / 4, arg.f, arg.f, 4},
- {1, arg.co / 4, 1, 1, 4},
- {},
- {}}) /
- RUNS;
- float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f *
- arg.f / (1e12);
- TensorShape src{arg.n, arg.ci, arg.hi, arg.wi},
- filter{arg.co, arg.ci, arg.f, arg.f};
- printf("src=%s, filter=%s, time(algo=%s)=%.2f %.2fTops, "
- "time(cudnn)=%.2f %.2fTops, "
- "perf(algo=%s)/perf(cudnn)=%.2f\n",
- src.to_string().c_str(), filter.to_string().c_str(), algo,
- time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn,
- (flo / (time_in_ms_cudnn * 1e-3)), algo,
- time_in_ms_cudnn / time_in_ms);
- }
- printf("bench with z tensor\n");
- for (auto&& arg : args) {
- Param param;
- param.pad_h = param.pad_w = arg.f / 2;
- param.stride_h = param.stride_w = arg.s;
- param.format = Format::CHWN4;
-
- size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2);
- size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2);
-
- benchmarker.set_param(param);
- auto time_in_ms =
- benchmarker.execs({{arg.ci / 4, arg.hi, arg.wi, arg.n, 4},
- {arg.ci / 4, arg.f, arg.f, arg.co, 4},
- {arg.co / 4, 1, 1, 1, 4},
- {arg.co / 4, ho, wo, arg.n, 4},
- {}}) /
- RUNS;
- param.format = Format::NCHW4;
- benchmarker_cudnn.set_param(param);
- param.nonlineMode = Param::NonlineMode::IDENTITY;
- auto time_in_ms_cudnn =
- benchmarker_cudnn.execs(
- {{arg.n, arg.ci / 4, arg.hi, arg.wi, 4},
- {arg.co, arg.ci / 4, arg.f, arg.f, 4},
- {1, arg.co / 4, 1, 1, 4},
- {arg.n, arg.co / 4, ho, wo, 4},
- {}}) /
- RUNS;
- float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f *
- arg.f / (1e12);
- TensorShape src{arg.n, arg.ci, arg.hi, arg.wi},
- filter{arg.co, arg.ci, arg.f, arg.f};
- printf("src=%s, filter=%s, time(algo=%s)=%.2f %.2fTops, "
- "time(cudnn)=%.2f %.2fTops, "
- "perf(algo=%s)/perf(cudnn)=%.2f\n",
- src.to_string().c_str(), filter.to_string().c_str(), algo,
- time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn,
- (flo / (time_in_ms_cudnn * 1e-3)), algo,
- time_in_ms_cudnn / time_in_ms);
- }
- }
- }
-
- void benchmark_target_algo_with_cudnn_tsc(
- Handle* handle, const std::vector<BenchArgs>& args, DType src_dtype,
- DType filter_dtype, DType bias_dtype, DType dst_dtype,
- const char* algo = nullptr,
- param::ConvBias::Format format = param::ConvBias::Format::NCHW4) {
- megdnn_assert(src_dtype.enumv() == filter_dtype.enumv());
- CUBenchmarker<ConvBiasForward> benchmarker(handle);
- CUBenchmarker<ConvBiasForward> benchmarker_cudnn(handle);
- size_t RUNS = 1000;
- benchmarker.set_display(false).set_times(RUNS);
- benchmarker_cudnn.set_display(false).set_times(RUNS);
-
- std::unique_ptr<OprProxy<ConvBiasForward>> proxy{
- new OprProxy<ConvBiasForward>{true}};
-
- if (algo) {
- benchmarker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(algo));
- } else {
- benchmarker.set_proxy(proxy);
- }
-
- benchmarker_cudnn.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "DEFAULT:CUDNN:ConvBiasActivation:CUDNN_CONVOLUTION_FWD_"
- "ALGO_IMPLICIT_PRECOMP_"
- "GEMM" CUDNN_VERSION_STRING));
- #undef CUDNN_VERSION_STRING
-
- benchmarker.set_dtype(0, src_dtype)
- .set_dtype(1, filter_dtype)
- .set_dtype(2, bias_dtype)
- .set_dtype(3, dst_dtype)
- .set_dtype(4, dst_dtype);
- benchmarker_cudnn.set_dtype(0, src_dtype)
- .set_dtype(1, filter_dtype)
- .set_dtype(2, bias_dtype)
- .set_dtype(3, dst_dtype)
- .set_dtype(4, dst_dtype);
-
- using Param = ConvBias::Param;
- using Format = Param::Format;
- if (format == Format::NCHW4) {
- for (auto&& arg : args) {
- Param param;
- param.pad_h = param.pad_w = arg.f / 2;
- param.stride_h = param.stride_w = arg.s;
- param.format = Format::NCHW4;
-
- size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2);
- size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2);
-
- benchmarker.set_param(param);
- if (!algo) {
- benchmarker.proxy()->target_algo = nullptr;
- }
- auto time_in_ms =
- benchmarker.execs({{arg.n, arg.ci / 4, arg.hi, arg.wi, 4},
- {arg.co, arg.ci / 4, arg.f, arg.f, 4},
- {1, arg.co / 4, 1, 1, 4},
- {},
- {}}) /
- RUNS;
- param.format = Format::NCHW32;
- benchmarker_cudnn.set_param(param);
- auto time_in_ms_cudnn =
- benchmarker_cudnn.execs(
- {{arg.n, arg.ci / 32, arg.hi, arg.wi, 32},
- {arg.co, arg.ci / 32, arg.f, arg.f, 32},
- {1, arg.co / 32, 1, 1, 32},
- {},
- {}}) /
- RUNS;
- float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f *
- arg.f / (1e12);
- TensorShape src{arg.n, arg.ci, arg.hi, arg.wi},
- filter{arg.co, arg.ci, arg.f, arg.f};
- printf("src=%s, filter=%s, time(algo=%s)=%.2f %.2fTops, "
- "time(cudnn)=%.2f %.2fTops, "
- "perf(algo=%s)/perf(cudnn)=%.2f\n",
- src.to_string().c_str(), filter.to_string().c_str(), algo,
- time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn,
- (flo / (time_in_ms_cudnn * 1e-3)), algo,
- time_in_ms_cudnn / time_in_ms);
- }
- } else if (format == Format::CHWN4) {
- for (auto&& arg : args) {
- Param param;
- param.pad_h = param.pad_w = arg.f / 2;
- param.stride_h = param.stride_w = arg.s;
- param.format = Format::CHWN4;
-
- size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2);
- size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2);
-
- benchmarker.set_param(param);
- if (!algo) {
- benchmarker.proxy()->target_algo = nullptr;
- }
- auto time_in_ms =
- benchmarker.execs({{arg.ci / 4, arg.hi, arg.wi, arg.n, 4},
- {arg.ci / 4, arg.f, arg.f, arg.co, 4},
- {arg.co / 4, 1, 1, 1, 4},
- {},
- {}}) /
- RUNS;
- float time_in_ms_cudnn = 0.f;
- if (arg.ci % 32 == 0 && arg.co % 32 == 0) {
- param.format = Format::NCHW32;
- benchmarker_cudnn.set_param(param);
- time_in_ms_cudnn =
- benchmarker_cudnn.execs(
- {{arg.n, arg.ci / 32, arg.hi, arg.wi, 32},
- {arg.co, arg.ci / 32, arg.f, arg.f, 32},
- {1, arg.co / 32, 1, 1, 32},
- {},
- {}}) /
- RUNS;
- } else {
- param.format = Format::NCHW4;
- benchmarker_cudnn.set_param(param);
- time_in_ms_cudnn =
- benchmarker_cudnn.execs(
- {{arg.n, arg.ci / 4, arg.hi, arg.wi, 4},
- {arg.co, arg.ci / 4, arg.f, arg.f, 4},
- {1, arg.co / 4, 1, 1, 4},
- {},
- {}}) /
- RUNS;
- }
- float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f *
- arg.f / (1e12);
- TensorShape src{arg.n, arg.ci, arg.hi, arg.wi},
- filter{arg.co, arg.ci, arg.f, arg.f};
- printf("src=%s, filter=%s, time(algo=%s)=%.2f %.2fTops, "
- "time(cudnn)=%.2f %.2fTops, "
- "perf(algo=%s)/perf(cudnn)=%.2f\n",
- src.to_string().c_str(), filter.to_string().c_str(), algo,
- time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn,
- (flo / (time_in_ms_cudnn * 1e-3)), algo,
- time_in_ms_cudnn / time_in_ms);
- }
- printf("bench with z tensor\n");
- for (auto&& arg : args) {
- Param param;
- param.pad_h = param.pad_w = arg.f / 2;
- param.stride_h = param.stride_w = arg.s;
- param.format = Format::CHWN4;
-
- size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2);
- size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2);
-
- benchmarker.set_param(param);
- if (!algo) {
- benchmarker.proxy()->target_algo = nullptr;
- }
- auto time_in_ms =
- benchmarker.execs({{arg.ci / 4, arg.hi, arg.wi, arg.n, 4},
- {arg.ci / 4, arg.f, arg.f, arg.co, 4},
- {arg.co / 4, 1, 1, 1, 4},
- {arg.co / 4, ho, wo, arg.n, 4},
- {}}) /
- RUNS;
- float time_in_ms_cudnn = 0.f;
- if (arg.ci % 32 == 0 && arg.co % 32 == 0) {
- param.format = Format::NCHW32;
- benchmarker_cudnn.set_param(param);
- time_in_ms_cudnn =
- benchmarker_cudnn.execs(
- {{arg.n, arg.ci / 32, arg.hi, arg.wi, 32},
- {arg.co, arg.ci / 32, arg.f, arg.f, 32},
- {1, arg.co / 32, 1, 1, 32},
- {arg.n, arg.co / 32, ho, wo, 32},
- {}}) /
- RUNS;
- } else {
- param.format = Format::NCHW4;
- benchmarker_cudnn.set_param(param);
- time_in_ms_cudnn =
- benchmarker_cudnn.execs(
- {{arg.n, arg.ci / 4, arg.hi, arg.wi, 4},
- {arg.co, arg.ci / 4, arg.f, arg.f, 4},
- {1, arg.co / 4, 1, 1, 4},
- {arg.n, arg.co / 4, ho, wo, 4},
- {}}) /
- RUNS;
- }
- float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f *
- arg.f / (1e12);
- TensorShape src{arg.n, arg.ci, arg.hi, arg.wi},
- filter{arg.co, arg.ci, arg.f, arg.f};
- printf("src=%s, filter=%s, time(algo=%s)=%.2f %.2fTops, "
- "time(cudnn)=%.2f %.2fTops, "
- "perf(algo=%s)/perf(cudnn)=%.2f\n",
- src.to_string().c_str(), filter.to_string().c_str(), algo,
- time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn,
- (flo / (time_in_ms_cudnn * 1e-3)), algo,
- time_in_ms_cudnn / time_in_ms);
- }
- }
- }
- #endif
- } // namespace
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_1x1) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4, conv_bias::get_int8_nchw4_args(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_3x3) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4);
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_5x5) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4, conv_bias::get_int8_nchw4_args(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_7x7) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4, conv_bias::get_int8_nchw4_args(7));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_WITH_Z) {
- require_compute_capability(6, 1);
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM"));
- UniformIntRNG rng{-3, 3};
- UniformIntRNG bias_rng{-50, 50};
- checker.set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &bias_rng)
- .set_rng(3, &rng)
- .set_dtype(0, dtype::QuantizedS8{1.2f})
- .set_dtype(1, dtype::QuantizedS8{1.3f})
- .set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f})
- .set_dtype(3, dtype::QuantizedS8{1.1f})
- .set_dtype(4, dtype::QuantizedS8{1.0f})
- .set_epsilon(1 + 1e-3)
- .set_max_avg_error(1e-1)
- .set_max_avg_biased_error(1e-1);
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 1;
- param.format = param::ConvBias::Format::NCHW4;
- checker.set_param(param).execs({{32, 4, 12, 12, 4},
- {16, 4, 3, 3, 4},
- {1, 4, 1, 1, 4},
- {32, 4, 12, 12, 4},
- {}});
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_STRIDE2_WITH_Z) {
- require_compute_capability(6, 1);
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM"));
- UniformIntRNG rng{-3, 3};
- UniformIntRNG bias_rng{-50, 50};
- checker.set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &bias_rng)
- .set_rng(3, &rng)
- .set_dtype(0, dtype::QuantizedS8{1.2f})
- .set_dtype(1, dtype::QuantizedS8{1.3f})
- .set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f})
- .set_dtype(3, dtype::QuantizedS8{1.1f})
- .set_dtype(4, dtype::QuantizedS8{1.0f})
- .set_epsilon(1 + 1e-3)
- .set_max_avg_error(1e-1)
- .set_max_avg_biased_error(1e-1);
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 2;
- param.format = param::ConvBias::Format::NCHW4;
- checker.set_param(param).execs({{32, 4, 12, 12, 4},
- {16, 4, 3, 3, 4},
- {1, 4, 1, 1, 4},
- {32, 4, 6, 6, 4},
- {}});
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_CHECK_BOUNDS_1x1) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_args_check_bounds(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_CHECK_BOUNDS_3x3) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_args_check_bounds(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_CHECK_BOUNDS_5x5) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_args_check_bounds(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_CHECK_BOUNDS_7x7) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_args_check_bounds(7));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4);
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_WITH_Z) {
- require_compute_capability(6, 1);
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM"));
- UniformIntRNG rng{-3, 3};
- UniformIntRNG bias_rng{-50, 50};
- checker.set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &bias_rng)
- .set_rng(3, &rng)
- .set_dtype(0, dtype::QuantizedS8{1.2f})
- .set_dtype(1, dtype::QuantizedS8{1.3f})
- .set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f})
- .set_dtype(3, dtype::QuantizedS8{1.1f})
- .set_dtype(4, dtype::QuantizedS8{1.1f})
- .set_epsilon(1 + 1e-3)
- .set_max_avg_error(1e-1)
- .set_max_avg_biased_error(1e-1);
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 1;
- param.format = param::ConvBias::Format::CHWN4;
- checker.set_param(param).execs({{4, 12, 12, 32, 4},
- {4, 3, 3, 16, 4},
- {4, 1, 1, 1, 4},
- {4, 12, 12, 32, 4},
- {}});
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_HSWISH) {
- require_compute_capability(6, 1);
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM"));
- UniformIntRNG rng{-3, 3};
- UniformIntRNG bias_rng{-50, 50};
- checker.set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &bias_rng)
- .set_rng(3, &rng)
- .set_dtype(0, dtype::QuantizedS8{1.2f})
- .set_dtype(1, dtype::QuantizedS8{1.3f})
- .set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f})
- .set_dtype(4, dtype::QuantizedS8{0.001f})
- .set_epsilon(1 + 1e-3)
- .set_max_avg_error(1e-1)
- .set_max_avg_biased_error(1e-1);
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 1;
- param.format = param::ConvBias::Format::CHWN4;
- param.nonlineMode = param::ConvBias::NonlineMode::H_SWISH;
- checker.set_param(param).execs({{4, 12, 12, 32, 4},
- {4, 3, 3, 16, 4},
- {4, 1, 1, 1, 4},
- {},
- {}});
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_CHECK_BOUNDS) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_check_bounds(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL_1x1) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_small_channel_args(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL_3x3) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_small_channel_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL_5x5) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_small_channel_args(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL_7x7) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_small_channel_args(7));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_SMALL_CHANNEL_CHECK_BOUNDS) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_small_channel_args_check_bounds(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL_1x1_CHECK_BOUNDS) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_small_channel_args_check_bounds(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL_5x5_CHECK_BOUNDS) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_small_channel_args_check_bounds(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL_7x7_CHECK_BOUNDS) {
- require_compute_capability(6, 1);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_small_channel_args_check_bounds(7));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_1x1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_tensorcore_args(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_3x3) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_tensorcore_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_5x5) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_tensorcore_args(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_7x7) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_tensorcore_args(7));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_CHECK_BOUNDS_ALGO_0) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_args_check_bounds(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_CHECK_BOUNDS_ALGO_1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma8x32x16",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_args_check_bounds(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_CHECK_BOUNDS_ALGO_2) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma32x8x16",
- param::ConvBias::Format::NCHW4,
- conv_bias::get_int8_nchw4_args_check_bounds(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_TENSORCORE_ALGO_0) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(), "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_tensorcore_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_TENSORCORE_ALGO_1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(), "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma32x8x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_tensorcore_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_TENSORCORE_ALGO_2) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(), "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma8x32x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_tensorcore_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_TENSORCORE_CHECK_BOUNDS_1x1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_check_bounds(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_TENSORCORE_CHECK_BOUNDS_5x5) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_check_bounds(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_TENSORCORE_CHECK_BOUNDS_7x7) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(), "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_check_bounds(7));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_NCHW4_TENSORCORE_WITH_Z) {
- require_compute_capability(7, 5);
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma16x16x16"));
- UniformIntRNG rng{-3, 3};
- UniformIntRNG bias_rng{-50, 50};
- checker.set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &bias_rng)
- .set_rng(3, &rng)
- .set_dtype(0, dtype::QuantizedS8{1.2f})
- .set_dtype(1, dtype::QuantizedS8{1.3f})
- .set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f})
- .set_dtype(3, dtype::QuantizedS8{1.1f})
- .set_dtype(4, dtype::QuantizedS8{1.0f})
- .set_epsilon(1 + 1e-3)
- .set_max_avg_error(1e-1)
- .set_max_avg_biased_error(1e-1);
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 1;
- param.format = param::ConvBias::Format::NCHW4;
- checker.set_param(param).execs({{64, 8, 12, 12, 4},
- {64, 8, 3, 3, 4},
- {1, 16, 1, 1, 4},
- {64, 16, 12, 12, 4},
- {}});
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_TENSORCORE_WITH_Z) {
- require_compute_capability(7, 5);
- Checker<ConvBiasForward> checker(handle_cuda());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma16x16x16"));
- UniformIntRNG rng{-3, 3};
- UniformIntRNG bias_rng{-50, 50};
- checker.set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &bias_rng)
- .set_rng(3, &rng)
- .set_dtype(0, dtype::QuantizedS8{1.2f})
- .set_dtype(1, dtype::QuantizedS8{1.3f})
- .set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f})
- .set_dtype(3, dtype::QuantizedS8{1.1f})
- .set_dtype(4, dtype::QuantizedS8{1.0f})
- .set_epsilon(1 + 1e-3)
- .set_max_avg_error(1e-1)
- .set_max_avg_biased_error(1e-1);
- param::ConvBias param;
- param.pad_h = param.pad_w = 1;
- param.stride_h = param.stride_w = 1;
- param.format = param::ConvBias::Format::CHWN4;
- checker.set_param(param).execs({{8, 12, 12, 64, 4},
- {8, 3, 3, 64, 4},
- {16, 1, 1, 1, 4},
- {16, 12, 12, 64, 4},
- {}});
- }
-
- TEST_F(CUDA,
- CONV_BIAS_INT8_CHWN4_REFORMAT_FILTER_TENSORCORE_CHECK_BOUNDS_ALGO_0) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_REORDER_FILTER_mma16x16x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_check_bounds(3));
- }
-
- TEST_F(CUDA,
- CONV_BIAS_INT8_CHWN4_REFORMAT_FILTER_TENSORCORE_CHECK_BOUNDS_ALGO_1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_REORDER_FILTER_mma8x32x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_check_bounds(3));
- }
-
- TEST_F(CUDA,
- CONV_BIAS_INT8_CHWN4_REFORMAT_FILTER_TENSORCORE_CHECK_BOUNDS_ALGO_2) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_REORDER_FILTER_mma32x8x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_check_bounds(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_REFORMAT_FILTER_TENSORCORE_ALGO_0) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_REORDER_FILTER_mma16x16x16",
- param::ConvBias::Format::CHWN4, conv_bias::get_int8_chwn4_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_REFORMAT_FILTER_TENSORCORE_ALGO_1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_REORDER_FILTER_mma8x32x16",
- param::ConvBias::Format::CHWN4, conv_bias::get_int8_chwn4_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_REFORMAT_FILTER_TENSORCORE_ALGO_2) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_REORDER_FILTER_mma32x8x16",
- param::ConvBias::Format::CHWN4, conv_bias::get_int8_chwn4_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_ALGO_0) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma16x16x16",
- param::ConvBias::Format::CHWN4, conv_bias::get_int8_chwn4_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_ALGO_1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma8x32x16",
- param::ConvBias::Format::CHWN4, conv_bias::get_int8_chwn4_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_ALGO_2) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.3f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma32x8x16",
- param::ConvBias::Format::CHWN4, conv_bias::get_int8_chwn4_args(3));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_1x1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma16x16x16",
- param::ConvBias::Format::CHWN4, conv_bias::get_int8_chwn4_args(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_5x5) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma16x16x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_small_batch(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_7x7) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma16x16x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_small_batch(7));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_5x5_ALGO_1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma32x8x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_small_batch(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_5x5_ALGO_2) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma8x32x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_small_batch(5));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_1x1_ALGO_1) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma32x8x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_small_batch(1));
- }
-
- TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_1x1_ALGO_2) {
- require_compute_capability(7, 5);
- conv_bias::check_conv_bias(
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.1f},
- handle_cuda(),
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_UNROLL_WIDTH_mma8x32x16",
- param::ConvBias::Format::CHWN4,
- conv_bias::get_int8_chwn4_args_small_batch(1));
- }
-
-
- #if MEGDNN_WITH_BENCHMARK
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_CHWN4) {
- require_compute_capability(6, 1);
- benchmark_target_algo(
- handle_cuda(), get_resnet50_bench_args(), dtype::QuantizedS8{1.2f},
- dtype::QuantizedS8{1.3f}, dtype::QuantizedS32{1.2f * 1.3f},
- dtype::QuantizedS8{1.0f}, "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4);
- }
-
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_NCHW4) {
- require_compute_capability(6, 1);
- benchmark_target_algo(
- handle_cuda(), get_resnet50_bench_args(), dtype::QuantizedS8{1.2f},
- dtype::QuantizedS8{1.3f}, dtype::QuantizedS32{1.2f * 1.3f},
- dtype::QuantizedS8{1.0f}, "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::NCHW4);
- }
-
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_CHWN4_TENSORCORE) {
- require_compute_capability(7, 5);
- benchmark_target_algo_with_cudnn_tsc(
- handle_cuda(), get_resnet50_bench_args(256),
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f},
- "INT8_CHWN4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::CHWN4);
- }
-
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_CHWN4_TENSORCORE_ALL_ALGO) {
- require_compute_capability(7, 5);
- benchmark_target_algo_with_cudnn_tsc(
- handle_cuda(), get_resnet50_bench_args(256),
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f}, nullptr,
- param::ConvBias::Format::CHWN4);
- }
-
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_CHWN4_DET_ALL_ALGO) {
- require_compute_capability(7, 5);
- benchmark_target_algo_with_cudnn_tsc(
- handle_cuda(), get_detection_bench_args(), dtype::QuantizedS8{1.2f},
- dtype::QuantizedS8{1.3f}, dtype::QuantizedS32{1.2f * 1.3f},
- dtype::QuantizedS8{1.0f}, nullptr, param::ConvBias::Format::CHWN4);
- }
-
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_NCHW4_TENSORCORE) {
- require_compute_capability(7, 5);
- benchmark_target_algo_with_cudnn_tsc(
- handle_cuda(), get_resnet50_bench_args(256),
- dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f},
- dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f},
- "INT8_NCHW4_IMMA_IMPLICIT_GEMM_mma16x16x16",
- param::ConvBias::Format::NCHW4);
- }
-
- TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL) {
- require_compute_capability(6, 1);
- std::vector<BenchArgs> args;
- args.push_back(BenchArgs{64, 4, 224, 224, 64, 7, 2});
- benchmark_target_algo(
- handle_cuda(), args, dtype::QuantizedS8{1.2f},
- dtype::QuantizedS8{1.3f}, dtype::QuantizedS32{1.2f * 1.3f},
- dtype::QuantizedS8{1.0f}, "INT8_CHWN4_DOTPROD_IMPLICIT_GEMM",
- param::ConvBias::Format::CHWN4);
- }
-
- #endif
-
- } // namespace test
- } // namespace megdnn
-
- #undef V1
- #undef V
-
- // vim: syntax=cpp.doxygen
|