You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

conv_bias_multi_thread.cpp 69 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648
  1. /**
  2. * \file dnn/test/arm_common/conv_bias_multi_thread.cpp
  3. * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  4. *
  5. * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  6. *
  7. * Unless required by applicable law or agreed to in writing,
  8. * software distributed under the License is distributed on an
  9. * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
  10. * implied.
  11. */
  12. #include "test/arm_common/fixture.h"
  13. #include "test/common/benchmarker.h"
  14. #include "test/common/conv_bias.h"
  15. using namespace megdnn;
  16. using namespace test;
  17. using namespace conv_bias;
  18. std::vector<conv_bias::TestArg> get_int8_quint8_conv_bias_args(
  19. std::vector<size_t> kernel, size_t stride, bool no_pad, bool no_bias,
  20. bool no_nonlinemode) {
  21. using namespace conv_bias;
  22. using Param = param::ConvBias;
  23. using NLMode = param::ConvBias::NonlineMode;
  24. std::vector<TestArg> args;
  25. auto pack = [&](size_t n, size_t oc, size_t ic, size_t w, size_t h,
  26. size_t kernel, size_t stride, NLMode nlmode) {
  27. Param param;
  28. param.stride_h = stride;
  29. param.stride_w = stride;
  30. if (!no_pad) {
  31. param.pad_h = kernel / 2;
  32. param.pad_w = kernel / 2;
  33. } else {
  34. param.pad_h = 0;
  35. param.pad_w = 0;
  36. }
  37. param.nonlineMode = nlmode;
  38. args.emplace_back(param, TensorShape{n, ic, h, w},
  39. TensorShape{oc, ic, kernel, kernel}, TensorShape{});
  40. if (!no_bias) {
  41. args.emplace_back(param, TensorShape{n, ic, h, w},
  42. TensorShape{oc, ic, kernel, kernel},
  43. TensorShape{1, oc, 1, 1});
  44. }
  45. };
  46. std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
  47. if (!no_nonlinemode) {
  48. nonlinemode.emplace_back(NLMode::RELU);
  49. nonlinemode.emplace_back(NLMode::H_SWISH);
  50. }
  51. for (size_t n : {1, 2}) {
  52. for (auto nlmode : nonlinemode) {
  53. for (size_t ic : {1, 3, 7}) {
  54. for (size_t oc : {1, 3, 7}) {
  55. for (size_t size : {4, 6, 8, 14, 16, 18}) {
  56. for (size_t kern : kernel) {
  57. pack(n, oc, ic, size, size, kern, stride, nlmode);
  58. }
  59. }
  60. }
  61. }
  62. }
  63. }
  64. return args;
  65. }
  66. std::vector<conv_bias::TestArg> get_nchw44_conv_bias_args(
  67. std::vector<size_t> kernel_vec, size_t stride, bool no_pad = false,
  68. bool no_bias = false, bool no_nonlinemode = false,
  69. bool is_input_nchw = false, bool support_full_bias = false,
  70. bool support_sigmoid = false) {
  71. using namespace conv_bias;
  72. using NLMode = param::ConvBias::NonlineMode;
  73. std::vector<TestArg> args;
  74. auto pack = [&](size_t n, size_t oc, size_t ic, size_t h, size_t w,
  75. size_t kernel, size_t stride, size_t group, NLMode nlmode,
  76. megdnn::BiasMode bias_mode, int any_pad = -1) {
  77. constexpr int pack_c = 4;
  78. const size_t pad = any_pad >= 0 ? any_pad : kernel / 2;
  79. auto oc_per_group = oc / group;
  80. auto ic_per_group = ic / group;
  81. bool ok_group = (oc % group == 0 && ic % group == 0) &&
  82. oc_per_group % pack_c == 0 && oc_per_group > 0 &&
  83. ic_per_group > 0;
  84. bool nchw_disable = group > 1 || ic_per_group >= 4;
  85. bool nchw44_disable = ic_per_group % pack_c != 0;
  86. bool invalid_pad = (w + 2 * pad < kernel) || (h + 2 * pad < kernel);
  87. if (!(ok_group) || invalid_pad) {
  88. return;
  89. }
  90. if ((is_input_nchw && nchw_disable) ||
  91. (!is_input_nchw && nchw44_disable)) {
  92. return;
  93. }
  94. size_t kernel_h = kernel;
  95. size_t kernel_w = kernel;
  96. param::ConvBias param;
  97. param.format = param::ConvBias::Format::NCHW44;
  98. param.stride_h = stride;
  99. param.stride_w = stride;
  100. param.pad_h = pad;
  101. param.pad_w = pad;
  102. param.nonlineMode = nlmode;
  103. auto src_tensor_shape = TensorShape{n, ic / pack_c, h, w, pack_c};
  104. auto weight_tensor_shape = TensorShape{
  105. oc / pack_c, ic / pack_c, kernel_h, kernel_w, pack_c, pack_c};
  106. auto bias_tensor_shape = TensorShape{};
  107. if (bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
  108. bias_tensor_shape = {1, oc / pack_c, 1, 1, pack_c};
  109. } else if (bias_mode == megdnn::BiasMode::BIAS) {
  110. bias_tensor_shape = {n, oc / pack_c,
  111. (h + 2 * pad - kernel) / stride + 1,
  112. (w + 2 * pad - kernel) / stride + 1, pack_c};
  113. }
  114. if (group == 1) {
  115. param.sparse = param::ConvBias::Sparse::DENSE;
  116. } else if (group > 1 && ic / group == 1 && oc / group == 1) {
  117. megdnn_assert(0, "not support channel wise");
  118. param.sparse = param::ConvBias::Sparse::GROUP;
  119. weight_tensor_shape = TensorShape{group / pack_c, 1, 1,
  120. kernel_h, kernel_w, pack_c};
  121. } else if (group > 1 && oc_per_group % pack_c == 0 && oc / group > 0 &&
  122. ic_per_group % pack_c == 0 && ic / group > 0) {
  123. param.sparse = param::ConvBias::Sparse::GROUP;
  124. weight_tensor_shape = TensorShape{group,
  125. oc_per_group / pack_c,
  126. ic_per_group / pack_c,
  127. kernel_h,
  128. kernel_w,
  129. pack_c,
  130. pack_c};
  131. }
  132. if (is_input_nchw) {
  133. src_tensor_shape = TensorShape{n, ic, h, w};
  134. weight_tensor_shape =
  135. TensorShape{oc / pack_c, kernel_h, kernel_w, ic, pack_c};
  136. }
  137. args.emplace_back(param, src_tensor_shape, weight_tensor_shape,
  138. bias_tensor_shape);
  139. };
  140. std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
  141. if (!no_nonlinemode) {
  142. nonlinemode.emplace_back(NLMode::RELU);
  143. nonlinemode.emplace_back(NLMode::H_SWISH);
  144. }
  145. if (support_sigmoid) {
  146. nonlinemode.emplace_back(NLMode::SIGMOID);
  147. }
  148. std::vector<megdnn::BiasMode> bias_mode = {
  149. megdnn::BiasMode::BROADCAST_CHANNEL_BIAS};
  150. if (no_bias) {
  151. bias_mode.emplace_back(megdnn::BiasMode::NO_BIAS);
  152. }
  153. if (support_full_bias) {
  154. bias_mode.emplace_back(megdnn::BiasMode::BIAS);
  155. }
  156. for (auto bias : bias_mode)
  157. for (auto nlmode : nonlinemode)
  158. for (size_t n : {1, 2})
  159. for (size_t kernel : kernel_vec)
  160. for (size_t oc : {4, 12, 32})
  161. for (size_t ic : {1, 3, 4, 12, 32})
  162. for (size_t h : {3, 5, 12})
  163. for (size_t w : {7, 16, 23}) {
  164. for (size_t group = 1;
  165. group <= std::min(oc, ic); ++group) {
  166. pack(n, oc, ic, h, w, kernel, stride,
  167. group, nlmode, bias);
  168. }
  169. }
  170. return args;
  171. }
  172. std::vector<conv_bias::TestArg> get_nchw44_channel_wise_args(
  173. std::vector<size_t> kernel, size_t stride, bool no_bias,
  174. bool no_nonlinemode, bool no_full_bias) {
  175. using namespace conv_bias;
  176. using Param = param::ConvBias;
  177. using NLMode = param::ConvBias::NonlineMode;
  178. std::vector<TestArg> args;
  179. auto pack = [&](size_t n, size_t group, size_t w, size_t h, size_t kernel,
  180. size_t stride, NLMode nlmode, bool pad) {
  181. Param param;
  182. param.stride_h = stride;
  183. param.stride_w = stride;
  184. if (pad) {
  185. param.pad_h = kernel / 2;
  186. param.pad_w = kernel / 2;
  187. } else {
  188. param.pad_h = 0;
  189. param.pad_w = 0;
  190. }
  191. param.nonlineMode = nlmode;
  192. param.format = param::ConvBias::Format::NCHW44;
  193. param.sparse = param::ConvBias::Sparse::GROUP;
  194. args.emplace_back(param, TensorShape{n, group, h, w, 4},
  195. TensorShape{group, 1, 1, kernel, kernel, 4},
  196. TensorShape{});
  197. if (!no_bias) {
  198. args.emplace_back(param, TensorShape{n, group, h, w, 4},
  199. TensorShape{group, 1, 1, kernel, kernel, 4},
  200. TensorShape{1, group, 1, 1, 4});
  201. }
  202. if (!no_full_bias) {
  203. args.emplace_back(
  204. param, TensorShape{n, group, h, w, 4},
  205. TensorShape{group, 1, 1, kernel, kernel, 4},
  206. TensorShape{n, group,
  207. (h + 2 * param.pad_w - kernel) / stride + 1,
  208. (w + 2 * param.pad_w - kernel) / stride + 1,
  209. 4});
  210. }
  211. };
  212. std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
  213. if (!no_nonlinemode) {
  214. nonlinemode.emplace_back(NLMode::RELU);
  215. nonlinemode.emplace_back(NLMode::H_SWISH);
  216. }
  217. for (size_t n : {1, 2}) {
  218. for (auto nlmode : nonlinemode) {
  219. for (bool pad : {true}) {
  220. for (size_t group : {1, 2, 4, 7, 128}) {
  221. for (size_t size : {4, 6, 7, 9, 15, 40}) {
  222. for (size_t kern : kernel) {
  223. pack(n, group, size, size, kern, stride, nlmode,
  224. pad);
  225. }
  226. }
  227. }
  228. }
  229. for (bool pad : {false}) {
  230. for (size_t group : {1, 2, 7, 128}) {
  231. for (size_t size : {7, 9, 15, 40}) {
  232. for (size_t kern : kernel) {
  233. pack(n, group, size, size, kern, stride, nlmode,
  234. pad);
  235. }
  236. }
  237. }
  238. }
  239. }
  240. }
  241. return args;
  242. }
  243. void checker_conv_bias_qint8x8x8(std::vector<conv_bias::TestArg> args,
  244. Handle* handle, const char* algo_name) {
  245. Checker<ConvBias> checker(handle);
  246. checker.set_before_exec_callback(
  247. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  248. #if MEGDNN_ARMV7
  249. checker.set_epsilon(1);
  250. #endif
  251. UniformIntRNG rng{-50, 50};
  252. checker.set_dtype(0, dtype::QuantizedS8(0.41113496f))
  253. .set_dtype(1, dtype::QuantizedS8(0.01887994f))
  254. .set_dtype(2, dtype::QuantizedS32(0.41113496f * 0.01887994f))
  255. .set_dtype(4, dtype::QuantizedS8(0.49550694f))
  256. .set_rng(0, &rng)
  257. .set_rng(1, &rng)
  258. .set_rng(2, &rng);
  259. for (auto&& arg : args) {
  260. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  261. }
  262. }
  263. void checker_conv_bias_qint8x8x32(std::vector<conv_bias::TestArg> args,
  264. Handle* handle, const char* algo_name) {
  265. Checker<ConvBias> checker(handle);
  266. UniformIntRNG rng{-50, 50};
  267. checker.set_dtype(0, dtype::QuantizedS8(2.5f))
  268. .set_dtype(1, dtype::QuantizedS8(2.5f))
  269. .set_dtype(2, dtype::QuantizedS32(6.25f))
  270. .set_dtype(4, {});
  271. checker.set_before_exec_callback(
  272. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  273. for (auto&& arg : args) {
  274. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  275. }
  276. }
  277. void checker_conv_bias_quint8x8x8(std::vector<conv_bias::TestArg> args,
  278. Handle* handle, const char* algo_name) {
  279. Checker<ConvBias> checker(handle);
  280. checker.set_before_exec_callback(
  281. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  282. UniformIntRNG rng(0, 255);
  283. checker.set_dtype(0, dtype::Quantized8Asymm(0.2f, 100))
  284. .set_dtype(1, dtype::Quantized8Asymm(0.2f, 120))
  285. .set_dtype(2, dtype::QuantizedS32(0.04f))
  286. .set_dtype(4, dtype::Quantized8Asymm(1.4f, 110))
  287. .set_rng(0, &rng)
  288. .set_rng(1, &rng)
  289. .set_rng(2, &rng);
  290. for (auto&& arg : args) {
  291. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  292. }
  293. }
  294. void checker_conv_bias_quint8x8x32(std::vector<conv_bias::TestArg> args,
  295. Handle* handle, const char* algo_name) {
  296. Checker<ConvBias> checker(handle);
  297. checker.set_before_exec_callback(
  298. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  299. NormalRNG rng(128.f);
  300. checker.set_rng(0, &rng).set_rng(1, &rng);
  301. checker.set_dtype(0, dtype::Quantized8Asymm(1.2f, (uint8_t)127))
  302. .set_dtype(1, dtype::Quantized8Asymm(1.3f, (uint8_t)129))
  303. .set_dtype(2, dtype::QuantizedS32(1.2 * 1.3))
  304. .set_dtype(4, {});
  305. for (auto&& arg : args) {
  306. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  307. }
  308. }
  309. void checker_conv_bias_int8x8x32_multi(std::vector<conv_bias::TestArg> args,
  310. Handle* handle, const char* algo_name) {
  311. Checker<ConvBias> checker(handle);
  312. checker.set_before_exec_callback(
  313. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  314. checker.set_dtype(0, dtype::Int8());
  315. checker.set_dtype(1, dtype::Int8());
  316. checker.set_dtype(2, dtype::Int32());
  317. checker.set_dtype(4, dtype::Int32());
  318. for (auto&& arg : args) {
  319. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  320. }
  321. }
  322. /**********************************F32 direct************************/
  323. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_LARGE_GROUP) {
  324. check_conv_bias(
  325. get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
  326. handle(), "F32DIRECT_LARGE_GROUP");
  327. }
  328. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_SMALL_GROUP) {
  329. check_conv_bias(
  330. get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
  331. handle(), "F32DIRECT_SMALL_GROUP");
  332. }
  333. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S1_1) {
  334. check_conv_bias(get_nchw44_conv_bias_args({2, 7}, 1, false, false, false,
  335. false, true, true),
  336. handle(), "F32_CONV_NCHW44_DIRECT");
  337. }
  338. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S1_2) {
  339. check_conv_bias(get_nchw44_conv_bias_args({3, 5}, 1, false, false, false,
  340. false, true, true),
  341. handle(), "F32_CONV_NCHW44_DIRECT");
  342. }
  343. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S2) {
  344. check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false,
  345. false, false, true, true),
  346. handle(), "F32_CONV_NCHW44_DIRECT");
  347. }
  348. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR1_LARGE_GROUP) {
  349. check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
  350. handle(), "F32STRD1_LARGE_GROUP");
  351. }
  352. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR1_SMALL_GROUP) {
  353. check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
  354. handle(), "F32STRD1_SMALL_GROUP");
  355. }
  356. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR2_LARGE_GROUP) {
  357. check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
  358. handle(), "F32STRD2_LARGE_GROUP");
  359. }
  360. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR2_SMALL_GROUP) {
  361. check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
  362. handle(), "F32STRD2_SMALL_GROUP");
  363. }
  364. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_NCHW_NCHW44_F32) {
  365. check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false,
  366. false, true),
  367. handle(), "F32_CONV_NCHW_NCHW44");
  368. }
  369. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_CHANNEL_WISE_STRIDE1_FP32_NCHW44) {
  370. check_conv_bias(
  371. get_nchw44_channel_wise_args({2, 3, 5}, 1, false, false, false),
  372. handle(), "F32_CHANNEL_WISE_NCHW44");
  373. }
  374. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_CHANNEL_WISE_STRIDE2_FP32_NCHW44) {
  375. check_conv_bias(
  376. get_nchw44_channel_wise_args({2, 3, 5}, 2, false, false, false),
  377. handle(), "F32_CHANNEL_WISE_NCHW44");
  378. }
  379. /**********************************F16 direct************************/
  380. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  381. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_LARGE_GROUP) {
  382. NormalRNG rng(1);
  383. checker_conv_bias_f16(
  384. get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
  385. handle(), rng, "F16DIRECT_LARGE_GROUP", 0.03);
  386. }
  387. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_SMALL_GROUP) {
  388. NormalRNG rng(1);
  389. checker_conv_bias_f16(
  390. get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
  391. handle(), rng, "F16DIRECT_SMALL_GROUP", 0.03);
  392. }
  393. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_STR1_LARGE_GROUP) {
  394. NormalRNG rng(1);
  395. checker_conv_bias_f16(get_conv_bias_args({2, 3, 5}, 1, false, false, false),
  396. handle(), rng, "F16STRD1_LARGE_GROUP", 0.03);
  397. }
  398. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_STR1_SMALL_GROUP) {
  399. NormalRNG rng(1);
  400. checker_conv_bias_f16(get_conv_bias_args({2, 3, 5}, 1, false, false, false),
  401. handle(), rng, "F16STRD1_SMALL_GROUP", 0.03);
  402. }
  403. #endif
  404. /**********************************algo 8816 direct************************/
  405. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_DIRECT_LARGE_GROUP) {
  406. checker_conv_bias_int8x8x16(
  407. get_conv_bias_args({2, 3, 5}, 1, false, true, true), handle(),
  408. "I8816DIRECT_LARGE_GROUP");
  409. }
  410. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_DIRECT_SMALL_GROUP) {
  411. checker_conv_bias_int8x8x16(
  412. get_conv_bias_args({2, 3, 5}, 1, false, true, true), handle(),
  413. "I8816DIRECT_SMALL_GROUP");
  414. }
  415. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_STRIDE2_LARGE_GROUP) {
  416. checker_conv_bias_int8x8x16(
  417. get_conv_bias_args({2, 3, 5}, 2, false, true, true), handle(),
  418. "I8816STRD2_LARGE_GROUP");
  419. }
  420. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_STRIDE2_SMALL_GROUP) {
  421. checker_conv_bias_int8x8x16(
  422. get_conv_bias_args({2, 3, 5}, 2, false, true, true), handle(),
  423. "I8816STRD2_SMALL_GROUP");
  424. }
  425. /**********************************algo 8-8-32 direct************************/
  426. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE1_LARGE_GROUP) {
  427. checker_conv_bias_int8x8x32_multi(
  428. get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
  429. "S8STRD1_LARGE_GROUP");
  430. }
  431. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE1_SMALL_GROUP) {
  432. checker_conv_bias_int8x8x32_multi(
  433. get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
  434. "S8STRD1_SMALL_GROUP");
  435. }
  436. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE2_LARGE_GROUP) {
  437. checker_conv_bias_int8x8x32_multi(
  438. get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
  439. "S8STRD2_LARGE_GROUP");
  440. }
  441. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE2_SMALL_GROUP) {
  442. checker_conv_bias_int8x8x32_multi(
  443. get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
  444. "S8STRD2_SMALL_GROUP");
  445. }
  446. TEST_F(ARM_COMMON_MULTI_THREADS,
  447. CONV_BIAS_INT8_INT8_INT32_CHANNEL_WISE_DIRECT1_NCHW44) {
  448. checker_conv_bias_int8x8x32_multi(
  449. get_nchw44_channel_wise_args({2, 3, 5}, 1, false, true, true),
  450. handle(), "S8_CHAN_WISE_STRD1_NCHW44");
  451. }
  452. TEST_F(ARM_COMMON_MULTI_THREADS,
  453. CONV_BIAS_INT8_INT8_INT32_CHANNEL_WISE_DIRECT2_NCHW44) {
  454. checker_conv_bias_int8x8x32_multi(
  455. get_nchw44_channel_wise_args({2, 3, 5}, 2, false, true, true),
  456. handle(), "S8_CHAN_WISE_STRD2_NCHW44");
  457. }
  458. /********************************qint8 direct******************************/
  459. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_LARGE_GROUP) {
  460. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  461. {2, 3, 5, 7}, 1, false, false, false),
  462. handle(), "S8STRD1_LARGE_GROUP");
  463. }
  464. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_SMALL_GROUP) {
  465. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  466. {2, 3, 5, 7}, 1, false, false, false),
  467. handle(), "S8STRD1_SMALL_GROUP");
  468. }
  469. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_LARGE_GROUP) {
  470. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  471. {2, 3, 5, 7}, 2, false, false, false),
  472. handle(), "S8STRD2_LARGE_GROUP");
  473. }
  474. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_SMALL_GROUP) {
  475. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  476. {2, 3, 5, 7}, 2, false, false, false),
  477. handle(), "S8STRD2_SMALL_GROUP");
  478. }
  479. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_NCHW44) {
  480. checker_conv_bias_qint8x8x8(
  481. get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
  482. handle(), "S8_NCHW44_DIRECT_STRD1");
  483. }
  484. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_NCHW44) {
  485. checker_conv_bias_qint8x8x8(
  486. get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
  487. handle(), "S8_NCHW44_DIRECT_STRD2");
  488. }
  489. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QS8_CHANNEL_WISE_DIRECT1_NCHW44) {
  490. checker_conv_bias_qint8x8x8(
  491. get_nchw44_channel_wise_args({2, 3, 5}, 1, false, false, true),
  492. handle(), "S8_CHAN_WISE_STRD1_NCHW44");
  493. }
  494. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QS8_CHANNEL_WISE_DIRECT2_NCHW44) {
  495. checker_conv_bias_qint8x8x8(
  496. get_nchw44_channel_wise_args({2, 3, 5}, 2, false, false, true),
  497. handle(), "S8_CHAN_WISE_STRD2_NCHW44");
  498. }
  499. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_NCHW_NCHW44) {
  500. checker_conv_bias_qint8x8x8(
  501. get_nchw44_conv_bias_args({3, 5, 7}, 2, false, false, false, true),
  502. handle(), "S8_CONV_NCHW_NCHW44");
  503. }
  504. /*****************************quint8 direct****************************/
  505. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE1_LARGE_GROUP) {
  506. checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
  507. {2, 3, 5, 7}, 1, false, false, false),
  508. handle(), "QU8STRD1_LARGE_GROUP");
  509. }
  510. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE1_SMALL_GROUP) {
  511. checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
  512. {2, 3, 5, 7}, 1, false, false, false),
  513. handle(), "QU8STRD1_SMALL_GROUP");
  514. }
  515. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE2_LARGE_GROUP) {
  516. checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
  517. {2, 3, 5, 7}, 2, false, false, false),
  518. handle(), "QU8STRD2_LARGE_GROUP");
  519. }
  520. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE2_SMALL_GROUP) {
  521. checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
  522. {2, 3, 5, 7}, 2, false, false, false),
  523. handle(), "QU8STRD2_SMALL_GROUP");
  524. }
  525. /****************************dot qint8 direct*************************/
  526. #if __ARM_FEATURE_DOTPROD
  527. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_DOT_NCHW_NCHW44) {
  528. checker_conv_bias_qint8x8x8(
  529. get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, false,
  530. true),
  531. handle(), "ARMDOTS8_NCHW_NCHW44");
  532. checker_conv_bias_qint8x8x8(
  533. get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, false,
  534. true),
  535. handle(), "ARMDOTS8_NCHW_NCHW44");
  536. }
  537. TEST_F(ARM_COMMON_MULTI_THREADS,
  538. CONV_BIAS_INT8_STRIDE1_WITHDOTPROD_LARGE_GROUP) {
  539. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  540. {2, 3, 5, 7}, 1, false, false, false),
  541. handle(), "ARMDOTS8STRD1_LARGE_GROUP");
  542. }
  543. TEST_F(ARM_COMMON_MULTI_THREADS,
  544. CONV_BIAS_INT8_STRIDE1_WITHDOTPROD_SMALL_GROUP) {
  545. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  546. {2, 3, 5, 7}, 1, false, false, false),
  547. handle(), "ARMDOTS8STRD1_SMALL_GROUP");
  548. }
  549. TEST_F(ARM_COMMON_MULTI_THREADS,
  550. CONV_BIAS_INT8_STRIDE2_WITHDOTPROD_LARGE_GROUP) {
  551. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  552. {2, 3, 5, 7}, 2, false, false, false),
  553. handle(), "ARMDOTS8STRD2_LARGE_GROUP");
  554. }
  555. TEST_F(ARM_COMMON_MULTI_THREADS,
  556. CONV_BIAS_INT8_STRIDE2_WITHDOTPROD_SMALL_GROUP) {
  557. checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
  558. {2, 3, 5, 7}, 2, false, false, false),
  559. handle(), "ARMDOTS8STRD2_SMALL_GROUP");
  560. }
  561. /****************************dot 8-8-32 direct*************************/
  562. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD1_WITHDOT_LARGE_GROUP) {
  563. checker_conv_bias_qint8x8x32(
  564. get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
  565. "ARMDOTS8STRD1_LARGE_GROUP");
  566. }
  567. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD1_WITHDOT_SMALL_GROUP) {
  568. checker_conv_bias_qint8x8x32(
  569. get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
  570. "ARMDOTS8STRD1_SMALL_GROUP");
  571. }
  572. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD2_WITHDOT_LARGE_GROUP) {
  573. checker_conv_bias_qint8x8x32(
  574. get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
  575. "ARMDOTS8STRD2_LARGE_GROUP");
  576. }
  577. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD2_WITHDOT_SMALL_GROUP) {
  578. checker_conv_bias_qint8x8x32(
  579. get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
  580. "ARMDOTS8STRD2_SMALL_GROUP");
  581. }
  582. /******************************dot quint8*****************************/
  583. TEST_F(ARM_COMMON_MULTI_THREADS,
  584. CONV_BIAS_QUINT8_STRIDE1_WITHDOTPROD_LARGE_GROUP) {
  585. checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
  586. {2, 3, 5, 7}, 1, false, false, false),
  587. handle(), "ARMDOTU8STRD1_LARGE_GROUP");
  588. }
  589. TEST_F(ARM_COMMON_MULTI_THREADS,
  590. CONV_BIAS_QUINT8_STRIDE1_WITHDOTPROD_SMALL_GROUP) {
  591. checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
  592. {2, 3, 5, 7}, 1, false, false, false),
  593. handle(), "ARMDOTU8STRD1_SMALL_GROUP");
  594. }
  595. TEST_F(ARM_COMMON_MULTI_THREADS,
  596. CONV_BIAS_QUINT8_STRIDE2_WITHDOTPROD_LARGE_GROUP) {
  597. checker_conv_bias_quint8x8x8(
  598. get_int8_quint8_conv_bias_args({2, 5, 7}, 2, false, false, false),
  599. handle(), "ARMDOTU8STRD2_LARGE_GROUP");
  600. }
  601. TEST_F(ARM_COMMON_MULTI_THREADS,
  602. CONV_BIAS_QUINT8_STRIDE2_WITHDOTPROD_SMALL_GROUP) {
  603. checker_conv_bias_quint8x8x8(
  604. get_int8_quint8_conv_bias_args({2, 5, 7}, 2, false, false, false),
  605. handle(), "ARMDOTU8STRD2_SMALL_GROUP");
  606. }
  607. /******************************dot quint8x8x32***********************/
  608. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE1_LARGE_GROUP) {
  609. checker_conv_bias_quint8x8x32(
  610. get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
  611. "ARMDOTU8STRD1_LARGE_GROUP");
  612. }
  613. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE1_SMALL_GROUP) {
  614. checker_conv_bias_quint8x8x32(
  615. get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
  616. "ARMDOTU8STRD1_SMALL_GROUP");
  617. }
  618. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE2_LARGE_GROUP) {
  619. checker_conv_bias_quint8x8x32(
  620. get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
  621. "ARMDOTU8STRD2_LARGE_GROUP");
  622. }
  623. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE2_SMALL_GROUP) {
  624. checker_conv_bias_quint8x8x32(
  625. get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
  626. "ARMDOTU8STRD2_SMALL_GROUP");
  627. }
  628. #endif
  629. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F23_4) {
  630. using namespace conv_bias;
  631. std::vector<TestArg> args = get_winograd_mk_packed_args();
  632. Checker<ConvBiasForward> checker(handle());
  633. check_winograd("4:2:32", checker, args, param::MatrixMul::Format::MK4);
  634. }
  635. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F23_4_NCHW44) {
  636. using namespace conv_bias;
  637. std::vector<TestArg> args = get_nchw44_conv_bias_args({3}, 1);
  638. Checker<ConvBiasForward> checker(handle());
  639. check_winograd("4:2:32", checker, args, param::MatrixMul::Format::MK4,
  640. param::ConvBias::Format::NCHW44);
  641. }
  642. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63) {
  643. using namespace conv_bias;
  644. std::vector<TestArg> args = get_winograd_args(3);
  645. Checker<ConvBiasForward> checker(handle());
  646. check_winograd("1:6:32", checker, args);
  647. }
  648. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4) {
  649. using namespace conv_bias;
  650. std::vector<TestArg> args = get_winograd_mk_packed_args();
  651. Checker<ConvBiasForward> checker(handle());
  652. check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4);
  653. }
  654. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4_NCHW44) {
  655. using namespace conv_bias;
  656. std::vector<TestArg> args = get_nchw44_conv_bias_args({3}, 1);
  657. Checker<ConvBiasForward> checker(handle());
  658. check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4,
  659. param::ConvBias::Format::NCHW44);
  660. }
  661. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F54) {
  662. using namespace conv_bias;
  663. std::vector<TestArg> args = get_winograd_args(4);
  664. Checker<ConvBiasForward> checker(handle());
  665. check_winograd("1:5:32", checker, args);
  666. }
  667. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F45) {
  668. using namespace conv_bias;
  669. std::vector<TestArg> args = get_winograd_args(5);
  670. Checker<ConvBiasForward> checker(handle());
  671. check_winograd("1:4:32", checker, args);
  672. }
  673. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD) {
  674. using namespace conv_bias;
  675. std::vector<TestArg> args = get_winograd_args(3);
  676. Checker<ConvBiasForward> checker(handle());
  677. auto extra_impl = [](const TensorNDArray& tensors, uint32_t m,
  678. param::ConvBias param, Handle* handle) {
  679. megdnn_assert(param.format == param::ConvBias::Format::NCHW);
  680. auto winograd_preprocess_opr =
  681. handle->create_operator<WinogradFilterPreprocess>();
  682. winograd_preprocess_opr->param().output_block_size = m;
  683. TensorLayout filter_transform_layout;
  684. winograd_preprocess_opr->deduce_layout(tensors[1].layout,
  685. filter_transform_layout);
  686. size_t winograd_preprocess_workspace_in_bytes =
  687. winograd_preprocess_opr->get_workspace_in_bytes(
  688. tensors[1].layout, filter_transform_layout);
  689. auto conv_bias_opr = handle->create_operator<ConvBias>();
  690. conv_bias_opr->param() = param;
  691. conv_bias_opr->param().format = param::ConvBias::Format::NCHW_WINOGRAD;
  692. conv_bias_opr->param().output_block_size = m;
  693. size_t conv_bias_workspace_in_bytes =
  694. conv_bias_opr->get_workspace_in_bytes(
  695. tensors[0].layout, filter_transform_layout,
  696. tensors[2].layout, tensors[3].layout, tensors[4].layout,
  697. nullptr);
  698. WorkspaceBundle wb(nullptr, {filter_transform_layout.span().dist_byte(),
  699. conv_bias_workspace_in_bytes,
  700. winograd_preprocess_workspace_in_bytes});
  701. wb.set(malloc(wb.total_size_in_bytes()));
  702. TensorND filter_transform_tensor(wb.get(0),
  703. std::move(filter_transform_layout));
  704. winograd_preprocess_opr->exec(tensors[1], filter_transform_tensor,
  705. wb.get_workspace(2));
  706. conv_bias_opr->exec(tensors[0], filter_transform_tensor, tensors[2],
  707. tensors[3], tensors[4], nullptr,
  708. wb.get_workspace(1));
  709. free(wb.ptr());
  710. };
  711. auto run = [&checker, &extra_impl](
  712. Handle* handle, const std::vector<TestArg>& args,
  713. const std::vector<size_t>& out_size, DType A_dtype,
  714. DType B_dtype, DType C_dtype, DType D_dtype,
  715. const float eps) {
  716. for (auto&& arg : args) {
  717. for (uint32_t m : out_size) {
  718. checker.set_extra_opr_impl(std::bind(extra_impl,
  719. std::placeholders::_1, m,
  720. arg.param, handle));
  721. checker.set_dtype(0, A_dtype)
  722. .set_dtype(1, B_dtype)
  723. .set_dtype(2, C_dtype)
  724. .set_dtype(4, D_dtype)
  725. .set_epsilon(eps)
  726. .set_param(arg.param)
  727. .execs({arg.src, arg.filter, arg.bias, {}, {}});
  728. }
  729. }
  730. };
  731. run(handle(), args, {6}, dtype::Float32(), dtype::Float32(),
  732. dtype::Float32(), dtype::Float32(), 1e-3f);
  733. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  734. Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
  735. checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng);
  736. run(handle(), args, {6}, dtype::Float16(), dtype::Float16(),
  737. dtype::Float16(), dtype::Float16(), 0.35f);
  738. #endif
  739. }
  740. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_PREPROCESS_NCHW44) {
  741. using namespace conv_bias;
  742. std::vector<TestArg> nchw44_args = get_nchw44_conv_bias_args({3}, 1);
  743. Checker<ConvBiasForward> checker(handle());
  744. auto extra_impl = [](const TensorNDArray& tensors, uint32_t m,
  745. param::ConvBias param, Handle* handle) {
  746. megdnn_assert(param.format == param::ConvBias::Format::NCHW44);
  747. auto winograd_preprocess_opr =
  748. handle->create_operator<WinogradFilterPreprocess>();
  749. winograd_preprocess_opr->param().output_block_size = m;
  750. winograd_preprocess_opr->param().format = param::MatrixMul::Format::MK4;
  751. TensorLayout filter_transform_layout;
  752. winograd_preprocess_opr->deduce_layout(tensors[1].layout,
  753. filter_transform_layout);
  754. size_t winograd_preprocess_workspace_in_bytes =
  755. winograd_preprocess_opr->get_workspace_in_bytes(
  756. tensors[1].layout, filter_transform_layout);
  757. auto conv_bias_opr = handle->create_operator<ConvBias>();
  758. conv_bias_opr->param() = param;
  759. conv_bias_opr->param().format = param::ConvBias::Format::NCHW44_WINOGRAD;
  760. conv_bias_opr->param().output_block_size = m;
  761. size_t conv_bias_workspace_in_bytes =
  762. conv_bias_opr->get_workspace_in_bytes(
  763. tensors[0].layout, filter_transform_layout,
  764. tensors[2].layout, tensors[3].layout,
  765. tensors[4].layout, nullptr);
  766. WorkspaceBundle wb(nullptr, {filter_transform_layout.span().dist_byte(),
  767. conv_bias_workspace_in_bytes,
  768. winograd_preprocess_workspace_in_bytes});
  769. wb.set(malloc(wb.total_size_in_bytes()));
  770. TensorND filter_transform_tensor(wb.get(0),
  771. std::move(filter_transform_layout));
  772. winograd_preprocess_opr->exec(tensors[1], filter_transform_tensor,
  773. wb.get_workspace(2));
  774. conv_bias_opr->exec(tensors[0], filter_transform_tensor, tensors[2],
  775. tensors[3], tensors[4], nullptr,
  776. wb.get_workspace(1));
  777. free(wb.ptr());
  778. };
  779. auto run = [&checker, &extra_impl](
  780. Handle* handle, const std::vector<TestArg>& args,
  781. const std::vector<size_t>& out_size, DType A_dtype,
  782. DType B_dtype, DType C_dtype, DType D_dtype,
  783. const float eps) {
  784. for (auto&& arg : args) {
  785. for (uint32_t m : out_size) {
  786. checker.set_extra_opr_impl(std::bind(extra_impl,
  787. std::placeholders::_1, m,
  788. arg.param, handle));
  789. checker.set_dtype(0, A_dtype)
  790. .set_dtype(1, B_dtype)
  791. .set_dtype(2, C_dtype)
  792. .set_dtype(4, D_dtype)
  793. .set_epsilon(eps)
  794. .set_param(arg.param)
  795. .execs({arg.src, arg.filter, arg.bias, {}, {}});
  796. }
  797. }
  798. };
  799. run(handle(), nchw44_args, {2, 6}, dtype::Float32(), dtype::Float32(),
  800. dtype::Float32(), dtype::Float32(), 1e-3f);
  801. }
  802. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_1) {
  803. using namespace conv_bias;
  804. Checker<ConvBiasForward> checker(handle());
  805. auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
  806. const std::vector<size_t>& out_size, DType A_dtype,
  807. DType B_dtype, DType C_dtype, DType D_dtype,
  808. param::MatrixMul::Format format, float eps) {
  809. for (auto&& arg : args) {
  810. for (uint32_t m : out_size) {
  811. checker.set_extra_opr_impl(std::bind(
  812. winograd_algo_extra_impl, std::placeholders::_1, m,
  813. arg.param, handle, format));
  814. checker.set_dtype(0, A_dtype)
  815. .set_dtype(1, B_dtype)
  816. .set_dtype(2, C_dtype)
  817. .set_dtype(4, D_dtype)
  818. .set_epsilon(eps)
  819. .set_param(arg.param)
  820. .execs({arg.src, arg.filter, arg.bias, {}, {}});
  821. }
  822. }
  823. };
  824. std::vector<TestArg> args = get_winograd_mk_packed_args(8);
  825. std::vector<TestArg> args_first_half(args.begin(),
  826. args.begin() + args.size() / 2);
  827. run(handle(), args_first_half, {2, 6}, dtype::Float32{}, dtype::Float32{},
  828. dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4,
  829. 1e-3f);
  830. }
  831. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_2) {
  832. using namespace conv_bias;
  833. Checker<ConvBiasForward> checker(handle());
  834. auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
  835. const std::vector<size_t>& out_size, DType A_dtype,
  836. DType B_dtype, DType C_dtype, DType D_dtype,
  837. param::MatrixMul::Format format, float eps) {
  838. for (auto&& arg : args) {
  839. for (uint32_t m : out_size) {
  840. checker.set_extra_opr_impl(std::bind(
  841. winograd_algo_extra_impl, std::placeholders::_1, m,
  842. arg.param, handle, format));
  843. checker.set_dtype(0, A_dtype)
  844. .set_dtype(1, B_dtype)
  845. .set_dtype(2, C_dtype)
  846. .set_dtype(4, D_dtype)
  847. .set_epsilon(eps)
  848. .set_param(arg.param)
  849. .execs({arg.src, arg.filter, arg.bias, {}, {}});
  850. }
  851. }
  852. };
  853. std::vector<TestArg> args = get_winograd_mk_packed_args(8);
  854. std::vector<TestArg> args_second_half(args.begin() + args.size() / 2,
  855. args.end());
  856. run(handle(), args_second_half, {2, 6}, dtype::Float32{}, dtype::Float32{},
  857. dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4,
  858. 1e-3f);
  859. }
  860. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  861. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F16) {
  862. using namespace conv_bias;
  863. Checker<ConvBiasForward> checker(handle());
  864. auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
  865. const std::vector<size_t>& out_size, DType A_dtype,
  866. DType B_dtype, DType C_dtype, DType D_dtype,
  867. param::MatrixMul::Format format, float eps) {
  868. for (auto&& arg : args) {
  869. for (uint32_t m : out_size) {
  870. checker.set_extra_opr_impl(std::bind(
  871. winograd_algo_extra_impl, std::placeholders::_1, m,
  872. arg.param, handle, format));
  873. checker.set_dtype(0, A_dtype)
  874. .set_dtype(1, B_dtype)
  875. .set_dtype(2, C_dtype)
  876. .set_dtype(4, D_dtype)
  877. .set_epsilon(eps)
  878. .set_param(arg.param)
  879. .execs({arg.src, arg.filter, arg.bias, {}, {}});
  880. }
  881. }
  882. };
  883. std::vector<TestArg> args = get_winograd_mk_packed_args(8);
  884. Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
  885. checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng);
  886. run(handle(), args, {2}, dtype::Float16{}, dtype::Float16{},
  887. dtype::Float16{}, dtype::Float16{}, param::MatrixMul::Format::MK8,
  888. 0.25);
  889. }
  890. #endif
  891. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_INT8) {
  892. using namespace conv_bias;
  893. Checker<ConvBiasForward> checker(handle());
  894. auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
  895. const std::vector<size_t>& out_size, DType A_dtype,
  896. DType B_dtype, DType C_dtype, DType D_dtype,
  897. param::MatrixMul::Format format, float eps) {
  898. for (auto&& arg : args) {
  899. for (uint32_t m : out_size) {
  900. checker.set_extra_opr_impl(std::bind(
  901. winograd_algo_extra_impl, std::placeholders::_1, m,
  902. arg.param, handle, format));
  903. checker.set_dtype(0, A_dtype)
  904. .set_dtype(1, B_dtype)
  905. .set_dtype(2, C_dtype)
  906. .set_dtype(4, D_dtype)
  907. .set_epsilon(eps)
  908. .set_param(arg.param)
  909. .execs({arg.src, arg.filter, arg.bias, {}, {}});
  910. }
  911. }
  912. };
  913. #if MEGDNN_AARCH64
  914. const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
  915. #else
  916. const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
  917. #endif
  918. checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
  919. ssprintf("WINOGRAD:%s:8:2:32", matmul_name).c_str()));
  920. std::vector<TestArg> args = get_winograd_mk_packed_args(8);
  921. std::vector<TestArg> quantized_args =
  922. get_quantized_winograd_mk_packed_args(8);
  923. UniformIntRNG int_rng{-50, 50};
  924. checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
  925. run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f),
  926. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),
  927. dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3);
  928. }
  929. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  930. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F23) {
  931. using namespace conv_bias;
  932. std::vector<TestArg> args = get_winograd_mk_packed_args();
  933. Checker<ConvBiasForward> checker(handle());
  934. check_winograd_fp16("1:2:32", checker, args, NULL, 0.08);
  935. }
  936. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F45_1) {
  937. using namespace conv_bias;
  938. std::vector<TestArg> args = get_winograd_args(5);
  939. std::vector<TestArg> args_head_half(args.begin(),
  940. args.begin() + args.size() / 2);
  941. Checker<ConvBiasForward> checker(handle());
  942. //! fp16 range -1.0 ~ 1.0
  943. Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
  944. check_winograd_fp16("1:4:32", checker, args_head_half, rng, 0.25);
  945. }
  946. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F45_2) {
  947. using namespace conv_bias;
  948. std::vector<TestArg> args = get_winograd_args(5);
  949. std::vector<TestArg> args_back_half(args.begin() + args.size() / 2,
  950. args.end());
  951. Checker<ConvBiasForward> checker(handle());
  952. //! fp16 range -1.0 ~ 1.0
  953. Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
  954. check_winograd_fp16("1:4:32", checker, args_back_half, rng, 0.25);
  955. }
  956. //! FIXME: This test may be failed if run `ARM_COMMON.CONV_BIAS_WINOGRAD*`, but
  957. //! it will pass when run single testcase
  958. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F63) {
  959. using namespace conv_bias;
  960. std::vector<TestArg> args = get_winograd_args(3);
  961. Checker<ConvBiasForward> checker(handle());
  962. //! fp16 range -1.0 ~ 1.0
  963. Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
  964. check_winograd_fp16("1:6:32", checker, args, rng, 0.3);
  965. }
  966. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_8x8_1) {
  967. using namespace conv_bias;
  968. std::vector<TestArg> args = get_winograd_mk_packed_args(8);
  969. std::vector<TestArg> args_head_half(args.begin(),
  970. args.begin() + args.size() / 2);
  971. Checker<ConvBiasForward> checker(handle());
  972. Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
  973. check_winograd_fp16("8:2:32", checker, args_head_half, rng, 0.25,
  974. param::MatrixMul::Format::MK8);
  975. }
  976. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_8x8_2) {
  977. using namespace conv_bias;
  978. std::vector<TestArg> args = get_winograd_mk_packed_args(8);
  979. std::vector<TestArg> args_back_half(args.begin() + args.size() / 2,
  980. args.end());
  981. Checker<ConvBiasForward> checker(handle());
  982. Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
  983. check_winograd_fp16("8:2:32", checker, args_back_half, rng, 0.25,
  984. param::MatrixMul::Format::MK8);
  985. }
  986. #endif
  987. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_INT8_8X8) {
  988. using namespace conv_bias;
  989. std::vector<TestArg> args = get_quantized_winograd_mk_packed_args(8);
  990. Checker<ConvBiasForward> checker(handle());
  991. UniformIntRNG rng{-50, 50};
  992. checker.set_dtype(0, dtype::QuantizedS8(2.5f))
  993. .set_dtype(1, dtype::QuantizedS8(2.5f))
  994. .set_dtype(2, dtype::QuantizedS32(6.25f))
  995. .set_dtype(4, dtype::QuantizedS8(60.25f))
  996. .set_rng(0, &rng)
  997. .set_rng(1, &rng)
  998. .set_rng(2, &rng);
  999. check_winograd("8:2:32", checker, args, param::MatrixMul::Format::MK8);
  1000. }
  1001. void checker_conv_bias(std::vector<conv_bias::TestArg> args, Handle* handle,
  1002. RNG* rng, float epsilon, DType type0, DType type1,
  1003. DType type2, DType type3, const char* algo_name) {
  1004. using namespace conv_bias;
  1005. Checker<ConvBias> checker(handle);
  1006. checker.set_before_exec_callback(
  1007. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  1008. checker.set_dtype(0, type0);
  1009. checker.set_dtype(1, type1);
  1010. checker.set_dtype(2, type2);
  1011. checker.set_dtype(4, type3);
  1012. checker.set_epsilon(epsilon);
  1013. if (NULL != rng) {
  1014. checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng).set_rng(3, rng);
  1015. }
  1016. for (auto&& arg : args) {
  1017. checker.set_param(arg.param).execs(
  1018. {arg.src, arg.filter, arg.bias, {}, {}});
  1019. }
  1020. }
  1021. // clang-format off
  1022. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE2) {
  1023. #define cb(name) \
  1024. check_conv_bias( \
  1025. get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 2, false, false, false), \
  1026. handle(), name);
  1027. #if MEGDNN_AARCH64
  1028. cb("IM2COLMATMUL:AARCH64_F32K8X12X1")
  1029. cb("IM2COLMATMUL:AARCH64_F32K4X16X1")
  1030. cb("IM2COLMATMUL:FB_F32_K8X12X1")
  1031. #elif MEGDNN_ARMV7
  1032. cb("IM2COLMATMUL:ARMV7_F32")
  1033. #endif
  1034. #undef cb
  1035. }
  1036. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE1) {
  1037. #define cb(name) \
  1038. check_conv_bias( \
  1039. get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false), \
  1040. handle(), name);
  1041. #if MEGDNN_AARCH64
  1042. cb("IM2COLMATMUL:AARCH64_F32K8X12X1")
  1043. cb("IM2COLMATMUL:AARCH64_F32K4X16X1")
  1044. cb("IM2COLMATMUL:FB_F32_K8X12X1")
  1045. #elif MEGDNN_ARMV7
  1046. cb("IM2COLMATMUL:ARMV7_F32")
  1047. cb("IM2COLMATMUL:FB_F32_K8X12X1")
  1048. #endif
  1049. #undef cb
  1050. }
  1051. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM) {
  1052. UniformIntRNG rng{-50, 50};
  1053. #define cb(name) \
  1054. checker_conv_bias(get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
  1055. false, true, true), \
  1056. handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
  1057. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
  1058. dtype::QuantizedS8(60.25f), name); \
  1059. checker_conv_bias( \
  1060. get_conv_bias_args({1}, 2, false, false, false, true, true), \
  1061. handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
  1062. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
  1063. dtype::QuantizedS8(60.25f), name);
  1064. float epsilon = 0.001;
  1065. #if MEGDNN_AARCH64
  1066. #if __ARM_FEATURE_DOTPROD
  1067. cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD");
  1068. #else
  1069. cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8");
  1070. cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16");
  1071. #endif
  1072. #elif MEGDNN_ARMV7
  1073. epsilon = 1;
  1074. cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8");
  1075. #endif
  1076. #undef cb
  1077. }
  1078. // clang-format on
  1079. #if MEGDNN_AARCH64 || MEGDNN_ARMV7
  1080. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDASYM) {
  1081. NormalRNG rng(128.f);
  1082. #define cb(name) \
  1083. checker_conv_bias(get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
  1084. false, true, true), \
  1085. handle(), &rng, epsilon, \
  1086. dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
  1087. dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
  1088. dtype::QuantizedS32(1.2 * 1.3), \
  1089. dtype::Quantized8Asymm(50.3f, (uint8_t)120), name); \
  1090. checker_conv_bias( \
  1091. get_conv_bias_args({1}, 2, false, false, false, true, true), \
  1092. handle(), &rng, epsilon, \
  1093. dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
  1094. dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
  1095. dtype::QuantizedS32(1.2 * 1.3), \
  1096. dtype::Quantized8Asymm(50.3f, (uint8_t)120), name);
  1097. float epsilon = 0.001;
  1098. #if MEGDNN_AARCH64
  1099. #if __ARM_FEATURE_DOTPROD
  1100. cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD");
  1101. #else
  1102. cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8");
  1103. #endif
  1104. #elif MEGDNN_ARMV7
  1105. epsilon = 1;
  1106. cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8");
  1107. #endif
  1108. #undef cb
  1109. }
  1110. #endif
  1111. #if MEGDNN_AARCH64 || MEGDNN_ARMV7
  1112. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUINT8x8x32) {
  1113. UniformIntRNG rng{-50, 50};
  1114. float epsilon = 0.001;
  1115. #define cb(name) \
  1116. checker_conv_bias( \
  1117. get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \
  1118. handle(), &rng, epsilon, \
  1119. dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
  1120. dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
  1121. dtype::QuantizedS32(1.2 * 1.3), {}, name); \
  1122. checker_conv_bias(get_conv_bias_args({1}, 2, false, true, true), handle(), \
  1123. &rng, epsilon, \
  1124. dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
  1125. dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
  1126. dtype::QuantizedS32(1.2 * 1.3), {}, name);
  1127. #if MEGDNN_AARCH64
  1128. #if __ARM_FEATURE_DOTPROD
  1129. cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD");
  1130. #else
  1131. cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8");
  1132. #endif
  1133. #elif MEGDNN_ARMV7
  1134. #if __ARM_FEATURE_DOTPROD
  1135. cb("IM2COLMATMUL:AARCH32_QUINT8_K4X8X4");
  1136. #endif
  1137. cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8");
  1138. #endif
  1139. #undef cb
  1140. }
  1141. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COLMATMUL_INT8x8x16) {
  1142. UniformIntRNG rng{-50, 50};
  1143. float epsilon = 0.001;
  1144. #define cb(name) \
  1145. checker_conv_bias( \
  1146. get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true), \
  1147. handle(), &rng, epsilon, dtype::Int8{}, dtype::Int8{}, \
  1148. dtype::Int16{}, dtype::Int16{}, name); \
  1149. checker_conv_bias(get_conv_bias_args({1}, 2, false, true, true), handle(), \
  1150. &rng, epsilon, dtype::Int8{}, dtype::Int8{}, \
  1151. dtype::Int16{}, dtype::Int16{}, name);
  1152. #if MEGDNN_AARCH64
  1153. cb("IM2COLMATMUL:AARCH64_INT8X8X16_K8X8X8");
  1154. cb("IM2COLMATMUL:AARCH64_INT8X8X16_K4X4X16");
  1155. cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16");
  1156. #elif MEGDNN_ARMV7
  1157. cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16");
  1158. cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X8X8");
  1159. cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X2X16");
  1160. #endif
  1161. #undef cb
  1162. }
  1163. #endif
  1164. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  1165. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP16) {
  1166. using namespace conv_bias;
  1167. param::ConvBias cur_param;
  1168. std::vector<conv_bias::TestArg> args =
  1169. get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false);
  1170. std::vector<conv_bias::TestArg> args1 =
  1171. get_conv_bias_args({1}, 2, false, false, false);
  1172. args.insert(args.begin(), args1.begin(), args1.end());
  1173. NormalRNG rng(1);
  1174. #define cb(name) \
  1175. checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{}, \
  1176. dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, \
  1177. name);
  1178. #if MEGDNN_AARCH64
  1179. cb("IM2COLMATMUL:AARCH64_F16_K8X24X1");
  1180. #elif MEGDNN_ARMV7
  1181. cb("IM2COLMATMUL:AARCH32_F16_K4X16X1");
  1182. #endif
  1183. #undef cb
  1184. }
  1185. #endif
  1186. void checker_conv_bias_mul_int8x8x32(std::vector<conv_bias::TestArg> args,
  1187. Handle* handle, const char* algo_name) {
  1188. using namespace conv_bias;
  1189. Checker<ConvBias> checker(handle);
  1190. checker.set_before_exec_callback(
  1191. conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
  1192. checker.set_dtype(0, dtype::Int8());
  1193. checker.set_dtype(1, dtype::Int8());
  1194. checker.set_dtype(2, dtype::Int32());
  1195. checker.set_dtype(4, dtype::Int32());
  1196. for (auto&& arg : args) {
  1197. checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
  1198. }
  1199. UniformIntRNG rng{-50, 50};
  1200. for (auto&& arg : args) {
  1201. checker.set_dtype(0, dtype::QuantizedS8(2.5f))
  1202. .set_dtype(1, dtype::QuantizedS8(2.5f))
  1203. .set_dtype(2, dtype::QuantizedS32(6.25f))
  1204. .set_dtype(4, {})
  1205. .set_rng(0, &rng)
  1206. .set_rng(1, &rng)
  1207. .set_rng(2, &rng)
  1208. .set_param(arg.param)
  1209. .execs({arg.src, arg.filter, {}, {}, {}});
  1210. }
  1211. }
  1212. #if MEGDNN_AARCH64 || MEGDNN_ARMV7
  1213. #if !__ARM_FEATURE_DOTPROD
  1214. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S2) {
  1215. using namespace conv_bias;
  1216. std::vector<conv_bias::TestArg> args =
  1217. get_nchw44_conv_bias_args({2, 5, 7}, 2, false, true, true);
  1218. #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
  1219. #if MEGDNN_AARCH64
  1220. cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
  1221. #else
  1222. cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
  1223. #endif
  1224. #undef cb
  1225. }
  1226. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S1) {
  1227. using namespace conv_bias;
  1228. std::vector<conv_bias::TestArg> args =
  1229. get_nchw44_conv_bias_args({3, 4, 6}, 1, false, true, true);
  1230. #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
  1231. #if MEGDNN_AARCH64
  1232. cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
  1233. #else
  1234. cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
  1235. #endif
  1236. #undef cb
  1237. }
  1238. TEST_F(ARM_COMMON_MULTI_THREADS,
  1239. CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S2) {
  1240. UniformIntRNG rng{-50, 50};
  1241. #define cb(name) \
  1242. checker_conv_bias(get_nchw44_conv_bias_args({3, 4, 6}, 2), handle(), &rng, \
  1243. epsilon, dtype::QuantizedS8(2.5f), \
  1244. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
  1245. dtype::QuantizedS8(60.25f), name);
  1246. float epsilon = 0.001;
  1247. #if MEGDNN_AARCH64
  1248. cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
  1249. #else
  1250. cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
  1251. #endif
  1252. #undef cb
  1253. }
  1254. TEST_F(ARM_COMMON_MULTI_THREADS,
  1255. CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S1) {
  1256. UniformIntRNG rng{-50, 50};
  1257. #define cb(name) \
  1258. checker_conv_bias(get_nchw44_conv_bias_args({2, 5, 7}, 1), handle(), &rng, \
  1259. epsilon, dtype::QuantizedS8(2.5f), \
  1260. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
  1261. dtype::QuantizedS8(60.25f), name);
  1262. float epsilon = 0.001;
  1263. #if MEGDNN_AARCH64
  1264. cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
  1265. #else
  1266. cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
  1267. #endif
  1268. #undef cb
  1269. }
  1270. #if MEGDNN_AARCH64
  1271. TEST_F(ARM_COMMON_MULTI_THREADS,
  1272. CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_FUSE) {
  1273. UniformIntRNG rng{-50, 50};
  1274. #define cb(name) \
  1275. checker_conv_bias(get_nchw44_conv_bias_args({3}, 1), handle(), &rng, \
  1276. epsilon, dtype::QuantizedS8(2.5f), \
  1277. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
  1278. dtype::QuantizedS8(60.25f), name);
  1279. float epsilon = 0.001;
  1280. cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
  1281. #undef cb
  1282. }
  1283. #endif
  1284. #endif
  1285. #endif
  1286. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32) {
  1287. using namespace conv_bias;
  1288. std::vector<conv_bias::TestArg> args =
  1289. get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true);
  1290. std::vector<conv_bias::TestArg> args1 =
  1291. get_conv_bias_args({1}, 2, false, true, true);
  1292. args.insert(args.begin(), args1.begin(), args1.end());
  1293. #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
  1294. #if MEGDNN_AARCH64
  1295. #if __ARM_FEATURE_DOTPROD
  1296. cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD");
  1297. #else
  1298. cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8");
  1299. cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16");
  1300. #endif
  1301. #elif MEGDNN_ARMV7
  1302. #if __ARM_FEATURE_DOTPROD
  1303. cb("IM2COLMATMUL:AARCH32_INT8_K6X8X4");
  1304. #endif
  1305. cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8");
  1306. #endif
  1307. #if MEGDNN_ARMV7
  1308. cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X2X16");
  1309. #endif
  1310. #undef cb
  1311. }
  1312. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S1_MK4_PACK_F32) {
  1313. using namespace conv_bias;
  1314. std::vector<conv_bias::TestArg> args =
  1315. get_nchw44_conv_bias_args({2, 4, 7}, 1);
  1316. #if MEGDNN_AARCH64
  1317. check_conv_bias(args, handle(), "IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1");
  1318. #elif MEGDNN_ARMV7
  1319. check_conv_bias(args, handle(), "IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12");
  1320. #endif
  1321. }
  1322. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S2_MK4_PACK_F32) {
  1323. using namespace conv_bias;
  1324. std::vector<conv_bias::TestArg> args =
  1325. get_nchw44_conv_bias_args({3, 5, 6}, 2);
  1326. #if MEGDNN_AARCH64
  1327. check_conv_bias(args, handle(), "IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1");
  1328. #elif MEGDNN_ARMV7
  1329. check_conv_bias(args, handle(), "IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12");
  1330. #endif
  1331. }
  1332. /***************************** Conv1x1 Algo Test ***********************/
  1333. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_F32) {
  1334. using namespace conv_bias;
  1335. std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(false, false);
  1336. #if MEGDNN_AARCH64
  1337. check_conv_bias(args, handle(), "CONV1x1:AARCH64_F32K8X12X1:24");
  1338. #elif MEGDNN_ARMV7
  1339. check_conv_bias(args, handle(), "CONV1x1:ARMV7_F32:48");
  1340. #endif
  1341. }
  1342. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_MK4_PACK_F32) {
  1343. using namespace conv_bias;
  1344. std::vector<conv_bias::TestArg> args =
  1345. get_nchw44_conv_bias_args({1}, 1, true, false, false);
  1346. #if MEGDNN_AARCH64
  1347. check_conv_bias(args, handle(), "CONV1x1:AARCH64_F32_MK4_K8X12X1:24");
  1348. #elif MEGDNN_ARMV7
  1349. check_conv_bias(args, handle(), "CONV1x1:ARMV7_F32_MK4_PACK_4X12:24");
  1350. #endif
  1351. }
  1352. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_MK4_NO_PACK_F32) {
  1353. using namespace conv_bias;
  1354. std::vector<conv_bias::TestArg> args =
  1355. get_nchw44_conv_bias_args({1}, 1, true, false, false);
  1356. std::vector<conv_bias::TestArg> args_of_4;
  1357. for (auto&& arg : args) {
  1358. if (arg.src.shape[2] * arg.src.shape[3] % 4 == 0) {
  1359. args_of_4.push_back(arg);
  1360. }
  1361. }
  1362. #if MEGDNN_AARCH64
  1363. check_conv_bias(args_of_4, handle(), "CONV1x1:AARCH64_F32_MK4_4x16:24");
  1364. #elif MEGDNN_ARMV7
  1365. check_conv_bias(args_of_4, handle(), "CONV1x1:ARMV7_F32_MK4_4x8:48");
  1366. #endif
  1367. }
  1368. #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
  1369. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_F16) {
  1370. using namespace conv_bias;
  1371. std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(false, false);
  1372. NormalRNG rng(1);
  1373. #if MEGDNN_AARCH64
  1374. checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{},
  1375. dtype::Float16{}, dtype::Float16{}, dtype::Float16{},
  1376. "CONV1x1:AARCH64_F16_K8X24X1:48");
  1377. #elif MEGDNN_ARMV7
  1378. checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{},
  1379. dtype::Float16{}, dtype::Float16{}, dtype::Float16{},
  1380. "CONV1x1:AARCH32_F16_K4X16X1:24");
  1381. #endif
  1382. }
  1383. #endif
  1384. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUANTIZEDSYM) {
  1385. UniformIntRNG rng{-50, 50};
  1386. float epsilon = 0.001;
  1387. #define cb(name) \
  1388. checker_conv_bias(get_conv_bias_1x1_args(false, false, true, true), \
  1389. handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
  1390. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
  1391. dtype::QuantizedS8(60.25f), name);
  1392. #if MEGDNN_AARCH64
  1393. #if __ARM_FEATURE_DOTPROD
  1394. cb("CONV1x1:AARCH64_INT8X8X32_K8X12X4_DOTPROD:24");
  1395. #else
  1396. cb("CONV1x1:AARCH64_INT8X8X32_K8X8X8:24");
  1397. cb("CONV1x1:AARCH64_INT8X8X32_K4X4X16:48");
  1398. #endif
  1399. #elif MEGDNN_ARMV7
  1400. epsilon = 1;
  1401. cb("CONV1x1:ARMV7_INT8X8X32_K4X8X8:48");
  1402. #endif
  1403. #undef cb
  1404. }
  1405. #if MEGDNN_AARCH64 || MEGDNN_ARMV7
  1406. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUANTIZEDASYM) {
  1407. NormalRNG rng(128.f);
  1408. #define cb(name) \
  1409. checker_conv_bias(get_conv_bias_1x1_args(false, false, true, true), \
  1410. handle(), &rng, epsilon, \
  1411. dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
  1412. dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
  1413. dtype::QuantizedS32(1.2 * 1.3), \
  1414. dtype::Quantized8Asymm(50.3f, (uint8_t)120), name);
  1415. float epsilon = 0.001;
  1416. #if MEGDNN_AARCH64
  1417. #if __ARM_FEATURE_DOTPROD
  1418. cb("CONV1x1:AARCH64_QUINT8_K8X8X4_DOTPROD:48");
  1419. #else
  1420. cb("CONV1x1:AARCH64_QUINT8_K8X8X8:24");
  1421. #endif
  1422. #elif MEGDNN_ARMV7
  1423. epsilon = 1;
  1424. cb("CONV1x1:ARMV7_QUINT8_K4X8X8:48");
  1425. #endif
  1426. #undef cb
  1427. }
  1428. #endif
  1429. #if MEGDNN_AARCH64 || MEGDNN_ARMV7
  1430. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUINT8x8x32) {
  1431. UniformIntRNG rng{-50, 50};
  1432. float epsilon = 0.001;
  1433. #define cb(name) \
  1434. checker_conv_bias(get_conv_bias_1x1_args(true, true), handle(), &rng, \
  1435. epsilon, dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
  1436. dtype::Quantized8Asymm(1.3f, (uint8_t)129), \
  1437. dtype::QuantizedS32(1.2 * 1.3), {}, name);
  1438. #if MEGDNN_AARCH64
  1439. #if __ARM_FEATURE_DOTPROD
  1440. cb("CONV1x1:AARCH64_QUINT8_K8X8X4_DOTPROD:24");
  1441. #else
  1442. cb("CONV1x1:AARCH64_QUINT8_K8X8X8:48");
  1443. #endif
  1444. #elif MEGDNN_ARMV7
  1445. #if __ARM_FEATURE_DOTPROD
  1446. cb("CONV1x1:AARCH32_QUINT8_K4X8X4:48");
  1447. #endif
  1448. cb("CONV1x1:ARMV7_QUINT8_K4X8X8:24");
  1449. #endif
  1450. #undef cb
  1451. }
  1452. TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_1X1_S1_INT8x8x16) {
  1453. UniformIntRNG rng{-50, 50};
  1454. float epsilon = 0.001;
  1455. #define cb(name) \
  1456. checker_conv_bias(get_conv_bias_1x1_args(true, true), handle(), &rng, \
  1457. epsilon, dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, \
  1458. dtype::Int16{}, name);
  1459. #if MEGDNN_AARCH64
  1460. cb("CONV1x1:AARCH64_INT8X8X16_K8X8X8:24");
  1461. cb("CONV1x1:AARCH64_INT8X8X16_K4X4X16:24");
  1462. #elif MEGDNN_ARMV7
  1463. cb("CONV1x1:ARMV7_INT8X8X16_K4X8X8:24");
  1464. cb("CONV1x1:ARMV7_INT8X8X16_K4X2X16:48");
  1465. #endif
  1466. cb("CONV1x1:ARM_COMMON_INT8X8X16:48");
  1467. #undef cb
  1468. }
  1469. #endif
  1470. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_INT8x8x32) {
  1471. using namespace conv_bias;
  1472. std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(true, true);
  1473. #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
  1474. #if MEGDNN_AARCH64
  1475. #if __ARM_FEATURE_DOTPROD
  1476. cb("CONV1x1:AARCH64_INT8X8X32_K8X12X4_DOTPROD:48");
  1477. #else
  1478. cb("CONV1x1:AARCH64_INT8X8X32_K8X8X8:24");
  1479. cb("CONV1x1:AARCH64_INT8X8X32_K4X4X16:24");
  1480. #endif
  1481. #elif MEGDNN_ARMV7
  1482. #if __ARM_FEATURE_DOTPROD
  1483. cb("CONV1x1:AARCH32_INT8_K6X8X4:48");
  1484. #endif
  1485. cb("CONV1x1:ARMV7_INT8X8X32_K4X8X8:24");
  1486. #endif
  1487. #if MEGDNN_ARMV7
  1488. cb("CONV1x1:ARMV7_INT8X8X32_K4X2X16:48");
  1489. #endif
  1490. #undef cb
  1491. }
  1492. #ifndef __ARM_FEATURE_DOTPROD
  1493. TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_INT8x8x32_MK4) {
  1494. using namespace conv_bias;
  1495. std::vector<conv_bias::TestArg> args =
  1496. get_nchw44_conv_bias_args({1}, 1, true, true, true);
  1497. #define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
  1498. #if MEGDNN_AARCH64
  1499. cb("CONV1x1:AARCH64_INT8X8X32_MK4_4X4X16:24");
  1500. #elif MEGDNN_ARMV7
  1501. cb("CONV1x1:ARMV7_INT8X8X32_MK4_4X2X16:24");
  1502. #endif
  1503. #undef cb
  1504. UniformIntRNG rng{-50, 50};
  1505. float epsilon = 0.001;
  1506. #define cb(name) \
  1507. checker_conv_bias(get_nchw44_conv_bias_args({1}, 1, true, false, false), \
  1508. handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \
  1509. dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
  1510. dtype::QuantizedS8(60.25f), name);
  1511. #if MEGDNN_AARCH64
  1512. cb("CONV1x1:AARCH64_INT8X8X32_MK4_4X4X16:24");
  1513. #elif MEGDNN_ARMV7
  1514. cb("CONV1x1:ARMV7_INT8X8X32_MK4_4X2X16:24");
  1515. #endif
  1516. #undef cb
  1517. }
  1518. #endif
  1519. // vim: syntax=cpp.doxygen

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台