You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_qat_module.py 6.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203
  1. import io
  2. from functools import partial
  3. from itertools import chain
  4. from typing import Callable
  5. import numpy as np
  6. import megengine as mge
  7. import megengine.functional as F
  8. import megengine.module as M
  9. import megengine.module.qat as QM
  10. import megengine.quantization as Q
  11. from megengine import Tensor
  12. from megengine.module.qat.module import QATModule
  13. from megengine.traced_module import TracedModule, trace_module
  14. from megengine.traced_module.utils import get_subattr
  15. class MyConvBnRelu2d(M.ConvBnRelu2d):
  16. pass
  17. class MyQATConvBnRelu2d(QM.ConvBnRelu2d):
  18. pass
  19. class Myblcok(M.Module):
  20. def __init__(self,):
  21. super().__init__()
  22. self.conv0 = MyConvBnRelu2d(3, 3, 3, 1, 1)
  23. self.conv1 = M.ConvBn2d(3, 3, 1, 1, 0)
  24. self.conv2 = M.ConvBn2d(3, 3, 1, 1, 0)
  25. self.add = M.Elemwise("FUSE_ADD_RELU")
  26. def forward(self, x):
  27. x = self.conv0(x)
  28. x0 = self.conv1(x)
  29. x1 = self.conv2(x)
  30. o = self.add(x0, x1)
  31. return o
  32. class MyModule(M.Module):
  33. def __init__(self):
  34. super().__init__()
  35. self.block0 = Myblcok()
  36. self.block1 = Myblcok()
  37. def forward(self, x):
  38. x = self.block0(x)
  39. x = self.block1(x)
  40. return x
  41. class MyMinMaxObserver(Q.MinMaxObserver):
  42. pass
  43. class MyTQT(Q.TQT):
  44. pass
  45. def get_lsq_config(lsq_cls):
  46. return Q.QConfig(
  47. weight_observer=None,
  48. act_observer=None,
  49. weight_fake_quant=partial(lsq_cls, dtype="qint8_narrow"),
  50. act_fake_quant=partial(lsq_cls, dtype="qint8"),
  51. )
  52. def get_observer_config(observer_cls):
  53. return Q.QConfig(
  54. weight_observer=partial(observer_cls, dtype="qint8_narrow"),
  55. act_observer=partial(observer_cls, dtype="qint8"),
  56. weight_fake_quant=None,
  57. act_fake_quant=None,
  58. )
  59. def get_qparams(mod: QATModule):
  60. weight_qparams, act_qparams = None, None
  61. if mod.act_observer is not None:
  62. act_qparams = mod.act_observer.get_qparams()
  63. if mod.act_fake_quant:
  64. act_qparams = mod.act_fake_quant.get_qparams()
  65. if mod.weight_observer is not None:
  66. weight_qparams = mod.weight_observer.get_qparams()
  67. if mod.weight_fake_quant:
  68. weight_qparams = mod.weight_fake_quant.get_qparams()
  69. return weight_qparams, act_qparams
  70. def check_qparams(qparmsa: Q.QParams, qparmsb: Q.QParams):
  71. assert qparmsa.dtype_meta == qparmsb.dtype_meta
  72. assert qparmsa.mode == qparmsb.mode
  73. np.testing.assert_equal(qparmsa.scale.numpy(), qparmsb.scale.numpy())
  74. if qparmsa.zero_point is not None:
  75. np.testing.assert_equal(qparmsa.zero_point.numpy(), qparmsb.zero_point.numpy())
  76. def build_observered_net(net: M.Module, observer_cls):
  77. qat_net = Q.quantize_qat(
  78. net,
  79. qconfig=get_observer_config(observer_cls),
  80. mapping={MyConvBnRelu2d: MyQATConvBnRelu2d},
  81. )
  82. Q.enable_observer(qat_net)
  83. inp = Tensor(np.random.random(size=(5, 3, 32, 32)))
  84. qat_net(inp)
  85. Q.disable_observer(qat_net)
  86. return qat_net
  87. def build_fakequanted_net(net: QATModule, fakequant_cls):
  88. qat_net = Q.reset_qconfig(net, get_lsq_config(fakequant_cls))
  89. return qat_net
  90. def test_trace_qat():
  91. def _check_qat_module(qat_net: QATModule):
  92. inp = Tensor(np.random.random(size=(5, 3, 32, 32)))
  93. traced_net = trace_module(qat_net, inp)
  94. for name, qat_module in qat_net.named_modules():
  95. if not isinstance(qat_module, QATModule):
  96. continue
  97. traced_qat_module = get_subattr(traced_net, name)
  98. weight_qparams, act_qparams = get_qparams(qat_module)
  99. traced_weight_qparams, traced_act_qparams = get_qparams(traced_qat_module)
  100. if weight_qparams:
  101. check_qparams(weight_qparams, traced_weight_qparams)
  102. if act_qparams:
  103. check_qparams(act_qparams, traced_act_qparams)
  104. flatten_traced_net = traced_net.flatten()
  105. conv0_node = flatten_traced_net.graph.get_node_by_name(
  106. "MyModule_block0_conv0"
  107. ).as_unique()
  108. conv0_out_node = flatten_traced_net.graph.get_node_by_name(
  109. "MyModule_block0_conv0_out"
  110. ).as_unique()
  111. assert isinstance(conv0_node.owner, TracedModule)
  112. assert conv0_out_node.expr.inputs[0] is conv0_node
  113. _check_qat_module(build_observered_net(MyModule(), Q.MinMaxObserver))
  114. _check_qat_module(build_observered_net(MyModule(), MyMinMaxObserver))
  115. _check_qat_module(
  116. build_fakequanted_net(build_observered_net(MyModule(), Q.MinMaxObserver), Q.TQT)
  117. )
  118. _check_qat_module(
  119. build_fakequanted_net(build_observered_net(MyModule(), Q.MinMaxObserver), MyTQT)
  120. )
  121. def test_load_param():
  122. def _check_param(moda: M.Module, modb: M.Module):
  123. for name, attr in chain(moda.named_parameters(), moda.named_buffers()):
  124. traced_attr = get_subattr(modb, name)
  125. np.testing.assert_equal(attr.numpy(), traced_attr.numpy())
  126. def _check_module(build_func: Callable):
  127. net = build_func()
  128. buffer = io.BytesIO()
  129. mge.save(net.state_dict(), buffer)
  130. buffer.seek(0)
  131. inp = Tensor(np.random.random(size=(5, 3, 32, 32)))
  132. traced_net = trace_module(build_func(), inp)
  133. traced_net.load_state_dict(mge.load(buffer))
  134. _check_param(net, traced_net)
  135. buffer.seek(0)
  136. traced_net = trace_module(build_func(), inp).flatten()
  137. traced_net.load_state_dict(mge.load(buffer))
  138. _check_param(net, traced_net)
  139. _check_module(lambda: MyModule())
  140. _check_module(lambda: build_observered_net(MyModule(), Q.MinMaxObserver))
  141. def test_qualname():
  142. def _check_qualname(net):
  143. inp = Tensor(np.random.random(size=(5, 3, 32, 32)))
  144. traced_net = trace_module(net, inp)
  145. base_qualname = traced_net.graph.qualname
  146. for node in traced_net.graph.nodes():
  147. qualname = node.qualname
  148. qualname = qualname[len(base_qualname) + 1 :]
  149. if qualname.endswith("]"):
  150. qualname = qualname.rsplit(".", 1)[0]
  151. if qualname.startswith("["):
  152. qualname = ""
  153. traced_attr = get_subattr(traced_net, qualname)
  154. orig_attr = get_subattr(net, qualname)
  155. assert traced_attr is not None
  156. assert orig_attr is not None
  157. _check_qualname(MyModule())
  158. _check_qualname(build_observered_net(MyModule(), Q.MinMaxObserver))

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台