You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_tensor.py 22 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766
  1. # -*- coding: utf-8 -*-
  2. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  3. #
  4. # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
  5. #
  6. # Unless required by applicable law or agreed to in writing,
  7. # software distributed under the License is distributed on an
  8. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. import os
  10. import platform
  11. import numpy as np
  12. import pytest
  13. from utils import make_tensor, opr_test
  14. import megengine.functional as F
  15. from megengine import tensor
  16. from megengine.core._trace_option import use_symbolic_shape
  17. from megengine.core.tensor import megbrain_graph as G
  18. from megengine.core.tensor.utils import astensor1d
  19. from megengine.distributed.helper import get_device_count_by_fork
  20. from megengine.jit import trace
  21. from megengine.utils.network import Network, set_symbolic_shape
  22. from megengine.utils.network_node import VarNode
  23. def test_eye():
  24. dtype = np.float32
  25. cases = [{"input": [10, 20]}, {"input": [30]}]
  26. for case in cases:
  27. np.testing.assert_allclose(
  28. F.eye(case["input"], dtype=dtype).numpy(),
  29. np.eye(*case["input"]).astype(dtype),
  30. )
  31. np.testing.assert_allclose(
  32. F.eye(*case["input"], dtype=dtype).numpy(),
  33. np.eye(*case["input"]).astype(dtype),
  34. )
  35. np.testing.assert_allclose(
  36. F.eye(tensor(case["input"]), dtype=dtype).numpy(),
  37. np.eye(*case["input"]).astype(dtype),
  38. )
  39. @pytest.mark.parametrize("is_varnode", [True, False])
  40. def test_concat(is_varnode):
  41. if is_varnode:
  42. network = Network()
  43. else:
  44. network = None
  45. def get_data_shape(length: int):
  46. return (length, 2, 3)
  47. data1 = np.random.random(get_data_shape(5)).astype("float32")
  48. data2 = np.random.random(get_data_shape(6)).astype("float32")
  49. data3 = np.random.random(get_data_shape(7)).astype("float32")
  50. def run(data1, data2):
  51. return F.concat([data1, data2])
  52. cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
  53. opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]), network=network)
  54. @pytest.mark.parametrize("is_varnode", [True, False])
  55. def test_condtake(is_varnode):
  56. if is_varnode:
  57. network = Network()
  58. else:
  59. network = None
  60. x = np.array([[1, 2, 3], [4, 5, 6]]).astype("float32")
  61. y = np.array([[True, False, True], [False, True, True]])
  62. xx = make_tensor(x, network)
  63. yy = make_tensor(y, network)
  64. val, idx = F.cond_take(yy, xx)
  65. np.testing.assert_equal(val.numpy(), x[y])
  66. np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
  67. @pytest.mark.parametrize("is_varnode", [True, False])
  68. def test_concat_device(is_varnode):
  69. if is_varnode:
  70. network = Network()
  71. else:
  72. network = None
  73. data1 = make_tensor(np.random.random((3, 2, 2)).astype("float32"), network, "cpu0")
  74. data2 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu1")
  75. out = F.concat([data1, data2], device="cpu0")
  76. assert str(out.device).split(":")[0] == "cpu0"
  77. @pytest.mark.parametrize("is_varnode", [True, False])
  78. def test_stack(is_varnode):
  79. if is_varnode:
  80. network = Network()
  81. else:
  82. network = None
  83. data1 = np.random.random((3, 2, 2)).astype("float32")
  84. data2 = np.random.random((3, 2, 2)).astype("float32")
  85. data3 = np.random.random((3, 2, 2)).astype("float32")
  86. cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
  87. for ai in range(3):
  88. def run(data1, data2):
  89. return F.stack([data1, data2], axis=ai)
  90. opr_test(
  91. cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai), network=network
  92. )
  93. @pytest.mark.parametrize("is_varnode", [True, False])
  94. def test_split(is_varnode):
  95. if is_varnode:
  96. network = Network()
  97. saved_symbolic_shape = set_symbolic_shape(False)
  98. else:
  99. network = None
  100. data = np.random.random((2, 3, 4, 5)).astype(np.float32)
  101. inp = make_tensor(data, network)
  102. mge_out0 = F.split(inp, 2, axis=3)
  103. mge_out1 = F.split(inp, [3], axis=3)
  104. np_out = np.split(data, [3, 5], axis=3)
  105. assert len(mge_out0) == 2
  106. assert len(mge_out1) == 2
  107. np.testing.assert_equal(mge_out0[0].numpy(), np_out[0])
  108. np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])
  109. np.testing.assert_equal(mge_out0[1].numpy(), np_out[1])
  110. np.testing.assert_equal(mge_out1[1].numpy(), np_out[1])
  111. try:
  112. F.split(inp, 4)
  113. assert False
  114. except ValueError as e:
  115. pass
  116. try:
  117. F.split(inp, [3, 3, 5], axis=3)
  118. assert False
  119. except ValueError as e:
  120. assert str(e) == "Invalid nsplits_or_secions: [3, 3, 5]"
  121. if is_varnode:
  122. set_symbolic_shape(saved_symbolic_shape)
  123. @pytest.mark.parametrize("is_varnode", [True, False])
  124. def test_reshape(is_varnode):
  125. if is_varnode:
  126. network = Network()
  127. else:
  128. network = None
  129. x = np.arange(6, dtype="float32")
  130. xx = make_tensor(x, network)
  131. y = x.reshape(1, 2, 3)
  132. for shape in [
  133. (1, 2, 3),
  134. (1, -1, 3),
  135. (1, make_tensor(-1, network), 3),
  136. np.array([1, -1, 3], dtype="int32"),
  137. make_tensor([1, -1, 3], network),
  138. ]:
  139. yy = F.reshape(xx, shape)
  140. np.testing.assert_equal(yy.numpy(), y)
  141. @pytest.mark.parametrize("is_trace", [True, False])
  142. def test_reshape_on_empty_tensor(is_trace):
  143. input1_shape = (100, 0, 1)
  144. output1_shape = (100, 0, 10)
  145. data1 = tensor(np.random.random(input1_shape).astype(np.float32))
  146. input2_shape = (10, 0)
  147. output2_shape = (0,)
  148. data2 = tensor(np.random.random(input2_shape).astype(np.float32))
  149. input3_shape = (10, 0, 10)
  150. output3_shape = (0, 1, 2, 3)
  151. data3 = tensor(np.random.random(input3_shape).astype(np.float32))
  152. def comp(out, target_shp):
  153. assert out._tuple_shape == target_shp
  154. def func(x, shp):
  155. return F.reshape(x, shp)
  156. cases = [
  157. [data1, output1_shape],
  158. [data2, output2_shape],
  159. [data3, output3_shape],
  160. ]
  161. def test(func, inp, comp, target_shp):
  162. out = func(inp, target_shp)
  163. comp(out, target_shp)
  164. if is_trace:
  165. for symbolic in [False, True]:
  166. for inp, target_shp in cases:
  167. func_traced = trace(symbolic=symbolic)(func)
  168. test(func_traced, inp, comp, target_shp)
  169. test(func_traced, inp, comp, target_shp)
  170. test(func_traced, inp, comp, target_shp)
  171. else:
  172. for inp, target_shp in cases:
  173. test(func, inp, comp, target_shp)
  174. @pytest.mark.parametrize("is_varnode", [True, False])
  175. def test_reshape_shape_inference(is_varnode):
  176. if is_varnode:
  177. network = Network()
  178. saved_symbolic_shape = set_symbolic_shape(False)
  179. else:
  180. network = None
  181. x_shape_known = make_tensor([1, 2, 3, 4], network)
  182. x_shape_unknown = F.broadcast_to(
  183. make_tensor([1.0], network), shape=make_tensor([1, 1, 1, 1], network).sum()
  184. )
  185. tshp_unknown = astensor1d(
  186. (make_tensor([2], network), make_tensor([2], network)), x_shape_known
  187. )
  188. tshp_known = astensor1d((2, 2), x_shape_known)
  189. tshp_known_unspec = astensor1d((2, -1), x_shape_known)
  190. def check_shape(output, target):
  191. source = output.shape
  192. if isinstance(source, tensor):
  193. source = source.numpy()
  194. np.testing.assert_equal(source, target)
  195. def func(x, target_shape):
  196. return x.reshape(target_shape)
  197. cases = [
  198. {"input": [x_shape_known, tshp_unknown], "output": [(2, 2),]},
  199. {"input": [x_shape_unknown, tshp_unknown], "output": [(2, 2),]},
  200. {"input": [x_shape_known, tshp_known], "output": [(2, 2),]},
  201. {"input": [x_shape_known, tshp_known_unspec], "output": [(2, 2),]},
  202. {"input": [x_shape_unknown, tshp_known], "output": [(2, 2),]},
  203. {"input": [x_shape_unknown, tshp_known_unspec], "output": [(2, 2),]},
  204. ]
  205. opr_test(cases, func, compare_fn=check_shape, test_trace=True, network=network)
  206. if is_varnode:
  207. set_symbolic_shape(saved_symbolic_shape)
  208. @pytest.mark.parametrize("is_varnode", [True, False])
  209. def test_squeeze(is_varnode):
  210. if is_varnode:
  211. network = Network()
  212. saved_symbolic_shape = set_symbolic_shape(False)
  213. else:
  214. network = None
  215. x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
  216. xx = make_tensor(x, network)
  217. for axis in [None, 3, -4, (3, -4)]:
  218. y = np.squeeze(x, axis)
  219. yy = F.squeeze(xx, axis)
  220. np.testing.assert_equal(y, yy.numpy())
  221. if is_varnode:
  222. set_symbolic_shape(saved_symbolic_shape)
  223. @pytest.mark.parametrize("is_varnode", [True, False])
  224. def test_expand_dims(is_varnode):
  225. if is_varnode:
  226. network = Network()
  227. else:
  228. network = None
  229. x = np.arange(6, dtype="float32").reshape(2, 3)
  230. xx = make_tensor(x, network)
  231. for axis in [2, -3, (3, -4), (1, -4)]:
  232. y = np.expand_dims(x, axis)
  233. yy = F.expand_dims(xx, axis)
  234. np.testing.assert_equal(y, yy.numpy())
  235. def test_expand_dims_for_scalar():
  236. x = np.array(1, dtype="float32")
  237. xx = make_tensor(x, None)
  238. for axis in [0, -1, (0, 1), (-1, -2), (0, -1)]:
  239. y = np.expand_dims(x, axis)
  240. yy = F.expand_dims(xx, axis)
  241. np.testing.assert_equal(y, yy.numpy())
  242. for axis in [1, -2, (1, 2), (-2, -3)]:
  243. np.testing.assert_raises(np.AxisError, np.expand_dims, x, axis)
  244. np.testing.assert_raises(AssertionError, F.expand_dims, xx, axis)
  245. @pytest.mark.parametrize("is_varnode", [True, False])
  246. def test_elemwise_dtype_promotion(is_varnode):
  247. if is_varnode:
  248. network = Network()
  249. else:
  250. network = None
  251. x = np.random.rand(2, 3).astype("float32")
  252. y = np.random.rand(1, 3).astype("float16")
  253. xx = make_tensor(x, network)
  254. yy = make_tensor(y, network)
  255. z = xx * yy
  256. np.testing.assert_equal(z.numpy(), x * y)
  257. z = xx + y
  258. np.testing.assert_equal(z.numpy(), x + y)
  259. z = x - yy
  260. np.testing.assert_equal(z.numpy(), x - y)
  261. @pytest.mark.parametrize("is_varnode", [True, False])
  262. def test_linspace(is_varnode):
  263. if is_varnode:
  264. network = Network()
  265. else:
  266. network = None
  267. cases = [
  268. {"input": [1, 9, 9]},
  269. {"input": [3, 10, 8]},
  270. ]
  271. opr_test(
  272. cases,
  273. F.linspace,
  274. ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
  275. network=network,
  276. )
  277. cases = [
  278. {"input": [9, 1, 9]},
  279. {"input": [10, 3, 8]},
  280. ]
  281. opr_test(
  282. cases,
  283. F.linspace,
  284. ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
  285. network=network,
  286. )
  287. cases = [
  288. {"input": [1, make_tensor(9, network), 9]},
  289. {"input": [make_tensor(1, network), 9, make_tensor(9, network)]},
  290. ]
  291. opr_test(
  292. cases,
  293. F.linspace,
  294. ref_fn=lambda start, end, step: np.linspace(1, 9, 9, dtype=np.float32),
  295. network=network,
  296. )
  297. @pytest.mark.parametrize("is_varnode", [True, False])
  298. def test_arange(is_varnode):
  299. if is_varnode:
  300. network = Network()
  301. else:
  302. network = None
  303. cases = [
  304. {"input": [1, 9, 1]},
  305. {"input": [2, 10, 2]},
  306. ]
  307. opr_test(
  308. cases,
  309. F.arange,
  310. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  311. network=network,
  312. )
  313. cases = [
  314. {"input": [9, 1, -1]},
  315. {"input": [10, 2, -2]},
  316. ]
  317. opr_test(
  318. cases,
  319. F.arange,
  320. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  321. network=network,
  322. )
  323. cases = [
  324. {"input": [9.3, 1.2, -0.5]},
  325. {"input": [10.3, 2.1, -1.7]},
  326. ]
  327. opr_test(
  328. cases,
  329. F.arange,
  330. ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
  331. network=network,
  332. )
  333. @pytest.mark.parametrize("is_varnode", [True, False])
  334. def test_round(is_varnode):
  335. if is_varnode:
  336. network = Network()
  337. else:
  338. network = None
  339. data1_shape = (15,)
  340. data2_shape = (25,)
  341. data1 = np.random.random(data1_shape).astype(np.float32)
  342. data2 = np.random.random(data2_shape).astype(np.float32)
  343. cases = [{"input": data1}, {"input": data2}]
  344. opr_test(cases, F.round, ref_fn=np.round, network=network)
  345. @pytest.mark.parametrize("is_varnode", [True, False])
  346. def test_flatten(is_varnode):
  347. if is_varnode:
  348. network = Network()
  349. else:
  350. network = None
  351. data0_shape = (2, 3, 4, 5)
  352. data1_shape = (4, 5, 6, 7)
  353. data0 = np.random.random(data0_shape).astype(np.float32)
  354. data1 = np.random.random(data1_shape).astype(np.float32)
  355. def compare_fn(x, y):
  356. assert x._tuple_shape[0] == y
  357. output0 = (2 * 3 * 4 * 5,)
  358. output1 = (4 * 5 * 6 * 7,)
  359. cases = [
  360. {"input": data0, "output": output0},
  361. {"input": data1, "output": output1},
  362. ]
  363. opr_test(cases, F.flatten, compare_fn=compare_fn, network=network)
  364. output0 = (2, 3 * 4 * 5)
  365. output1 = (4, 5 * 6 * 7)
  366. cases = [
  367. {"input": data0, "output": output0},
  368. {"input": data1, "output": output1},
  369. ]
  370. opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, network=network)
  371. output0 = (2, 3, 4 * 5)
  372. output1 = (4, 5, 6 * 7)
  373. cases = [
  374. {"input": data0, "output": output0},
  375. {"input": data1, "output": output1},
  376. ]
  377. opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2, network=network)
  378. output0 = (2, 3 * 4, 5)
  379. output1 = (4, 5 * 6, 7)
  380. cases = [
  381. {"input": data0, "output": output0},
  382. {"input": data1, "output": output1},
  383. ]
  384. opr_test(
  385. cases,
  386. F.flatten,
  387. compare_fn=compare_fn,
  388. start_axis=1,
  389. end_axis=2,
  390. network=network,
  391. )
  392. @pytest.mark.parametrize("is_varnode", [True, False])
  393. def test_broadcast(is_varnode):
  394. if is_varnode:
  395. network = Network()
  396. else:
  397. network = None
  398. input1_shape = (20, 30)
  399. output1_shape = (30, 20, 30)
  400. data1 = np.random.random(input1_shape).astype(np.float32)
  401. input2_shape = (10, 1)
  402. output2_shape = (20, 10, 20)
  403. data2 = np.random.random(input2_shape).astype(np.float32)
  404. input3_shape = (10, 10)
  405. output3_shape = (10, 10)
  406. data3 = np.random.random(input3_shape).astype(np.float32)
  407. def compare_fn(x, y):
  408. assert x._tuple_shape[0] == y
  409. cases = [
  410. {"input": [data1, output1_shape], "output": output1_shape},
  411. {"input": [data2, output2_shape], "output": output2_shape},
  412. {"input": [data3, output3_shape], "output": output3_shape},
  413. ]
  414. opr_test(cases, F.broadcast_to, compare_fn=compare_fn, network=network)
  415. x = F.ones((2, 1, 3))
  416. with pytest.raises(RuntimeError):
  417. F.broadcast_to(x, (2, 3, 4))
  418. with pytest.raises(RuntimeError):
  419. F.broadcast_to(x, (4, 1, 3))
  420. with pytest.raises(RuntimeError):
  421. F.broadcast_to(x, (1, 3))
  422. @pytest.mark.parametrize("is_trace", [True, False])
  423. def test_broadcast_on_empty_tensor(is_trace):
  424. input1_shape = (100, 0, 1)
  425. output1_shape = (100, 0, 10)
  426. data1 = tensor(np.random.random(input1_shape).astype(np.float32))
  427. input2_shape = (10, 0)
  428. output2_shape = (10, 10, 0)
  429. data2 = tensor(np.random.random(input2_shape).astype(np.float32))
  430. input3_shape = (0, 0, 1, 10)
  431. output3_shape = (10, 0, 0, 10, 10)
  432. data3 = tensor(np.random.random(input3_shape).astype(np.float32))
  433. def comp(out, target_shp):
  434. assert out._tuple_shape == target_shp
  435. def func(x, shp):
  436. return F.broadcast_to(x, shp)
  437. cases = [
  438. [data1, output1_shape],
  439. [data2, output2_shape],
  440. [data3, output3_shape],
  441. ]
  442. def test(func, inp, comp, target_shp):
  443. out = func(inp, target_shp)
  444. comp(out, target_shp)
  445. if is_trace:
  446. for symbolic in [False, True]:
  447. for inp, target_shp in cases:
  448. func_traced = trace(symbolic=symbolic)(func)
  449. test(func_traced, inp, comp, target_shp)
  450. test(func_traced, inp, comp, target_shp)
  451. test(func_traced, inp, comp, target_shp)
  452. else:
  453. for inp, target_shp in cases:
  454. test(func, inp, comp, target_shp)
  455. @pytest.mark.parametrize("is_varnode", [True, False])
  456. def test_utils_astensor1d(is_varnode):
  457. if is_varnode:
  458. network = Network()
  459. else:
  460. network = None
  461. reference = make_tensor(0, network)
  462. # literal
  463. x = [1, 2, 3]
  464. for dtype in [None, "float32"]:
  465. xx = astensor1d(x, reference, dtype=dtype)
  466. assert isinstance(xx, type(reference))
  467. np.testing.assert_equal(xx.numpy(), x)
  468. # numpy array
  469. x = np.asarray([1, 2, 3], dtype="int32")
  470. for dtype in [None, "float32"]:
  471. xx = astensor1d(x, reference, dtype=dtype)
  472. assert isinstance(xx, type(reference))
  473. np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)
  474. # tensor
  475. x = make_tensor([1, 2, 3], network)
  476. for dtype in [None, "float32"]:
  477. xx = astensor1d(x, reference, dtype=dtype)
  478. assert isinstance(xx, type(reference))
  479. np.testing.assert_equal(xx.numpy(), x.numpy())
  480. # mixed
  481. x = [1, make_tensor(2, network), 3]
  482. for dtype in [None, "float32"]:
  483. xx = astensor1d(x, reference, dtype=dtype)
  484. assert isinstance(xx, type(reference))
  485. np.testing.assert_equal(xx.numpy(), [1, 2, 3])
  486. def test_device():
  487. x = tensor([1, 2, 3], dtype="float32")
  488. y1 = F.eye(x.shape, dtype="float32")
  489. y2 = F.eye(x.shape, dtype="float32", device=None)
  490. np.testing.assert_almost_equal(y1.numpy(), y2.numpy())
  491. y3 = F.eye(x.shape, dtype="float32", device="xpux")
  492. y4 = F.eye(x.shape, dtype="float32", device=x.device)
  493. np.testing.assert_almost_equal(y3.numpy(), y4.numpy())
  494. y5 = F.full((3, 2), 4, device=x.device)
  495. y6 = F.full((3, 2), 4, device="xpux")
  496. np.testing.assert_almost_equal(y5.numpy(), y6.numpy())
  497. @pytest.mark.parametrize("is_varnode", [True, False])
  498. def test_identity(is_varnode):
  499. if is_varnode:
  500. network = Network()
  501. else:
  502. network = None
  503. x = make_tensor(np.random.random((5, 10)).astype(np.float32), network)
  504. y = F.copy(x)
  505. np.testing.assert_equal(y.numpy(), x)
  506. def copy_test(dst, src, network):
  507. data = np.random.random((2, 3)).astype(np.float32)
  508. x = make_tensor(data, device=src, network=network)
  509. y = F.copy(x, dst)
  510. assert np.allclose(data, y.numpy())
  511. if network is None:
  512. z = x.to(dst)
  513. assert np.allclose(data, z.numpy())
  514. @pytest.mark.require_ngpu(1)
  515. @pytest.mark.parametrize("is_varnode", [True, False])
  516. def test_copy_h2d(is_varnode):
  517. if is_varnode:
  518. network = Network()
  519. else:
  520. network = None
  521. copy_test("cpu0", "gpu0", network=network)
  522. @pytest.mark.require_ngpu(1)
  523. @pytest.mark.parametrize("is_varnode", [True, False])
  524. def test_copy_d2h(is_varnode):
  525. if is_varnode:
  526. network = Network()
  527. else:
  528. network = None
  529. copy_test("gpu0", "cpu0", network=network)
  530. @pytest.mark.require_ngpu(2)
  531. @pytest.mark.parametrize("is_varnode", [True, False])
  532. def test_copy_d2d(is_varnode):
  533. if is_varnode:
  534. network = Network()
  535. else:
  536. network = None
  537. copy_test("gpu0", "gpu1", network=network)
  538. copy_test("gpu0:0", "gpu0:1", network=network)
  539. @pytest.mark.parametrize(
  540. "shape, repeats, axis",
  541. [
  542. ((2,), 2, 0),
  543. ((2, 3, 4, 5), 3, 0),
  544. ((2, 3, 4, 5), 4, 3),
  545. ((2,), 2, None),
  546. ((2, 3, 4, 5), 3, None),
  547. ((), 1, None),
  548. ((), 10, None),
  549. ],
  550. )
  551. @pytest.mark.parametrize("is_varnode", [True, False])
  552. def test_repeat(shape, repeats, axis, is_varnode):
  553. if is_varnode:
  554. network = Network()
  555. else:
  556. network = None
  557. def repeat_func(inp):
  558. return F.repeat(inp=inp, repeats=repeats, axis=axis)
  559. if shape != ():
  560. cases = [
  561. {"input": np.random.randn(*shape).astype("float32")},
  562. ]
  563. else:
  564. cases = [{"input": np.array(1.23)}]
  565. opr_test(
  566. cases,
  567. repeat_func,
  568. ref_fn=lambda inp: np.repeat(inp, repeats, axis),
  569. network=network,
  570. )
  571. @pytest.mark.parametrize(
  572. "shape, reps",
  573. [
  574. ((2,), (2,)),
  575. ((2, 3, 4, 5), (1, 1, 1, 1)),
  576. ((2, 3, 4, 5), (1, 2, 3, 4)),
  577. ((2, 3, 4, 5), (2, 2, 2, 2, 2, 2, 2)),
  578. ],
  579. )
  580. @pytest.mark.parametrize("is_varnode", [True])
  581. def test_tile(shape, reps, is_varnode):
  582. if is_varnode:
  583. network = Network()
  584. else:
  585. network = None
  586. def tile_func(inp):
  587. return F.tile(inp=inp, reps=reps)
  588. cases = [{"input": np.random.randn(*shape).astype("float32")}]
  589. opr_test(cases, tile_func, ref_fn=lambda inp: np.tile(inp, reps), network=network)
  590. @pytest.mark.parametrize(
  591. "shape, shifts, axis",
  592. [
  593. ((2, 3), 0, None),
  594. ((2, 3), 1, 0),
  595. ((2, 3, 4, 5), (-1, 1), (0, 1)),
  596. ((2, 3, 4, 5), (-2, 1, 2), (1, 2, 3)),
  597. ],
  598. )
  599. @pytest.mark.parametrize("is_varnode", [True, False])
  600. def test_roll(shape, shifts, axis, is_varnode):
  601. if is_varnode:
  602. network = Network()
  603. else:
  604. network = None
  605. inp = np.random.randn(*shape).astype("float32")
  606. def func(inp):
  607. return F.roll(inp, shifts, axis)
  608. cases = [
  609. {"input": inp},
  610. ]
  611. opr_test(
  612. cases, func, ref_fn=lambda inp: np.roll(inp, shifts, axis), network=network
  613. )

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台