You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_qat.py 2.9 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192
  1. from itertools import product
  2. import numpy as np
  3. from megengine import tensor
  4. from megengine.module import (
  5. Conv2d,
  6. ConvBn2d,
  7. ConvRelu2d,
  8. DequantStub,
  9. Module,
  10. QuantStub,
  11. )
  12. from megengine.quantization.quantize import disable_fake_quant, quantize_qat
  13. def test_qat_convbn2d():
  14. in_channels = 32
  15. out_channels = 64
  16. kernel_size = 3
  17. for groups, bias in product([1, 4], [True, False]):
  18. module = ConvBn2d(
  19. in_channels, out_channels, kernel_size, groups=groups, bias=bias
  20. )
  21. module.train()
  22. qat_module = quantize_qat(module, inplace=False)
  23. disable_fake_quant(qat_module)
  24. inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32))
  25. normal_outputs = module(inputs)
  26. # import pdb
  27. # pdb.set_trace()
  28. qat_outputs = qat_module(inputs)
  29. np.testing.assert_allclose(
  30. normal_outputs.numpy(), qat_outputs.numpy(), atol=5e-6
  31. )
  32. np.testing.assert_allclose(
  33. module.bn.running_mean.numpy(),
  34. qat_module.bn.running_mean.numpy(),
  35. atol=5e-8,
  36. )
  37. np.testing.assert_allclose(
  38. module.bn.running_var.numpy(), qat_module.bn.running_var.numpy(), atol=5e-7,
  39. )
  40. module.eval()
  41. normal_outputs = module(inputs)
  42. qat_module.eval()
  43. qat_outputs = qat_module(inputs)
  44. np.testing.assert_allclose(
  45. normal_outputs.numpy(), qat_outputs.numpy(), atol=5e-6
  46. )
  47. def test_qat_conv():
  48. in_channels = 32
  49. out_channels = 64
  50. kernel_size = 3
  51. class TestNet(Module):
  52. def __init__(self, groups, bias):
  53. super().__init__()
  54. self.quant = QuantStub()
  55. self.dequant = DequantStub()
  56. self.conv = Conv2d(
  57. in_channels, out_channels, kernel_size, groups=groups, bias=bias
  58. )
  59. self.conv_relu = ConvRelu2d(
  60. out_channels, in_channels, kernel_size, groups=groups, bias=bias
  61. )
  62. def forward(self, inp):
  63. out = self.quant(inp)
  64. out = self.conv(out)
  65. out = self.conv_relu(out)
  66. out = self.dequant(out)
  67. return out
  68. inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32))
  69. for groups, bias in product([1, 4], [True, False]):
  70. net = TestNet(groups, bias)
  71. net.train()
  72. qat_net = quantize_qat(net, inplace=False)
  73. disable_fake_quant(qat_net)
  74. normal_outputs = net(inputs)
  75. qat_outputs = qat_net(inputs)
  76. np.testing.assert_allclose(normal_outputs.numpy(), qat_outputs.numpy())
  77. net.eval()
  78. normal_outputs = net(inputs)
  79. qat_net.eval()
  80. qat_outputs = qat_net(inputs)
  81. np.testing.assert_allclose(normal_outputs.numpy(), qat_outputs.numpy())

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台