- # -*- coding: utf-8 -*-
- from abc import abstractmethod
- from typing import Tuple, Union
-
- from ..functional import avg_pool2d, max_pool2d
- from .module import Module
-
-
- class _PoolNd(Module):
- def __init__(
- self,
- kernel_size: Union[int, Tuple[int, int]],
- stride: Union[int, Tuple[int, int]] = None,
- padding: Union[int, Tuple[int, int]] = 0,
- **kwargs
- ):
- super(_PoolNd, self).__init__(**kwargs)
- self.kernel_size = kernel_size
- self.stride = stride or kernel_size
- self.padding = padding
-
- @abstractmethod
- def forward(self, inp):
- pass
-
- def _module_info_string(self) -> str:
- return "kernel_size={kernel_size}, stride={stride}, padding={padding}".format(
- **self.__dict__
- )
-
-
- class MaxPool2d(_PoolNd):
- r"""Applies a 2D max pooling over an input.
-
- For instance, given an input of the size :`(N, C, H_{\text{in}}, W_{\text{in}})` and
- :attr:`kernel_size` :math:`(kH, kW)`, this layer generates the output of
- the size :math:`(N, C, H_{\text{out}}, W_{\text{out}})` through a process described as:
-
- .. math::
-
- \begin{aligned}
- out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1}
- \text{input}(N_i, C_j, \text{stride[0]} \times h + m,
- \text{stride[1]} \times w + n)
- \end{aligned}
-
- If :attr:`padding` is non-zero, then the input is implicitly zero-padded on
- both sides for :attr:`padding` number of points.
-
- Args:
- kernel_size: the size of the window.
- stride: the stride of the window. Default value is ``kernel_size``.
- padding: implicit zero padding to be added on both sides.Default: 0.
-
- Examples:
- >>> import numpy as np
- >>> m = M.MaxPool2d(kernel_size=3, stride=1, padding=0)
- >>> inp = mge.tensor(np.arange(0, 16).astype("float32").reshape(1, 1, 4, 4))
- >>> oup = m(inp)
- >>> oup.numpy()
- array([[[[10., 11.],
- [14., 15.]]]], dtype=float32)
- """
-
- def forward(self, inp):
- return max_pool2d(inp, self.kernel_size, self.stride, self.padding)
-
-
- class AvgPool2d(_PoolNd):
- r"""Applies a 2D average pooling over an input.
-
- For instance, given an input of the size :math:`(N, C, H_{\text{in}}, W_{\text{in}})` and
- :attr:`kernel_size` :math:`(kH, kW)`, this layer generates the output of
- the size :math:`(N, C, H_{\text{out}}, W_{\text{out}})` through a process described as:
-
- .. math::
-
- out(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1}
- input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
-
- If :attr:`padding` is non-zero, then the input is implicitly zero-padded on
- both sides for :attr:`padding` number of points.
-
- Args:
- kernel_size: the size of the window.
- stride: the stride of the window. Default value is ``kernel_size``.
- padding: implicit zero padding to be added on both sides.Default: 0.
- mode: whether to include the padding values while calculating the average, set
- to "average" will do counting.
- Default: "average_count_exclude_padding"
-
- Examples:
- >>> import numpy as np
- >>> m = M.AvgPool2d(kernel_size=2, stride=2, padding=[1,0], mode="average")
- >>> inp = mge.tensor(np.arange(1 * 1 * 3 * 4).astype(np.float32).reshape(1, 1, 3, 4))
- >>> output = m(inp)
- >>> output
- Tensor([[[[0.25 1.25]
- [6.5 8.5 ]]]], device=xpux:0)
-
- """
-
- def __init__(
- self,
- kernel_size: Union[int, Tuple[int, int]],
- stride: Union[int, Tuple[int, int]] = None,
- padding: Union[int, Tuple[int, int]] = 0,
- mode: str = "average_count_exclude_padding",
- **kwargs
- ):
- super(AvgPool2d, self).__init__(kernel_size, stride, padding, **kwargs)
- self.mode = mode
-
- def forward(self, inp):
- return avg_pool2d(inp, self.kernel_size, self.stride, self.padding, self.mode)
-
- def _module_info_string(self) -> str:
- return "kernel_size={kernel_size}, stride={stride}, padding={padding}, mode={mode}".format(
- **self.__dict__
- )
|